Community Research and Development Information Service - CORDIS


Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (n(T)/n(D) < 3%). Thermal tritium particle transport coefficients (D(T), v(T)) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q(95) approximately 2.8 and triangularity delta = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, ?{*} and beta) and bulk energy confinement (decreases with ?{*} and is independent of beta). In an extended ELMy H-mode data set, with roh{*}, ?{*}, beta and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives D(T)/B(phi) approximately roh{*2.46}?{*}{-0.23}beta{-1.01}q{2.03}. In hybrid scenarios (q(min) approximately 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of D(T) with high values of v(T) is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (roh{*}(Theta)=q roh{*} in a manner close to gyro-Bohm (approximately roh{*3}(Theta), with an added inverse beta dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described.

Additional information

Authors: STORK D et al, Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (GB);BELO P et al, Euratom/IST Fusion Association, Lisboa (PT);BERTALOT L, Associazione Euratom-ENEA sulla Fusione, Centro.Richerche Energia ENEA-Frascati, Frascati (IT);BRZOZOWSKI J H, Alfven Laboratory, EURATOM-VR Association, Stockholm (SE);CONROY S, Department of Neutron Res., Uppsala University, Uppsala (SE);DE BAAR M, FOM-Rijnhuisen, Association EURATOM-FOM, Nieuwegein (NL);DUMORTIER P et al, LPP-ERM/KMS, EURATOM-Belgian State Association, Brussels (BE);GARZOTTI L, LPP-ERM/KMS, EURATOM-Belgian State Association, Brussels (BE);JOFFRIN E, Associazione Euratom-ENEA sulla Fusione, Consorzio RFX, Padova (IT);MANTSINEN M, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);NEU R, Association EURATOM-TEKES, Helsinki University of Technology (FI);STOBER J J, Association EURATOM-TEKES, Helsinki University of Technology (FI);WEISEN H, Max-Planck-Institut für Plasmaphysik, IPP-EURATOM Association, Garching (DE);WHITEFORD A D, Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne (CH);YAVORSKIJ V, Department of Physics, University of Strathclyde, Glasgow (GB)
Bibliographic Reference: An article published in: Nuclear Fusion 45 (2005), pp. S181-S194
Availability: This article can be accessed online by subscribers, and can be ordered online by non-subscribers, at:
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top