VLSI Neuromorphic Systems
Brain-like computing on Silicon

Giacomo Indiveri

Institute of Neuroinformatics
UZH | ETH Zurich

Zurich, January 2007
The honeybee energy consumption is 10^{-15} J/op, at least 10^6 more efficient than digital silicon (20 watts vs. 10^6 watts).

The brain of the worker honeybee occupies a volume of around 1 mm^3 and weighs about 1 mg. The total number of neurons in the brain is estimated to be 950,000.

- Flies acrobatically
- Recognizes patterns
- Navigates
- Forages
- Communicates
The Honeybee

Energy consumption: 10^{-15} J/op, at least 10^6 more efficient than digital silicon (20 watts vs. 10^6 watts)

The brain of the worker honeybee occupies a volume of around 1mm^3 and weighs about 1mg. The total number of neurons in the brain is estimated to be 950,000.

- Flies acrobatically
- Recognizes patterns
- Navigates
- Forages
- Communicates
Neocortex → Neural computation → Silicon
Technological progress has rapidly increased the number of transistors that can be included on a single chip.

Future scaled CMOS systems will have increasing problems with device inhomogeneities and fault-tolerance.

IT community is struggling to find alternative design and computing paradigms to overcome these challenges (e.g. INTEL multi-core CPUs, or IBM CELL processor).
Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to reproduce the *bio*-physics of neural systems.
Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to reproduce the bio-physics of neural systems.
Neuromorphic VLSI systems

An attractive alternative computing paradigm

Exploit the physics of silicon to reproduce the *bio*-physics of neural systems.
Neuromorphic VLSI systems

An attractive alternative computing paradigm

Exploit the physics of silicon to reproduce the \emph{bio}-physics of neural systems.
Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to reproduce the bio-physics of neural systems.

- Standard CMOS Technology
- Process independent
- Massively parallel
- Mismatch insensitive
- Fault tolerant
- Compact
- Low-power
- Asynchronous
Biomimetic neural chips
An attractive alternative computing paradigm

- Time constants are biologically plausible
- Currents are integrated in parallel
- Activity in “core” is sparse
- Synapses are the site of memory and computation
- Neurons generate and transmit “spikes” in an asynchronous (non-clocked) fashion.
Address Event Representation

Best of both (digital & analog) worlds
Hierarchical or multi-layer networks

The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.

For example, Logothetis et al. trained monkeys to recognize objects. A monkey was trained to recognize many data from physiology and psychophysics. At the top of the ventral stream, in the anterior inferotemporal cortex, many data from physiology and psychophysics show specificity for a certain object view or lighting condition.

In visual cortex, neurons with a bell-shaped tuning are common. The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.

For example, Logothetis et al. trained monkeys to recognize objects. A monkey was trained to recognize many data from physiology and psychophysics. At the top of the ventral stream, in the anterior inferotemporal cortex, many data from physiology and psychophysics show specificity for a certain object view or lighting condition.

In visual cortex, neurons with a bell-shaped tuning are common. The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.

For example, Logothetis et al. trained monkeys to recognize objects. A monkey was trained to recognize many data from physiology and psychophysics. At the top of the ventral stream, in the anterior inferotemporal cortex, many data from physiology and psychophysics show specificity for a certain object view or lighting condition.

In visual cortex, neurons with a bell-shaped tuning are common. The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.

For example, Logothetis et al. trained monkeys to recognize objects. A monkey was trained to recognize many data from physiology and psychophysics. At the top of the ventral stream, in the anterior inferotemporal cortex, many data from physiology and psychophysics show specificity for a certain object view or lighting condition.

In visual cortex, neurons with a bell-shaped tuning are common. The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.

For example, Logothetis et al. trained monkeys to recognize objects. A monkey was trained to recognize many data from physiology and psychophysics. At the top of the ventral stream, in the anterior inferotemporal cortex, many data from physiology and psychophysics show specificity for a certain object view or lighting condition.

