Community Research and Development Information Service - CORDIS


The implosion of a family of reactor-size targets for inertial confinement fusion (ICF) is studied analytically and numerically. The targets consist of a deuterium-tritium (DT) shell, filled with DT vapour and they are imploded by a multi-step pressure pulse designed in such a way that the final hot spot is formed mainly from the initially gaseous fuel. The formation of the hot-spot is described by means of a relatively simple model, and scaling laws for the quantities that characterise the state of the initially gaseous part of the fuel prior to ignition are derived. The results of the model are compared with one-dimensional fluid simulations, and good agreement is found. A parametric study of the fuel energy gain is then presented; the dependence of the gain and of the convergence ratio on the pulse parameters and on the filling gas density is analysed; it is also shown that a substantial increase in the gain (for a given target and pulse energy) can be achieved by replacing the last step of the pulse with an exponential ramp.

Additional information

Authors: ATZENI S, ENEA, Centro Ricerche Energia Frascati, Roma (IT);PIRIZ A R, Consejo Nacional de Investigaciones Cientificas y Técnicas (AR)
Bibliographic Reference: Report: RT/NUCL/92/20 EN (1992) 43 pp.
Availability: Available from Servizio Studi e Documentazione, ENEA, Centro Ricerche Energia Frascati, C.P. 65-00044 Frascati, Roma (IT)
Record Number: 199310614 / Last updated on: 1994-11-29
Original language: en
Available languages: en