SLA@SOI – An Overview

Empowering the Service Economy with SLA-aware Infrastructures

September 2008
Wolfgang Theilmann
SAP
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
Business Motivation

Vision
- A business-ready service-oriented infrastructure empowering the service economy in a flexible and dependable way.

Business-readiness requires
- predictability & dependability → prerequisite for acceptance & uptake of (new) services
- holistic SLA management → transparent IT management
- automated negotiation → dynamic, scalable service consumption

Impact on the knowledge economy
- decreased time to market for new services
- increased productivity and competitiveness
- lower entry barriers, especially for SMEs
Technical Motivation

Service Consumer
- dynamic demand for complex business solutions at low costs

Software Provider
- SOAs provide unprecedented flexibility

Service Provider
- service economy requires dependable services

Infrastructure Provider
- virtualization technologies allow for adaptive SOIs

Flexible usage Business Services
Engineering of predictable services
Automated SLA negotiation and management
SLA enforcement via adaptive infrastructures

Vision of SLA@SOI
A business-ready service-oriented infrastructure empowering the service economy in a flexible and dependable way
Envisioned Interaction

Customer

Service Demand

Business Use

Procurement

Service Provider

Contracting/Sales

SOA

Infrastructure Provider

virtual

SOI

physical

Software Provider
Envisioned Interaction

Customer
- Service Demand
- Business Assessment

Service Provider
- Business Assessment
- SLA (Re-)Negotiation
- Monitoring, Arbitration
- SOA Orchestration/Transformation/Aggregation
- SLA
- Resource Consumption Forecasting
- SOI Provisioning
- Mapping

Software Provider

Infrastructure Provider
- Business Demand Forecasting
- Service Demand Forecasting
- Resource Consumption Forecasting

Procurement
- Business Use

Contracting/Sales

SOA

SLA

virtual physical

SLA@SOI / Page 6
Envisioned Interaction

Customer
- Business Use
 - Service Demand
 - Business Assessment

Service Provider
- Contracting/Sales
- SLA (Re-)Negotiation
- Monitoring, Arbitration
- Orchestration/Transformation/Aggregation
- SLA
- Business Assessment
- Monitoring, Adjustment Alerting

Software Provider

Infrastructure Provider
- Provisioning
- Mapping
- Resource Consumption Forecasting
- Physical
- Virtual

SLA@SOI / Page 7

contributing to NESSI
Main innovations

■ SLA management framework
 ■ harmonizing perspectives of relevant stakeholders (software/service/infrastructure provider and customer)
 ■ standards for SLA specification and negotiation & systematic multi-layer SLA management (planning, optimization, and provisioning), monitoring and accounting
 ➢ guaranteed QoS in a dynamic and end-to-end fashion via consistent SLA handling across IT stack

■ adaptive SLA-aware infrastructures
 ■ standardized interfaces for adaptive infrastructures with harmonized access to different virtualization technologies.
 ■ advanced technologies for SLA enforcement on infrastructure level
 ➢ efficient resource usage w/ reliable SLA enforcement at infrastructure level

■ engineering methods for predictable service-oriented systems
 ■ modelling techniques and prediction tools for SOA and SOI components

■ business management suite for e-contracting
 ■ covers complete business lifecycle of a service provisioning/delivery
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
Main project results

Open Source

SLA Core Architecture

Reference Implementation

NESSI Open Framework

Standardization

Reference demonstrator

ERP Hosting

Enterprise IT

Serv. Aggreg.

eGoverment

Financial Grids

- ERP as a service
- business value chains

- dynamic comprehension of service stack provisioning and business value

- user segmentation and predictive analysis
- public SLAs

- agreements driven by social aspects (not market logics)

- innovative financial products
- spatial-aware SLAs

Expected Results

Scientific results (from action line A)

- at least 95% of research results are public
- SLA management framework (report + prototype)
 - including all results from action line A (architecture, SLA foundation, business/service/infrastructure mgmt., predictable systems engineering)
 - contains architecture, methodologies, meta-models, tools, services, protocols, interfaces, integrated technical framework
- allows scientific community to precisely see scientific approach, developed solutions and technical evaluation results
- allows industrial community (software/service/infrastructure providers and service customers) to leverage prototype components
- basis for standardization activities
- designed for integration with NESSI open framework
Expected Results ...

