Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scalable DSP algorithms for high performance hardware applied to 5G MaMi systems

Objective

There is persistent demand for radical advancements in telecommunication systems. The digital baseband processing unit (or Digital Signal Processor – DSP) is of paramount importance for the overall performance and it consumes a significant part of the total power. Breakthroughs in terms of accuracy, speed and efficiency are required in custom DSP implementations. To this end we propose to employ ideas that lead to advances in quantum algorithms for scientific computing to obtain silicon integrated circuit implementations meeting the performance expectations. Our experience and the similarities in the efficiency and accuracy requirements between such quantum algorithms and custom silicon-based integrated circuit design have not been exploited. This has a huge potential for obtaining high performance DSP cores in 5G MaMi systems.

We propose to derive DSP algorithms and corresponding digital circuits with performance guarantees in terms of accuracy and speed. In some cases we will be deriving entirely new algorithms and circuits. In others we will investigate the degree to which the existing quantum algorithms for scientific computing can be used as a basis to derive efficient custom integrated circuits for DSP. To address the efficiency requirements and to control the error propagation we propose a modular approach. Algorithms will be composed by combining modules performing sub-tasks. Digital circuits with a priori known error and cost characteristics will be used to implement the different modules. This allows the comparison of the trade-offs between implementation alternatives and paves the way toward fully automatic overall resource optimization in DSP design. The proposed approach will provide a new and sound methodology to design and test custom integrated circuits for next generation communication systems (5G).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-SE - Society and Enterprise panel

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

INFINEON TECHNOLOGIES AUSTRIA AG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 178 156,80
Address
SIEMENSSTRASSE 2
9500 Villach
Austria

See on map

Region
Südösterreich Kärnten Klagenfurt-Villach
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 178 156,80
My booklet 0 0