Project description
Predicting machine failure before it happens
The factory of the future will be able to predict and respond to everything from individual machines to production line systems. Shifting from scheduled maintenance and regular service of machines to predictive maintenance, factories will be able to prevent asset failure by predicting issues before they happen. The EU-funded EnCORE project will develop a game-changing approach in predictive maintenance. For instance, it will use deep learning technology to enable the prediction of a machine’s future condition using data that corresponds to normal machine states. The project is working to take this new solution to the market. Its software is being validated at two applications: a compression moulding machine that produces plastic bottle enclosures and a forming machine that produces razor blades.
Objective
In the manufacturing sectors, the traditional planned maintenance approach is no longer viable, as it cannot cope with the ever-rising complexity of production systems. This pressing problem hurts industry’s profitability, and unplanned downtime costs industrial manufacturers €43 billion per year. This pressing problem has fuelled the growth of the predictive maintenance market. Currently, predictive maintenance solutions employ typical machine learning approaches based on monolithic rule-based predictions and require from the customer labelled data that correspond to defective machine states. This impedes the penetration of predictive maintenance in the industry. EnCORE is the fruit of 5 years of R&D to develop proprietary deep neural networks fit for predictive maintenance applications. Our solution uses best-in-class deep learning technology removing the overheads related with data preparation and enable the prediction of machine’s future condition using data that correspond to normal machine states. This is a game changing approach in the predictive maintenance industry. EnCORE is at TRL-6, with our software being validated at two different applications, (1) a compression moulding machine that produces plastic bottle enclosures/caps and (2) a cold forming machine that produces razor blades. Our target market will be the Food & Beverage and Consumer Goods industries targeting both OEMs of machinery and End-Users use such machinery. To take our product to the market, we will employ an hybrid business model using both direct sales and sales through industrial IoT platforms. EnCORE’s unique offering unlocks tremendous value for our customers; this will fuel the adoption of our solution by the industry. In the commercialisation period, we forecast cumulative profits of about €15 million with a strong Return on Investment (ROI) of €13 million. This will allow us to grow our workforce by 83 new employees, to meet the expected market demand for our breakthrough product.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology other engineering and technologies food technology
- natural sciences computer and information sciences internet internet of things
- social sciences economics and business business and management business models
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
341 00 Chalkis
Greece
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.