Community Research and Development Information Service - CORDIS

Abstract

This paper describes a new approach for modelling the pedestal energy transport in the presence of a small radial magnetic perturbation. The cases of a ballooning instability leading to Type I edge localized modes (ELMs) and a magnetic perturbation generated by external coils are treated. The model for Type I ELMs is based on the linear ideal MHD code MISHKA coupled with the non-linear energy transport code TELM in a realistic tokamak geometry. The main mechanism of the increased transport through the external transport barrier in this model of ELMs is due to the appearance of a radial velocity and a radial magnetic field perturbation due to the MHD mode. Both lead to additional transport perpendicular to the magnetic surface and hence to a relaxation of the pressure profile in the unstable zone. The typical Type I ELM time-cycle was reproduced numerically including the destabilization of the ballooning modes leading to the fast (250 mu s) collapse of the pedestal pressure followed by the edge pressure profile re-building on a diffusive time scale. A possible mechanism for the control of Type I ELMs using a stochastic plasma boundary created by external coils is modelled in this paper using data on ELM suppression by I-coils from the DIII-D experiment. In the stochastic layer the transverse transport is effectively increased by diffusion of the magnetic field lines. The modelling results demonstrate the possibility of decreasing the edge pressure gradient to a value that is just below the ideal ballooning limit, leading to a high confinement regime without Type I ELMs.

Additional information

Authors: BÉCOULET M, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);HUYSMANS G, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);THOMAS P, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);GHENDRIH P, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);NARDON E, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);GROSMAN A, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);GARBET X, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);ZWINGMAN W, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);MOYER R, University of California, San Diego (US);EVANS T, General Atomics, San Diego (US);SCHAFFER M, General Atomics, San Diego (US);LEONARD A, General Atomics, San Diego (US)
Bibliographic Reference: An article published in: Nuclear Fusion 45 (2005), pp. 1284-1292
Availability: This article can be accessed online by subscribers, and can be ordered online by non-subscribers, at: http://dx.doi.org/10.1088/0029-5515/45/11/009
Record Number: 200719091 / Last updated on: 2007-04-11
Category: PUBLICATION
Original language: en
Available languages: en