Community Research and Development Information Service - CORDIS

Abstract

Toroidal rotation of the plasma coupled with resistive walls can fully stabilize pressure-driven kink modes and allow the beta value to be extended beyond the Troyon limit. For a rotating resistive wall mode (RWM), the mode is more stable when the wall is moved farther away, as long as the wall is close enough to stabilize the ideal plasma mode. By introducing gaps in the resistive wall the RWM can be stabilized at a lower rotation frequency. This effect is greatly enhanced by gaps near the outboard midplane, where the pressure-driven kink couples most strongly to the wall. This improvement in stabilization comes at the cost of requiring a closer wall to stabilize the ideal plasma mode, but this trade-off can be quite desirable. Increasing the number of rational surfaces residing in the plasma is also seen to lower the rotation frequency needed to stabilize the RWM. By lowering the aspect ratio, and thereby increasing the toroidal coupling and the number of rational surfaces inside the plasma, the necessary rotation frequency can be greatly reduced.

Additional information

Authors: WARD D J, Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Lausanne (CH)
Bibliographic Reference: Article: Proceedings of the 16th IAEA International Conference on Fusion Energy, Montreal (CA), October 7-11, 1996
Record Number: 199711711 / Last updated on: 1998-01-20
Category: PUBLICATION
Original language: en
Available languages: en