Community Research and Development Information Service - CORDIS

Abstract

In this paper details of the increase of the plasma density following a pellet injection have been measured with high temporal resolution (16 us) and the parallel expansion of ablated matter modeled with a four-fluid hydrodynamic code. The driving force of the expansion is the parallel pressure gradient, progressively balanced by the compression of the background plasma. It is shown that the ablated material experiences a strong transient poloidal motion as it expands along the field lines. This motion, which is induced by the pellet itself, results from the conservation of kinetic momentum: the convective motion in the sheet of ablated material (due to its positive potential with respect to the plasma) is compensated by a global drift of the whole magnetic surface. This model reproduces the main observations concerning the parallel propagation of the ablatant in the discharge. In particular, it shows that the stretching of the sheet of ablated material by the magnetic shear and the poloidal rotation is responsible for the homogenization of the density in a characteristic time of approximately 1 ms. The plasma rotation measured immediately after a pellet injection is therefore not, in general, simply linked to the background radial electric field.

Additional information

Authors: PÉGOURIÉ B, CEA, CEN Cadarache, Saint-Paul-lez-Durance (FR);PICCHIOTTINO J M, CEA, CEN Cadarache, Saint-Paul-lez-Durance (FR)
Bibliographic Reference: Article: Physics of Plasmas, Vol. 3 (1996) No. 12, pp. 4594-4605
Record Number: 199710366 / Last updated on: 1997-04-23
Category: PUBLICATION
Original language: en
Available languages: en