Community Research and Development Information Service - CORDIS

Abstract

The penetration depths of different impurity pellets, such as carbon and neon, injected into different thermonuclear devices were reproduced by means of a single numerical code with the same set of assumptions, only the atom physical data being changed. All major characteristics of the process were calculated: the spatial variation of the ablation rate, the deposition of the ablated particles are succession of magnetic flux surfaces, the expansion of deposited particles in the directions both parallel and perpendicular to magnetic field lines, and the temporal and spatial variations of the radiant power emitted by the expanding impurity cloud. The calculations were done by means of a time dependent quasi-three-dimensional code consisting of three modules accounting for the B1 and B2 expansions of the cloud and the traversing motion of the pellet, operated interactively and, when needed, iteratively. The radiation characteristics were computed by a collisional-radiative loss model, developed for low temperature light impurities, without the usual equilibrium assumptions. With some modifications, the code is adaptable to predictive pre-disruptive 'killer pellet' scenario calculations for future large scale machines, such as ITER.

Additional information

Authors: LENGGYEL L L, Max-Planck-Institut fur Plasmaphysik, Garching bei Munchen (DE);BUCHL K, Max-Planck-Institut fur Plasmaphysik, Garching bei Munchen (DE);PAUTASSO G, Max-Planck-Institut fur Plasmaphysik, Garching bei Munchen (DE);LEDL L, Max-Planck-Institut fur Plasmaphysik, Garching bei Munchen (DE);USHAKOV A A, St Petersburg State Technical University (RU);KALVIN S, KFKI Research Institute for Particle and Nuclear Physics, Budapest (HU);VERES G, KFKI Research Institute for Particle and Nuclear Physics, Budapest (HU)
Bibliographic Reference: Article: Nuclear Fusion 39 (1999)6, 791-813
Record Number: 199911123 / Last updated on: 1999-08-06
Category: PUBLICATION
Original language: en
Available languages: en