Community Research and Development Information Service - CORDIS

Abstract

It is shown how the set of nonlinear equations resulting from a Crank-Nicholson discretization of a system of nonlinear diffusion equations can be solved by Newton's iterative method. It is proved: a) that the first step of this method is just a matter of solving a linearized (Crank-Nicholson) form of the diffusion equations, and b) that, under rather mild conditions, the matrices involved at each iteration are not singular.

Additional information

Authors: FINCKENSTEIN K V FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT (GERMANY) DUECHS D JET JOINT UNDERTAKING, ABINGDON, OXON (UK) DE BARBIERI O MAX-PLANCK-INST. FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY) , FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT (GERMANY);JET JOINT UNDERTAKING, ABINGDON, OXON (UK);MAX-PLANCK-INST. FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY)
Bibliographic Reference: WRITE TO MAX-PLANCK-INSTITUT FUER PLASMAPHYSIK, 8046 GARCHING BEI MUENCHEN (GERMANY), MENTIONING REPORT IPP 6/223, 1983
Record Number: 1989122015700 / Last updated on: 1987-01-01
Category: PUBLICATION
Available languages: en