Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Physical Architecture Optimization System

Project description

Automating the manual MBSE

Physical architecture is made up of technical drawings, diagrams, specifications and the arrangements, interfaces, assembly and integration configuration of the software product. As systems become more complex, engineers are no longer sharing documents to exchange information. They apply model-based systems engineering (MBSE) – the practice of developing a set of related system models to help define, design and document a system under development. Eliminating the dependence on traditional documents, the EU-funded PHAROS project will develop a fully instrumented, automated and simulation-enabled engineering software platform to automate the whole manual MBSE design process for physical systems architecture. To make the system engineer’s job easier, the project is working on the automation of MBSE with a machine-executable V-Model.

Objective

The aim of the project PHAROS is the development, implementation and demonstration of a fully instrumented, automated and simulation-enabled engineering software platform capable to automate the whole manual model-based systems engineering (MBSE) design process for physical systems architecture generation and optimisation, under special consideration of (but not limited to) automated optimal packaging, piping and routing generation of an aircraft wing section assembly which complies to a given set of engineering constraints.

In order to achieve this, graph-based design languages in UML (Unified Modeling Language) are used to develop an automated, algorithmic implementation of interoperable engineering services for packaging, piping and routing. Design languages are executable in the software platform Design Compiler 43 of one industrial project partner and may be coupled for optimization purposes with the optimizer software Optimus of the other industrial partner.

Graph-based design languages are inspired by human languages, in which the vocabulary and rules form a grammar. The term 'design language' means that every sentence allowed by the grammar is a valid expression of a design. The term 'graph-based' means that each node in a graph is used to represent a requirement, a function, a solution principle, a component or any other arbitrary engineering expression one may encounter in the product life-cycle. This graphical representation of the design product and design process in form of a graph-based language is translated by a compiler into the disciplinary models of packaging, piping and routing in order to draw conclusions for the further optimization of the designs.

The automation of model-based systems engineering (MBSE) with a machine-executable V-Model will push the competitiveness of European aerospace companies to a new level of efficiency and will permit a unique selling proposition of innovation and cost leadership enabled by automation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CS2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-CS2-CFP09-2018-02

See all projects funded under this call

Coordinator

UNIVERSITY OF STUTTGART
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 217 250,00
Address
KEPLERSTRASSE 7
70174 Stuttgart
Germany

See on map

Region
Baden-Württemberg Stuttgart Stuttgart, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 217 250,00

Participants (2)

My booklet 0 0