Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fibre optic nonlinear technologies

Objective

Fibre-optic communication systems form the backbone of the world’s communication infrastructure as they provide for lion fraction (more than 99%) of the global data traffic. The ongoing exponential growth in network traffic, however, is pushing current technology, whose data rates had increased over several decades, towards its limits. It is widely accepted that the nonlinear transmission effects in optical fibre are now a major limiting factor in modern fibre-optic communication systems. Nonlinear properties of the optical fibre medium limit the conventional techniques to increase capacity by simply increasing signal power. Most of the transmission technologies utilized today have been originally developed for linear (wired or wireless) communication channels. Over the past several decades, significant improvements in data rates were obtained by improvements and modifications within the overall linear transmission paradigm. However, there is much evidence that this trend is going to end within the next decade due to fibre nonlinearity. There is a clear need for radically different approaches to the coding, transmission, and processing of information that take the nonlinear properties of the optical fibre into account. This also requires education and training of a new generation of optical communication engineers and specialists with knowledge on nonlinear methods and techniques.

The EID FONTE R&D goals will be focused on development of disruptive nonlinear techniques and approaches to fibre-optic communications beyond the limits of current technology. The project will make important innovative steps in development of the technique of the nonlinear Fourier transform (NFT) and its implementation in the practical communication systems. The R&D tasks will be carried out along with training of PhD students in the leading research centres in Europe with industry focused projects with 50% of time spent in the world leading telecom centre - Nokia Bell Labs Germany.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-ITN-EID - European Industrial Doctorates

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-ITN-2017

See all projects funded under this call

Coordinator

ASTON UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 273 287,88
Address
ASTON TRIANGLE
B4 7ET Birmingham
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 273 287,88

Participants (4)

My booklet 0 0