Project description
New systems for today’s data-driven applications
The infrastructure for data management is growing fast. For accurate predictions, modern data-driven applications leverage large, heterogeneous data collections to uncover interesting patterns. They also build robust machine-learning models for accurate predictions. As a result, new systems have been developed with traditional, high-performance computing and the architecture of underlying hardware clusters. There is also a trend toward complex data analysis pipelines that combine different systems. The EU-funded DAPHNE project will define an open and extensible systems infrastructure for integrated data analysis pipelines. It will build a reference implementation of language abstractions (APIs and a domain-specific language) and an intermediate representation, as well as compilation and runtime techniques.
Objective
Modern data-driven applications leverage large, heterogeneous data collections to find interesting patterns, and build robust machine learning (ML) models for accurate predictions. Large data sizes and advanced analytics spurred the development and adoption of data-parallel computation frameworks like Apache Spark or Flink as well as distributed ML systems like MLlib, TensorFlow, or PyTorch. A key observation is that these new systems share many techniques with traditional high-performance computing (HPC), and the architecture of underlying HW clusters converges. Yet, the programming paradigms, cluster resource management, as well as data formats and representations differ substantially across data management, HPC, and ML software stacks. There is a trend though, toward complex data analysis pipelines that combine these different systems. Examples are workflows of distributed data pre-processing, tuned HPC libraries, and dedicated ML systems, but also HPC applications that leverage ML models for more cost-effective simulation. Major obstacles are (1) limited development productivity for integrated analysis pipelines due to different programming models, and separated cluster environments, (2) unnecessary data movement overhead and underutilization due to separate, statically provisioned clusters, and (3) lack of a common system infrastructure with good interoperability. For these reasons, DAPHNE’s overall objective is the definition of an open and extensible systems infrastructure for integrated data analysis pipelines. We aim at building a reference implementation of language abstractions (i.e. APIs and a domain-specific language), an intermediate representation, as well as compilation and runtime techniques with support for integrating and scheduling heterogeneous accelerator and storage devices. A variety of real-world, high-impact use cases, datasets, and a new benchmark will be used for qualitative and quantitative analysis compared to state-of-the-art.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- social sciences economics and business economics production economics productivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2018-20
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8010 GRAZ
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.