Objective
Anterior cingulate cortex is one of the largest riddles in cognitive neuroscience and presents a major challenge to mental health research. ACC dysfunction contributes to a wide spectrum of psychiatric and neurological disorders but no one knows what it actually does. Although more than a thousand papers are published about it each year, attempts to identify its function have been confounded by the fact that a multiplicity of tasks and events activate ACC, as if it were involved in everything.
Recently, I proposed a theory that reconciles many of the complexities surrounding ACC. This holds that ACC selects and motivates high-level, temporally extended behaviors according to principles of hierarchical reinforcement learning. For example, on this view ACC would be responsible for initiating and sustaining a run up a steep mountain. I have instantiated this theory in two computational models that make explicit the theory's assumptions, while yielding testable predictions. In this project I will integrate the two computational models into a unified, biologically-realistic model of ACC function, which will be evaluated using mathematical techniques from non-linear dynamical systems analysis. I will then systematically test the unified model in a series of experiments involving functional magnetic resonance imaging, electroencephalography and psychopharmacology, in both healthy human subjects and patients.
The establishment of a complete, formal account of ACC will fill an important gap in the cognitive neuroscience of cognitive control and decision making, strongly impact clinical practice, and be important for artificial intelligence and robotics research, which draws inspiration from brain-based mechanisms for cognitive control. The computational modelling work will also link high level, abstract processes associated with hierarchical reinforcement learning with low level cellular mechanisms, enabling the theory to be tested in animal models.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9000 Gent
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.