Community Research and Development Information Service - CORDIS

Abstract

This paper describes an artificial neural network based on the multilayer-perceptron model which has been used to classify two-date multispectral SPOT high resolution visible (HRV) imagery on a test site in the Département de l'Ardèche, France. A large network consisting of 98 nodes was trained successfully to classify 20 land-cover classes. A ground dataset comprising 1881 pixels was used to verify the accuracy of the classifier. The average accuracy achieved over all classes in the verification dataset was 81 per cent, exceeding the performance of a maximum likelihood classifier by 28 per cent.

Additional information

Authors: KANELLOPOULOS I, JRC Ispra (IT);VARFIS A, JRC Ispra (IT);WILKINSON G G, JRC Ispra (IT);MÉGIER J, JRC Ispra (IT)
Bibliographic Reference: Article: International Journal of Remote Sensing, Vol. 13 (1992), No. 5, pp. 917-924
Record Number: 199210872 / Last updated on: 1994-12-02
Category: PUBLICATION
Original language: en
Available languages: en