Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Development of full lignin based organic redox flow battery suitable to work in warm environments and heavy multicycle uses.

Project description

A new generation of organic flow batteries shows promise for energy storage

The EU-funded BALIHT project is designing new redox organic flow batteries that can work at temperatures of up to 80 °C. Researchers claim that the batteries will offer longer duration, higher power and a 20 % higher energy efficiency compared to other organic battery types. The new battery will be based on low-cost, abundant organic molecules that are easily dissolved in water, electrolytes comprising lignin, thin non-fluorinated membranes and carbon electrodes. Redox organic flow batteries are one of the most promising approaches to sustaining a grid powered by the sun and wind, improving grid flexibility and stability and providing high-performance charge points for electric cars.

Objective

Redox flow batteries (RFBs) are designed to work up temperature of 40ºC, however, discharging the battery generates heat. A cooling system is required to avoid electrolyte degradation or battery malfunction. Cooling requires energy and reduces the battery global efficiency. Moreover, higher temperatures have advantages: low electrolyte viscosity (less pump energy), better electrolyte diffusion in electrode & increase battery power due to increase electron mobility.
BALIHT project aims to develop a new organic redox flow battery suitable to work up to temperatures of 80ºC, with a self-life similar than current organic ones, but with an energy efficiency 20% higher than current RFB since cooling system is not required, less pump energy & high power.
Redox-active organic molecules with promising prospect in the application of RFBs, benefited from their low cost, vast abundance, and high tunability of both potential and solubility. These organic molecules are more soluble in water, which allows more concentrated electrolyte and increased battery capacity.CMBlu has developed an organic redox flow battery technology that use electrolytes from lignin, thin non-fluorinated membrane, carbon-based electrodes and plastic frames. Lignin is a renewable resource and the largest natural source of aromatic compounds from which efficient electrolytes can be produced.
BALITH concept of organic RFB makes this technology suitable for many applications where the requirements for batteries are more challenging like:
- Smoothing of non-dispatchable renewable power plants (like solar or wind)
- Support for Ancillary services
- High performance electric car recharge points
- Improvement of grid flexibility and stability (at both transmission and distribution level).
- Avoid cooling needs in RFB placed in warm countries (between 40º Latitude North & 40º Latitude South).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-LC-BAT-2019-2020

See all projects funded under this call

Coordinator

AIMPLAS - ASOCIACION DE INVESTIGACION DE MATERIALES PLASTICOS Y CONEXAS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 476 592,50
Address
VALENCIA PARC TECHNOLOGIC CALLE GUSTAVE EIFFEL 4
46980 Paterna
Spain

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Este Comunitat Valenciana Valencia/València
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 476 592,50

Participants (12)

My booklet 0 0