Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Hydrogen Delivery Risk Assessment and Impurity Tolerance Evaluation

Project description

Guaranteeing the quality of hydrogen fuel

Hydrogen vehicles have the potential to provide clean, zero-emissions transport. However, the quality of hydrogen in the supply chain must be carefully controlled because impurities can damage fuel cells and increase pollution. To address this, the EU-funded HYDRAITE project aims to examine the impact contaminants have on the fuel cell performance of hydrogen vehicles and subsequently recommend revisions to existing international standards for hydrogen fuel quality (ISO 14687). To do so, it will establish state-of-the-art laboratories to measure hydrogen quality and devise measurement protocols for fuel cells. The project will also develop methods for in-situ monitoring of hydrogen quality at refuelling stations. Outcomes should strengthen consumer confidence in hydrogen vehicles.

Objective

HYDRAITE project aims to solve the issue of hydrogen quality for transportation applications with the effort of partners from leading European research institutes and independent European automotive stack manufacturer, together with close contact and cooperation with the European FCH industry.

In this project, the effects of contaminants, originating from the hydrogen supply chain, on the fuel cell systems in automotive applications are studied. As an outcome, recommendations for the current ISO 14687 standards will be formulated based on the technical data of the impurity concentrations at the HRS, FC contaminant studies under relevant automotive operation conditions, and inter-compared gas analysis.

The methodology for determining the effect of contaminants in automotive PEMFC system operation will be developed by six leading European research institutes in co-operation with JRC and international partners. In addition, a methodology for in-line monitoring of hydrogen quality at the HRS, as well as sampling strategy and methodology for new impurities, gas, particles and liquids, will be evolved.

Three European laboratories will be established, capable of measuring all of the contaminants according to ISO 14687 standards, and provide a strong evidence on the quality and reliability on their result. Beyond the project, the three laboratories will offer their services to the European FCH community. In addition, a network of expert laboratories will be set, able to provide qualitative analysis and the first analytical evidence on the presence or absence of these new compounds with potential negative effect to the FCEV.

The efficient dissemination and communication improves the resulting data and input for the recommendations for ISO standards of hydrogen fuel. The project and its results will be public, to boost the impact of the project outcomes and to enhance the competitiveness of the European FC industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

  • H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy MAIN PROGRAMME
    See all projects funded under this programme
  • H2020-EU.3.3.8.3. - Demonstrate on a large scale the feasibility of using hydrogen to support integration of renewable energy sources into the energy systems, including through its use as a competitive energy storage medium for electricity produced from renewable energy sources
    See all projects funded under this programme

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

FCH2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-JTI-FCH-2017-1

See all projects funded under this call

Coordinator

TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 590 453,75
Address
TEKNIIKANTIE 21
02150 Espoo
Finland

See on map

Region
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 590 453,75

Participants (7)

My booklet 0 0