Secure Composition of Secure Protocols

Composing Protocols in a Secure Way

Giuseppe Persiano

Dipartimento di Informatica ed Appl.
Università di Salerno
Italy
http://www.dia.unisa.it/giuper

Work supported by EU IP – Aeolus
Algorithmic Principles for Building Efficient Overlay Computers
WP4.1: Trust Management

Policy specification
Efficient Compliance Checking Algorithm
Game Theoretic Techniques for Authorization
Security in AEOLUS

WP4.1: Trust Management
- Policy specification
- Efficient Compliance Checking Algorithm
- Game Theoretic Techniques for Authorization

WP4.2: Privacy, identity and anonymity
- Anonymous communication and transactions
Security in AEOLUS

- **WP4.1: Trust Management**
 - Policy specification
 - Efficient Compliance Checking Algorithm
 - Game Theoretic Techniques for Authorization

- **WP4.2: Privacy, identity and anonymity**
 - Anonymous communication and transactions

- **WP4.3: Secure distributed computation**
 - Secure protocols in Global scenario:
 - Concurrency and Non-Malleability
Security in AEOLUS

- **WP4.1: Trust Management**
 - Policy specification
 - Efficient Compliance Checking Algorithm
 - Game Theoretic Techniques for Authorization

- **WP4.2: Privacy, identity and anonymity**
 - Anonymous communication and transactions

- **WP4.3: Secure distributed computation**
 - Secure protocols in Global scenario:
 - Concurrency and Non-Malleability
A Simple Scenario

- Alice, Bob and Charles are competing in an auction.
- The auctioneer publishes an RSA key \((N, e)\).
- Each bidder sends his offer by e-mail encrypted with the RSA key \((N, e)\) of the auctioneer.
A Simple Scenario

- Alice, Bob and Charles are competing in an auction.
- The auctioneer publishes an RSA key (N, e).
- Each bidder sends his offer by e-mail encrypted with the RSA key (N, e) of the auctioneer.

- Alice sees Bob’s encrypted bid B and computes her encrypted bid A as $A = B \cdot E(2)$.

Bob will never win!!!
A Simple Scenario

- Alice, Bob and Charles are competing in an auction.
- The auctioneer publishes an RSA key \((N, e)\).
- Each bidder sends his offer by e-mail encrypted with the RSA key \((N, e)\) of the auctioneer.

- Alice sees Bob’s encrypted bid \(B\) and computes her encrypted bid \(A\) as \(A = B \cdot E(2)\).

Bob will never win!!!
A Simple Problem

An RSA public key \((N, e)\) is known to Alice and Bob.

Alice encrypts \(m\) by computing \(C = E(m)\) and wants to convince Bob that she knows the cleartext \(m\) associated with ciphertext \(C = E(m)\).
[1. Alice]

pick \(r \) at random;
compute \(H = E(r) \);
\(a^0 \leftarrow r; \ a^1 \leftarrow r \cdot m \)
send \(H \) to Bob.
A Simple Protocol

[1. Alice]
- pick r at random;
- compute $H = E(r)$;
- $a^0 \leftarrow r$; $a^1 \leftarrow r \cdot m$
- send H to Bob.

[2. Bob]
- pick $b \leftarrow \{0, 1\}$ at random;
- send b to Alice.
A Simple Protocol

[1. Alice]
 pick \(r \) at random;
 compute \(H = E(r) \);
 \(a^0 \leftarrow r; \ a^1 \leftarrow r \cdot m \)
 send \(H \) to Bob.

[2. Bob]
 pick \(b \leftarrow \{0, 1\} \) at random;
 send \(b \) to Alice.

[3. Alice]
 send \(a^b \) to Bob.
A Simple Protocol

[1. Alice]
pick \(r \) at random;
compute \(H = E(r) \);
\(a^0 \leftarrow r; a^1 \leftarrow r \cdot m \)
send \(H \) to Bob.

[2. Bob]
pick \(b \leftarrow \{0, 1\} \) at random;
send \(b \) to Alice.

[3. Alice]
send \(a^b \) to Bob.

[4. Bob]
if \(b = 0 \) verify \(E(a^0) = H \);
if \(b = 1 \) verify \(E(a^1) = H \cdot C \);
A Simple Protocol

[1. Alice]
pick r at random;
compute $H = E(r)$;
$a^0 \leftarrow r; a^1 \leftarrow r \cdot m$
send H to Bob.

[2. Bob]
pick $b \leftarrow \{0, 1\}$ at random;
send b to Alice.

[3. Alice]
send a^b to Bob.

[4. Bob]
if $b = 0$ verify $E(a^0) = H$;
if $b = 1$ verify $E(a^1) = H \cdot C$;
Is This A Solution?

Alice cannot cheat.

Bob does not learn anything about m.

Suppose Alice does not know m. Then for each H Alice knows at most one of a_0 or a_1. Alice is caught with probability $\frac{1}{2}$.
Is This A Solution?

Alice cannot cheat.

Suppose Alice does not know m. Then for each H Alice knows at most one of a^0 or a^1. Alice is caught with probability $\geq 1/2$.

Bob does not learn anything about m.
The Simulation Paradigm [GMR]

For each possible strategy of Bob, there exists an efficient algorithm S (simulator) such that S on input C (without knowing m) produces, in expected polynomial time, the same view of Bob.
The Simulation Paradigm [GMR]

For each possible strategy of Bob, there exists an efficient algorithm \(S \) (simulator) such that \(S \) on input \(C \) (without knowing \(m \)) produces, in expected polynomial time, the same view of Bob.

