Community Research and Development Information Service - CORDIS

Abstract

The MHD equations which describe a stationary equilibrium in axisymmetric geometry lead to a quasilinear partial differential equation for the flux PSI, one nonlinear and three linear algebraic equations for the mass density rho, the poloidal current J and the two tangential velocity components nu-t and nu-p, respectively. These equations are solved numerically by a continuation method, by a Picard iteration and finite element approaches using conforming and non-conforming (hybrid) finite elements. The nodal points are redistributed iteratively such that they fall on initially prescribed constant flux surfaces. For different coordinate systems the different finite element approaches are applied to a static case and compared. The influence of flow is shown by applying our fixed foundary code CLIO to a particular plasma configuration (PDX Tokamak).

Additional information

Authors: GRUBER R, CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY);IACONO R, CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY);SEMENZATO S, CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY);ZEHRFELD H P CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND), CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY), CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (SWITZERLAND);MAX-PLANCK INSTITUT FUER PLASMAPHYSIK, GARCHING BEI MUENCHEN (GERMANY)
Bibliographic Reference: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, VOL. 52 (1985), PP. 675-682
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top