In visual cortex, neurons with a bell-shaped tuning are common. The basic problem with these models is, of course, generalization: a look-up table cannot deal with new events, such as viewing a face. Logothetis et al. trained monkeys to perform an object recognition task with isolated views of novel three-dimensional objects. The tuning of the neurons in anterior inferotemporal cortex shows specificity for a certain object view or lighting condition.
Hierarchical or multi-layer networks
Potential Impact

- **Neuroscience**
 - Theoretical models
 - Interfacing technology

- **Robotics and Embedded Systems**
 - AER, data-driven sensory input devices
 - Modular, reconfigurable AER signal processing

- **Parallel Computation**
 - Spike-based computation
 - Programming of massively parallel systems
Potential Impact

- Neuroscience
 - Theoretical models
 - Interfacing technology

- Robotics and Embedded Systems
 - AER, data-driven sensory input devices
 - Modular, reconfigurable AER signal processing

- Parallel Computation
 - Spike-based computation
 - Programming of massively parallel systems
Potential Impact

- Neuroscience
 - Theoretical models
 - Interfacing technology

- Robotics and Embedded Systems
 - AER, data-driven sensory input devices
 - Modular, reconfigurable AER signal processing

- Parallel Computation
 - Spike-based computation
 - Programming of massively parallel systems
The ball is rolling

Past EU-Funded projects on AER systems

- ALAVLSI
- CAVIAR

These were the first important AER-oriented coordinated endeavors in the European context. ALAVLSI and CAVIAR developed complementary strategies for developing challenging hardware implementations of AER-based neural processing systems.

Integrated Projects (FP6 Bio-I3 Proactive Initiative)

- CILIA: Customized Intelligent Life-Inspired Arrays
- DAISY: Neocortical Daisy Architectures and Graphical Models for context-dependent Processing
- FACETS: Fast Analog Computing with Emergent Transient States in Neural Architecture
Bio-IT initiatives in FP7

State-of-the-art
- Neuronal coding and computing
- Oscillations and attention
- Biomimetic artefacts
- Biohybrid artefacts

Cooperation Issues
- Within EU (NiSIS, Once-CS)
- With the OECD International Neuroinformatics Coordinating Facility (INCF)
- With the US
- With China

Fruitful discussion session

Neuro-IT Web-site: http://www.neuro-it.net/
Bio-IT initiatives in FP7

State-of-the-art

- Neuronal coding and computing
- Oscillations and attention
- Biomimetic artefacts
- Biohybrid artefacts

Cooperation Issues

- Within EU (NiSIS, Once-CS)
- With the OECD International Neuroinformatics Coordinating Facility (INCF)
- With the US
- With China

Fruitful discussion session

Neuro-IT Web-site: http://www.neuro-it.net/
Neuro-IT
Information Workshop, Jan. 15, 2007

- Bio-IT initiatives in FP7
- State-of-the-art
 - Neuronal coding and computing
 - Oscillations and attention
 - Biomimetic artefacts
 - Biohybrid artefacts
- Cooperation Issues
 - Within EU (NiSIS, Once-CS)
 - With the OECD International Neuroinformatics Coordinating Facility (INCF)
 - With the US
 - With China
- Fruitful discussion session

Neuro-IT Web-site: http://www.neuro-it.net/
Neuro-IT
Information Workshop, Jan. 15, 2007

- Bio-IT initiatives in FP7
- State-of-the-art
 - Neuronal coding and computing
 - Oscillations and attention
 - Biomimetic artefacts
 - Biohybrid artefacts
- Cooperation Issues
 - Within EU (NiSIS, Once-CS)
 - With the OECD International Neuroinformatics Coordinating Facility (INCF)
 - With the US
 - With China
- Fruitful discussion session

Neuro-IT Web-site: http://www.neuro-it.net/
Bio-IT initiatives in FP7

State-of-the-art
- Neuronal coding and computing
- Oscillations and attention
- Biomimetic artefacts
- Biohybrid artefacts

Cooperation Issues
- Within EU (NiSIS, Once-CS)
- With the OECD International Neuroinformatics Coordinating Facility (INCF)
- With the US
- With China

Fruitful discussion session

Neuro-IT Web-site: http://www.neuro-it.net/