[1.] pick \(\tilde{b} \leftarrow \{0, 1\} \) at random;
 pick \(r \) at random;
 if \(\tilde{b} = 0 \) compute \(H = E(r) \) and \(a^0 = r, a^1 = ?; \)
 if \(\tilde{b} = 1 \) compute \(H = C^{-1} \cdot E(r) \) and \(a^0 = ?, a^1 = r; \)
 send \(H \) to Bob.
The Simulation Paradigm [GMR]

For each possible strategy of Bob, there exists an efficient algorithm \(S \) (simulator) such that \(S \) on input \(C \) (without knowing \(m \)) produces, in expected polynomial time, the same view of Bob.

[1.] pick \(\tilde{b} \leftarrow \{0, 1\} \) at random;
 pick \(r \) at random;
 if \(\tilde{b} = 0 \) compute \(H = E(r) \) and \(a^0 = r, a^1 = ?; \)
 if \(\tilde{b} = 1 \) compute \(H = C^{-1} \cdot E(r) \) and \(a^0 = ?, a^1 = r; \)
 send \(H \) to Bob.

[2.] receive \(b \) from Bob;
For each possible strategy of Bob, there exists an efficient algorithm S (simulator) such that S on input C (without knowing m) produces, in expected polynomial time, the same view of Bob.

[1.] pick $\tilde{b} \leftarrow \{0, 1\}$ at random;
 pick r at random;
 if $\tilde{b} = 0$ compute $H = E(r)$ and $a^0 = r$, $a^1 = ?$;
 if $\tilde{b} = 1$ compute $H = C^{-1} \cdot E(r)$ and $a^0 = ?, a^1 = r$;
 send H to Bob.

[2.] receive b from Bob;

[3.] if $\tilde{b} = b$ Output: (H, b, a^b) else GOTO 1;
Reducing Probability of Cheating

Solution: repeat $k (= 50)$ times sequentially.

\[
\begin{array}{cccc}
H_1 & \rightarrow & \ldots & \rightarrow \\
\leftarrow b_1 & & \ldots & \\
A^{b_1} & \rightarrow & \ldots & \\
\end{array}
\qquad
\begin{array}{cccc}
H_k & \\
\leftarrow b_k & & \ldots & \\
A^{b_k} & \\
\end{array}
\]

Probability of cheating is at most 2^{-k}.

Good news: Bob’s security is preserved.

Good news: Alice’s security is preserved by **sequential** composition.

Bad news: Sequential composition uses $O(k)$ messages.
Parallel Composition

\[H_1, \ldots, H_k \]
\[b_1, \ldots, b_k \]
\[A_1^{b_1}, \ldots, A_k^{b_k} \]

WOW: 3 messages.

Bad news: it is not secure.

Intuition: to complete simulation, \(S \) has to guess \(b_1, \ldots, b_k \) correctly.

Can be done in 4 rounds

Security is not preserved under parallel composition.
The Global Computing Scenario

In a Global Computing scenario:

- Alice is interacting with n players (not just one).
- Alice is acting as prover and as a verifier.
- The communication is asynchronous.
- Messages from different sessions can interleave arbitrarily.
- No central coordination mechanism exists.
A Global Computing Scenario

V₁ V₂ ... Vₙ

H¹ →

H² →

Hⁿ →

bⁿ ←

Aⁿ ←

b² ←

A² ←

b¹ ←

A¹ ←
1. Essentially $O(\log n)$ rounds are sufficient. Canetti et al., 2001

2. Constant or quasi constant rounds are sufficient under various assumptions:

 (a) Quasi constant round (for single Alice). P and Visconti, 2005

 (b) 1 round if a common string is available to all

 (c) 4 rounds (optimal) if players have a (non-authenticated) keys in a public file. Di Crescenzo et al., 2004

Open Problem: Constant round with no assumption.
Suppose Alice does not know m

THEN

Alice is caught with probability $\geq 1/2$.

Implicit assumption: Alice is executing only one session.
Man In The Middle

Alice → Bob

C^A, H^A

$C^B := C^A \cdot E(2)$
$H^B := H^A \cdot E(r)$

Bob → Charles
Man In The Middle

$$C^A, H^A$$

Alice

$$C^B := C^A \cdot E(2)$$
$$H^B := H^A \cdot E(r)$$

Bob

Charles

$$0$$

$$a^0_A : E(a^0_A) = H^A$$

$$a^0_B := r \cdot a^0_A$$

$$0$$

Secure Composition of Secure Protocols – p.15/16
Man In The Middle

Alice

\[C^A, H^A \]

Bob

\[C^B := C^A \cdot E(2) \]
\[H^B := H^A \cdot E(r) \]

Charles

\[a_B^1 := 2 \cdot r \cdot a_A^1 \]
Non-Malleable Protocols

State of the Art

1. $O(\log k)$ rounds Dolev, Dwork and Naor 91

2. Constant round Barak 02, Pass and Rosen 05

Concurrent Non-Malleable

1. Impossible in the plain model Lindell 04

2. Constant round if the same random string is available to all parties [Di Crescenzo, De Santis Ostrovsky, P, Sahai 01, Canetti, Lindell, Ostrovsky, Sahai 02].

3. Constant round if players have (non-authenticated) public keys Ostrovsky, P, Visconti 06