Community Research and Development Information Service - CORDIS


In JET discharges where lower hybrid heating and current drive (LHCD) is applied early during the current ramp, a region of the plasma with zero current density is formed near the axis. At the boundary of this region the current density is large and B [theta] increases rapidly over a small distance. In the central region the safety factor, q, is effectively infinite, but this falls steeply in the boundary region. Outside the boundary region q reaches a minimum, where the magnetic shear s=r/q(dq/dr) becomes zero. The formation of this region of zero current is dependent on both the heating and the current drive effects of the LHCD. When LHCD is switched off the current profile begins to relax towards the resistive peaked current distribution of fully inductive tokamak operation. If LHCD is not used in the current rise then these current profiles are not established. Although the physical mechanism exists to drive the central plasma current below zero, in most cases it appears to be prevented from going negative. At least one MHD mechanism has been identified which could be responsible for this. The presence of the zero central current is closely linked to the periodic relaxation events seen in these discharges. In these discharges, internal transport barriers have been observed with additional heating powers substantially below the values required to obtain barriers in monotonic q profile cases.

Additional information

Authors: HAWKES N C ET AL, Euratom/UKAEA Fusion Association, Abingdon (GB);DEANGELIS R, Association Euratom-ENEA sulla Fusione, Roma (IT);HOBIRK J, Max-Planck-Institut für Plasmaphysik, Euratom Association, Garching (DE);JOFFRIN E, Association Euratom-CEA Cadarache, St Paul-lez-Durance (FR);LOTTE P, Association Euratom-CEA Cadarache, St Paul-lez-Durance (FR);MAZON D, Association Euratom-CEA Cadarache, St Paul-lez-Durance (FR);RACHLEW E, Euratom-VR, SCFAB, KTH, Stockholm (SE);REYES-CORTES S, Euratom/IST Association, Centro de Fusao Nuclear, Lisboa (PT);SATTIN F, Association Euratom-ENEA sulla Fusione, Padova (IT);VALISA M, Association Euratom-ENEA sulla Fusione, Padova (IT);SOLANO E, Association EURATOM-CIEMAT para Fusion, Madrid (ES) and EFDA CSU JET, Abingdon (GB);STRATTON B C, Princeton Plasma Physics Laboratory, Princeton (US);TALA T, Association Euratom-Tekes, VTT Chemical Technology, Espoo (FI)
Bibliographic Reference: An article published in: Plasma Physics and Controlled Fusion, 44 (July 2002), pp. 1105-1125
Availability: This article can be accessed online by subscribers, and can be ordered online by non-subscribers, at:
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top