Objective
The goal of this project is to develop estimation and control strategies for systems where only a (very) limited amount of information (measurements and models) is available. The main motivation to consider these problems are biomedical applications, where such a small amount of available information is often inherent. Examples include hormone concentration measurements when considering thyroidal diseases (which are typically only taken every few days or even weeks) or monitoring the size of a tumor. Estimating the current state of the system and devising appropriate control actions is very challenging in such applications. This is not covered by existing approaches in the literature, necessitating the development of novel methods and tools. Within this project, I will in particular focus on the following aspects. First, observability of nonlinear systems subject to few (sampled) measurements will be studied and sampling strategies together with suitable nonlinear state estimators will be derived. Second, state estimation and control strategies will be developed for situations with only partial or no model knowledge. Again, this is of intrinsic importance in biomedical applications where often the underlying physical principles are only partially understood or too complex. This necessitates the design of data- and learning-based methods, for which desired guarantees can be given, even in case of few measurements. Third, the developed tools will be extended to large-scale systems, where estimation and control has to be achieved in a distributed fashion. The successful achievement of the project goals will (i) enable estimation and control in systems with very few, sampled measurements, (ii) constitute a big step towards a holistic data-based systems and control theory, (iii) result in a new, data-driven, paradigm for the control of large-scale systems, and (iv) enable the design of systematic, personalized, and optimal control strategies in biomedical applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30167 Hannover
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.