Impact-related results (from action line B)

- Reference demonstrator (report, prototype)
 - demo scenario available as open source
 - allows scientific community to compare results and to do subsequent research (replay and modification of SLA-experiments)
 - allows industrial stakeholders to get hands-on experience

- Industrial use cases
 - will be made largely public
 - allows industrial stakeholders to get detailed insight

- Scientific/Technical Evaluation Report
 - precise description and assessment of scientific/technical results
 - community (IT managers & researchers) is able to understand the technical conditions under which the SLA framework can be used and receive guidance for implementing SLA projects

- Industrial Evaluation Report
 - precise description and assessment on the applicability of project results to different industrial setups (based on use cases and external requirements)
 - includes description & evaluation results from industrial use cases
 - CIOs can assess applicability of results for their organization
Contributions to NEXOF

Major contributions to NEXOF, i.e.

- the **NESSI reference model** and the **NESSI architecture**
- a complete SLA management infrastructure for service-oriented utility infrastructure. This includes in particular:
 - an **e-contracting platform** between service consumers and providers
 - a framework for mapping, planning and coordination within multiple levels in an organizational/IT structure
 - **access and provisioning layer** for SLA-aware infrastructure

<table>
<thead>
<tr>
<th>Service Consumers</th>
<th>The project will provide standardized models, protocols and methods for SLA contracting procedures between service providers and consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM view</td>
<td>Methods and tooling for analysis of business processes and service user behavior (independently from the functional service aspects)</td>
</tr>
<tr>
<td>Composition</td>
<td>Standardized models, methodologies and frameworks for holistic SLA management</td>
</tr>
<tr>
<td>Services</td>
<td>Standardized models, methodologies and frameworks for holistic SLA management</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Standardized interfaces for a service-oriented infrastructure including implementations of selected components</td>
</tr>
</tbody>
</table>
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
Consortium

- Engineering Ingegneria Informatica
- FZI
- SAP
- Queen's University Belfast
- technische universität dortmund
- TELEKOM AUSTRIA
- City University London
- DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE
- Information Society Technologies
- SENSI-TREDIUM Programme
- contributing to NESSI
Fact sheet

Duration
- June 2008 – May 2011

13 Partners
- 6 industrial, 1 SME, 4 academic, 2 research centres
- 7 countries: Austria, Germany, Ireland, Italy, Slovenia, Spain, United Kingdom

Budget
- 15.2 M€

Info
- http://www.sla-at-soi.eu
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
A use-case driven project

Open Source

SLA Core Architecture

Reference Implementation

NESSI Open Framework

Standardization

Open Reference Case

ERP Hosting
- ERP as a service
- business value chains

Enterprise IT
- dynamic comprehension of service stack provisioning and business value

Serv. Aggreg.
- user segmentation and predictive analysis
- public SLAs

eGoverment
- agreements driven by social aspects (not market logics)
- innovative financial products
- spatial-aware SLAs

Financial Grids

Industrial Evaluation Report: “How to run an SLA-driven business”
Open Reference Case

Idea
- a reference demo application (as open source)
- a reference SLA management demo scenario (as open source)
 - allows scientific community to compare results and to do subsequent research (replay and modification of SLA-experiments)
 - allows industrial stakeholders to get hands-on experience

Features of the ORC
- an existing Java-based application
- precise specification & modelling available
- addresses management of retail chains (w/ core enterprise and several stores)
- different service selection and deployment options
Open Reference Case – Scenario

Store 1

Business Process: ...
- scan goods
- handle payment
- book sale

Service Orchestration:
- Product Information
- Payment
- CRM
- Booking

Web Service:
- Inventory WS
- cardValidation WS
- paymentDebit WS
- CRM WS
- accounting WS

SaaS

Headquater „Retail Chain“

Business Process: ...
- Process Activity 1
- Process Activity 2
- Process Activity 3

Service Orchestration:
- Business Service 1
- Business Service 2
- Business Service 3

Web Service:
- Web Service A
- Web Service B
- Web Service C
- Web Service D
- Web Service E

SaaS

Software Provider

Infrastructure Provider

SLA

External Supplier (bank, CRM,...)

