Community Research and Development Information Service - CORDIS

  • European Commission
  • CORDIS
  • Publications
  • Analysis of SATIR test for the qualification of high heat flux components: defect detection and classification by signal-to-noise ratio maximization

Abstract

Plasma facing components (PFC) in Tore Supra and W7X adopt the flat tile concept using carbon fibre composite (CFC) material for the plasma facing material. As the cooling structure is made of a copper alloy material (CuCrZr), the bonding technique between CFC tiles and CuCrZr is critical. Currently, a soft metallic compliant layer is interposed between the two; in such a way the significant thermal expansion mismatch between carbon and copper can be accomodated. The development of a reliable non-destructive inspection technique (NDT) for the bond, to be performed during the manufacturing process, is obviously of great importance. The SATIR (infrared thermography) test bed operating at Commisariat à l'Energie Atomique (CEA) Cadarache performs this function using transient infrared thermography: the thermal excitation is realized in the cooling channel and the presence of a faulty tile is detected in the form of a delayed thermal response. With this technique, the evolution of the surface temperature of an inspected element was compared to that of a defined free-defect element, using the so-called DTref criterion (maximum of the transient temperature difference). The defect detection capability of the SATIR test bed can be improved using signal processing methods. A first treatment based on spatial image autocorrelation allows a better localization of the bond defect. Moreover, the problem of detection and classification of random signals (like the thin defect signature) can be solved maximizing the signal-to-noise ratio (SNR). Two filters maximizing this ratio were optimized: the stochastic matched filter (SMF) aims at defect detection, while the constrained SMF aims at defect classification. These methods assume that the second-order properties of the process at play are known, through covariance matrices. All these methods process the SATIR signal utilizing any free-defect element as reference signal.

Additional information

Authors: CISMONDI F, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);SCHLOSSER J, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);VIGNAL N, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);DUROCHER A, Département de Recherches sur la Fusion Contrôlée, Association Euratom-CEA sur la Fusion, CEA Cadarache, Saint-Paul-lez-Durance (FR);XERRI B, Université de Toulon et du Var, La Garde (FR);JAUFFRET C, Université de Toulon et du Var, La Garde (FR)
Bibliographic Reference: An article published in: Physica Scripta T128 (2007), pp. 213-217
Availability: This article can be accessed online by subscribers, and can be ordered online by non-subscribers, at: http://dx.doi.org/10.1088/0031-8949/2007/T128/041
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top