Objective
To achieve European ambitions to reduce global emissions of greenhouse gases by 80% before 2050, emissions of the transport and the energy sectors will need to decrease drastically. The Hydrogen Economy offers ready solutions to decarbonize the transport sector. Fuel cell electric vehicles (FCEVs) close to be deployed in the market in increasing numbers. For FCEVs to be introduced to the market in volumes, a network of hydrogen refuelling stations (HRS) first has to exist. Green hydrogen is figured, in the medium – long term, as the target technology to decarbonize the transport sector. Indeed, this will not be commercially attractive in the first years. Similarly, new-built hydrogen supply capacity will not be viable in the first years with low demand.
CH2P aims at building a transition technology for early infrastructure deployment. It uses widely available carbon-lean natural gas (NG) or bio-methane to produce hydrogen and power with Solid Oxide Fuel Cell (SOFC) technology. Similar to a combined heat and power system, the high quality heat from the fuel cell is used to generate hydrogen.
CH2P therefore generates hydrogen and electricity with high efficiencies (up to 90%) and a reduced environmental impact compared to conventional technologies. The system will have high dynamic (more than 50% of energy will be in form of hydrogen), purity level of hydrogen at 99.999%, a CO-level lower than 200 ppb. The target cost for the hydrogen generated will be below 4,5 €/kg. The overall technology concept will be based on modularity to enable a staged deployment of such infrastructure.
CH2P will realize two systems, one with hydrogen generation capacity of 20 kg/day, for components validation, and another at 40 kg/day for infield testing.
A dissemination campaign will use the project results to demonstrate the technical readiness of CH2P technology, while industrial partners are committed to enter the market after the project end.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences social geography transport electric vehicles
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation combined heat and power
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology environmental engineering energy and fuels fuel cells
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.8.2. - Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-FCH-2016-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38122 Trento
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.