Service Provider

SLA

provides SaaS

provides SaaS

provides SaaS

provides SaaS

provides

provides

provides

provides

provides

NIFPs

SLA

SLA
Open Reference Case – Scenario

Business Process 91.6%

Service Orchestration

Web Service

CoCoMe component (Legacy)

IT Infrastructure

SLA Availability > 95.5%
Industrial Use Case: ERP Hosting

Partner & roles
- SAP: software & service provider
- Intel: infrastructure provider

Business context
- business applications (ERP, SCM, CRM, …)
- hosted in a Software-as-a-Service model

Technical service/SLA features
- Service types: A2A/B2B Web Services, UI services, business processes
- SLAs on performance, availability & security

Challenges
- complexity in terms of number of services, components, configurations & usage variants
- process flow partly implemented in a constraint model (no explicit flow information)
- underspecified environment: various parameters unknown at design time
Industrial Use Case: Enterprise IT

Partner & roles
- Intel: lead, use cases and infrastructure provider
- XLAB: specification, design & implementation contributions
- SAP: ERP process knowledge, monitoring capabilities
- UDO: design & implementation contributions

Business context
- SLA-aware dynamic provisioning of Enterprise IT Suite
- Supporting continuously evolving role and priorities of Enterprise IT
- CMF, ECF, Scalability + TCO

Technical service/SLA features
- Demonstrate tuned adaptation to provision competing demands appropriately
- SLAs potentially describing relative priority, response times & temporal variation
- Realistic infrastructure, services & workload simulation

Challenges
- Efficiently reconciling and dynamically provisioning a technology capability or investment relative to a specified process with business level metrics
Industrial Use Case: Service Aggregator

Partner & roles
- eTel (lead)
- TID, FBK, Intel (contributors)

Logistical Fulfillment
- For a product's technical fulfillment various SLAs have to be fulfilled in aggregate across the heterogeneous technical landscape

Tripleplay (or Quadplay) services (implemented)
- (quadplay exists but not sold as such)
 - Television
 - Phone
 - IP
 - Add on services

SLA for services
- multiple instances
 - DSL (8Mbits for 1 setup box)

Carrier routing
- VOIP/trunking arbitrage of minutes between carriers
 - spot markets created for
Industrial Use Case: E-Government

Partner & roles
- ENG: WP Lead., Design & Implementation Lead.
- CITY, INTEL: requirement specification

Business context
- Social and Health assistance to elderly people: home meal delivering
- Government (Governance, Social Care Body), Citizens, Health Care Structures
- Integrated management of Citizen needs, Structures activities, Governance of costs, quality and performances.

Technical service/SLA features
- G2G: SLAs on key performance indexes, norms, regulations, accounting
- G2C: SLAs on quality, privacy issues
- G2B: quality, security, accounting
- SOA platform provided by GPI in compliance to SPCoop (Italian standard for G2G).

Challenges
- Human Based Services (e.g. meal delivery) and integration with automatic services and monitoring.
- No one big centralized workflow, but related/synchronized processes.
- Relationships between G2G, G2C and G2B SLAs (related to different processes) and automatic derivation.
- Probably each SLA will contain both business and technical constraints.
- The Service Provider selection is possibly operated by a Request for BID (the consumer provides a SLA Template that the provider must instantiate and agree to).
Industrial Use Case: Financial Grid

Partner & roles
- BeSC: Grid and Computational Finance provider
- XLAB: Implementation
- Intel: infrastructure provider

Business context
- Financial applications (Risk Management, Implied Volatility, Back testing)
- Competitive and volatile sector with demand for Risk analysis on ever larger data sets increasing by order of magnitude
- Solutions to be deployed as a highly available and scalable online services

Technical service/SLA features
- Service types: B2B Web Services, UI services, Infrastructure Services
- Online services – dynamic composition and deployment of spatially aware services
- SLAs on availability, location, compliance, system architecture, networking capability
- Vendor and architecture neutral services

Challenges
- Complexity in terms of dynamic service composition, auto deployment and un-deployment
- Service Discovery and selection based on
 - Location, networking bandwidth and non-functional metadata e.g. legal and jurisdiction issues
- Service Assurance in such a complex and dynamic environment
- Highly regulated and compliance aware sector (MiFID - EU FSA, CRD, SarbOx, Basel2)
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
Collaboration spaces

NEXOF-RA
- early input delivered to RFP roadmap

SSAI Concertation WG on “SLAs and QoS”
- co-lead by SLA@SOI (Tariq Ellahi)

SSAI Concertation WG on “Standardization”
- co-lead by SLA@SOI (Philip Wieder)

SSAI Concertation WG on “Virtualization”
- active participation (Joe Butler)

Future Internet
- participation in “Management & Governance”
Agenda

Motivation & Goals

Expected Results

Project Data

(Industrial) Use Cases

Collaboration Spaces

Problem Perspectives & First Steps
Topic Areas

- **Predictable systems engineering**
 - engineering
 - modelling
 - analysis

- **Business Management (provider – consumer)**
 - specification & negotiation
 - business & legal assessment
 - arbitration & penalty management

