Future Architectural/Compiler Research Directions

David Bernstein
Bilha Mendelson
Compiler/Optimization activities in IBM Research Lab in Haifa

- Group of 15 researchers with high academic degrees (PhD, MSc)
- 15 years of research and development activities:
 - Instruction scheduling
 - Register allocation
 - Data prefetching
 - Feedback directed optimization
 - Post-link optimization
 - Whole compiler back-ends
- Architectures:
 - PowerPC microprocessor (for IBM Unix WS and Apple Desktops)
 - Experimental signal processors
 - IBM Network processor
- Compilers:
 - IBM (proprietary) XL compiler
 - Experimental “home-grown” compiler back-ends
 - GCC compiler
Architectural Aspects

- SoC family of architectures
- Based on a general purpose core (PowerPC, ARM, etc.)
- Hardware acceleration units
 - Signal processing cores
 - Network processing engines
 - Graphics acceleration units
- Power/Space/Performance/Cost tradeoffs
Performance and Tools Aspects

- Simulation of a parameterized system
- Performance analysis and prediction modeling
- Compiler optimization for specific engines (e.g. SIMD)
- Optimization for new criteria (e.g. power, space)
- Hardware/Software tradeoffs
Backup
Compiler Research Publications

• "MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in Computer Architecture Conferences", D. Citron, ISCA 2003
• "Optimization Opportunities Created by Global Data Reordering", G. Haber, M. Klausner, V. Eisenberg, B. Mendelson, M. Gurevich, CGO'2003
• "Revisiting Instruction Level Reuse", D. Citron, and D. G. Feitelson, WDDD 2002
• "Light Weight Optimization for Reducing Hot Saves and Restores of Callee-Saved Registers", G. Haber, M. Klausner, B. Mendelson and V. Eisenberg, FDDO 2001
• "Reliable Post-link Optimizations Based on Partial Information", G. Haber, E. A. Henis and V. Eisenberg, FDDO 2000
• "FDPR - A post-link optimization tool for large subsystems", E. A. Henis, G. Haber, M. Klausner and A. Warshawsky, FDDP 1999
• "Sharpening Global Static Analysis to Cope with Java", S. Porat, B. Mendelson, and I. Shapira, CASCON 1998
• "Compiler Optimization of C++ Virtual Function Calls", S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue and E. Yahav, COOTS 1996
• "Adding class assertions to C++", S. Porat and P. Fertig, 1993
• "Performance Evaluation of Instruction Scheduling on the IBM RISC System/6000", D. Bernstein, D. Cohen, Y. Lavon and V. Rainish, Micro 1992
Post Link Tool:
FDPR (Feedback Directed Program Restructuring)

- **Properties**
 - Using a global view of the entire program (global view)
 - Operating on the executable file after linkage
- These properties enable FDPR to do:
 - Global Code Reordering
 - Inter Procedure Boundaries Optimizations
 - Static Data Rearrangement
 - Constant Area Rearrangement
- Examples of FDPR additional optimizations:
 - Usage of Branch Tables
 - Usage of TOC load instructions
- The idea is to complement compiler optimization

- **Method**
 - Code instrumentation
 - Profile information gathering
 - Global Code & Data Optimizations
Performance Improvement

FDPR-Pro Improvements on Power4
SPECINT2000 Compiled with Xlc (-O3 -qpdf)

FDPR-Pro Improvements (%)