Community Research and Development Information Service - CORDIS

Abstract

Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic (MHD) stability and energetic particle transport are evaluated. It is found that tomakak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N = 0, and the nonperiodicity preserving, N = 1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with the edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviours is found for the large set of equilibria, exhibiting similar particle transport properties.

Additional information

Authors: REDI M H, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey (US);FU GY, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey (US);POMPHREY N, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey (US);REIMAN A H, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey (US);ZARNSTORFF M C, University of Montana, Missoula, Montana (US);DIALLO A, Centre de Recherche des Physiques des Plasmas, Lausanne (CH);COOPER W A, Max Planck Institut f³r Plasma Physik, Greifswald (DE);NHRENBERG C,
Bibliographic Reference: Article: Physics of Plasmas, Vol. 7 (2000) No. 6, pp. 2508-2516
Availability: Physics of Plasmas (Journal)
Record Number: 200012776 / Last updated on: 2000-09-20
Category: PUBLICATION
Original language: en
Available languages: en