Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multibeam Femtosecond Laser System for High Throughput Micro-drilling of HLFC Structures

Project description

Femtosecond laser creates tiny holes on wing structures and enhances aircraft performance

Recent advances in femtosecond lasers have rendered them a valuable tool for micromachining and microdrilling applications. The EU-funded MULTIPOINT project plans to develop a femtosecond laser that can be used to drill tiny holes on large titanium plates that help stabilise air flow and minimise drag in aircraft. Unlike other laser technologies employed for perforating titanium surfaces, MULTIPOINT’s femtosecond laser will eliminate the need for surface post-processing. The technology does not create burrs or undesirable titanium microstructural phases in the heat-affected area surrounding the micro-holes. The ultimate aim is to develop a femtosecond laser source that delivers 1.2 kW power and new beam delivery technologies that optimise process parameters and maximise production.

Objective

MULTIPOINT's main objective is to develop a high power femtosecond laser system with a multibeam generation unit and custom beam delivery scanning and processing on the fly heads for high throughput micro-drilling of large Ti panels used in the fabrication HLFC structures in the aerospace industry. Three will be the key challenges to be adressed:

• A 1.2 kW femtosecond laser source working at high pulse energy will be developed. This laser has enough power to drive several synchronized processes of percussion drilling at the same time (parallel processing) and hence, maximize the production just taking into account aspects related to the increase of the energy provided to the sample.

• Secondly, a multibeam generation unit will be developed for splitting the main beam supplied by the laser source. This unit will be optimized not only optically but will take into account process optimization and application requirements. It will be designed to optimize the energy balance per beam in a pattern determined by the particular requirements of the micro-drilling of Ti panels for the development of HLFC structures.

• Finally, two strategies for delivering the multibeam pattern to the Ti panel based on the percussion drilling technique will be developed and tested. The first strategy involves the development of a multibeam scanner based on galvanometric mirrors. Its custom design will include a sufficient optical aperture to take a number of parallel beams to the sample, within a working field determined by a focussing f-theta lens, in a controlled environment by means of an inert Ar atmosphere chamber for process protection. The second head will be a multibeam on-the-fly processing head with pulse trains in a multibeam pattern and Ar jet nozzle. These two strategies will also allow us to study the best processing approach through the development of new beam delivery technologies to optimize the process parameters and maximize production.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-ICT-2018-20

See all projects funded under this call

Coordinator

FUNDACION TEKNIKER
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 908 091,25
Address
CALLE INAKI GOENAGA 5
20600 Eibar Guipuzcoa
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 908 091,25

Participants (6)

My booklet 0 0