- **Service-enabled Business Logic**
 - for complex layered architectures
 - for different application types

- **Service/ SW management (provider)**
 - landscape modelling
 - discovery
 - monitoring
 - steering
 - provisioning

- **Infrastructure Management**
 - harmonized virtualization technologies
 - adaptive, SLA-aware management
 - monitoring support

- **SLA foundations**
 - negotiation
 - brokering
 - translation
 - planning
 - monitoring
 - adjustment
Topic Areas & Interactions

Business Management (provider – consumer)
- specification & negotiation
- business & legal assessment
- arbitration & penalty management

Service-enabled Business Logic
- for complex layered architectures
- for different application types

Applications / Processes
- Business logic
- Middleware
 - landscape
 - discovery
 - monitoring
 - steering
 - provisioning

Predictable systems engineering
- engineering
- modelling
- analysis

Infrastructure Management
- harmonized virtualization technologies
- adaptive, SLA-aware management
- monitoring support

SLA foundations
- negotiation
- brokering
- translation
- planning
- monitoring
- adjustment

SLA@SOI

NESSI

Contributing to
Conceptual system lifecycle

<table>
<thead>
<tr>
<th>Process</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>- Engineering of system’s building blocks (software & hardware)</td>
</tr>
<tr>
<td></td>
<td>- Modelling of system structure and (non-functional) behaviour</td>
</tr>
<tr>
<td></td>
<td>- Clean room experiments / measurements</td>
</tr>
<tr>
<td>Negotiation & Planning</td>
<td>- Translation of business SLA to technical level</td>
</tr>
<tr>
<td></td>
<td>- concrete workload characterisation & non-functional requirements</td>
</tr>
<tr>
<td></td>
<td>- Translation & prediction & planning across whole business/IT stack</td>
</tr>
<tr>
<td></td>
<td>- based on templates & historical traces & models</td>
</tr>
<tr>
<td>Provisioning</td>
<td>- Actual resource allocation</td>
</tr>
<tr>
<td>Operation</td>
<td>- Actual workloads</td>
</tr>
<tr>
<td></td>
<td>- SLA Monitoring & enforcement/adjustment</td>
</tr>
<tr>
<td></td>
<td>- Collection of historical data for improved model calibration / prediction</td>
</tr>
<tr>
<td>Analysis</td>
<td>- Detailed analysis of trace data</td>
</tr>
<tr>
<td></td>
<td>- to update performance KPIs</td>
</tr>
<tr>
<td></td>
<td>- to identify the necessity for manual efforts</td>
</tr>
</tbody>
</table>
Conceptual Architecture: Data View

Business Rules Repository
- Business values
- CRM
- Service providers info

Service Registry (collects offers from 1 provider)
- Portfolio, Catalogs
- Composite services / products

Service Landscape
- Composition
- Instances + SLA

SLA Template Registry
- Agreement terms
- SLA Templates

Policy Repository
- IT Operation rules

Software Landscape
- Middleware
- Application, packaging
- Configuration, execution
- Agents (demons, active processes)

Infrastructure Landscape
- Physical resources
- Virtualization
- Allocation
- Sensors and Actors
- Appliances

Monitoring
- software
- infrastructure

Historical Info Repository
- Post-processed monitoring data
- Usage profiles

Design-Time Repository
- Design-time artifacts
- NFP Annotations
- Profiles

Legend
- Data Store (passive): Data Source (active):
- Feed info to:
Possibly feed info to:
Owner:

Public registries
- offers from different service providers
- owned by 3rd party

Data Source
- feeds info to:
Possibly feeds info to:
Owner:

SP

SP

IP

SB

So

IP

IP

IP

IP

IP

IP
Conceptual Architecture: Provisioning View

Service Registry
- Portfolio, Catalogs
- Composite services/products

SLA Template Registry
- Terms
- Templates

Business Rules Repository
- Business values
- CRM

Design-Time Repository
- Design-time artifacts
- NFP Annotations
- Profiles

Software Landscape
- Middleware
- Apps, packaging
- Configuration, exec.

Infrastructure Lands.
- Physical resources
- Virtualization
- Allocation
- Sensors and Actors

Prediction Services

SLA (Re-) Negotiation

SLA Translation

SLA Planning & Optimization

SLA Provisioning

Service Landscape
- Composition
- Instances + SLA

Policy Repository
- IT Operation rules

Legend
- Data Store (passive):
- Data Source (active):
- Control Flow:
- Data Flow:
- Function Module:
Thank you!