Community Research and Development Information Service - CORDIS

Abstract

A discretisation method is proposed where a tunable integration scheme is applied to the finite element method (FEM). The method is characterised by one continuous parameter, p. Three different eigenvalue problems are used as test cases: a simple example with constant coefficients and two model problems from ideal and resistive magnetohydrodynamics. The numerical examples and theoretical error analysis show that, for judicious choices of p, the tunable integration method clearly improves the accuracy of the strict FEM. The sensitivity to the choice of integration parameter is discussed.

Additional information

Authors: BONDESON A, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne (CH);FU G Y, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne (CH)
Bibliographic Reference: Report: LRP 425/90 EN (1990) 22 pp.
Availability: Available from Confédération Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, 21 avenue des Bains, 1007 Lausanne (CH)
Record Number: 199110147 / Last updated on: 1994-12-02
Category: PUBLICATION
Original language: en
Available languages: en
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top