Community Research and Development Information Service - CORDIS


Chapter 9: ITER contributions for Demo plasma development

Funded under: FP7-EURATOM


The chapter summarizes the physics issues of the demonstration toroidal fusion power plant (Demo) that can be addressed by ITER operation. These include burning plasma specific issues, i.e. energetic particle behaviour and plasma self-heating effects, and a broader class of power-plant scale physics issues that cannot be fully resolved in present experiments. A critical issue for Demo is whether MHD and energetic particle modes driven by fast particles will become unstable and affect plasma performance. Self-heating effects are expected to be especially important for control of steady-state plasmas with internal transport barriers (ITBs) and high bootstrap current fractions. Experimental data from ITER will improve strongly the physics basis of projections to Demo of major plasma parameters such as the energy confinement time, beta and density limits, edge pedestal temperature and density, and thermal loads on in-vessel components caused by ELMs and disruptions. ITER will also serve as a test bed for fusion technology studies, such as power plant plasma diagnostics, heating and current drive systems, plasma facing components, divertor and blanket modules. Finally, ITER is expected to provide benefits for the understanding of burning plasma behaviour in other magnetic confinement schemes.

Additional information

Authors: MUKHOVATOV V, ITER Organization, Cadarache Centre, St Paul lez Durance (FR);SHIMOMURA Y, ITER Organization, Cadarache Centre, St Paul lez Durance (FR);SHIMADA M, ITER Organization, Cadarache Centre, St Paul lez Durance (FR);LACKNER K, Max-Planck-Institut für Plasmaphysik, IPP-EURATOM Association, Garching (DE);ZOHM H, Max-Planck-Institut für Plasmaphysik, IPP-EURATOM Association, Garching (DE);CAMPBELL D J, EFDA Close Support Unit, Garching (DE);LOARTE A, EFDA Close Support Unit, Garching (DE);UCKAN N A, Oak Ridge National Laboratory, Oak Ridge, Tennessee (US);WESLEY J C, General Atomics, San Diego (US);STAMBAUGH R D, General Atomics, San Diego (US);HENDER T C, EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon (GB);LIPSCHULTZ B, MIT Plasma Science and Fusion Center, Cambridge (US);GOLDSTON R J, Plasma Physics Laboratory, Princeton University, Princeton (US);FUJIWARA M, National Institute of Fusion Science, Toki (JP);NAGAMI M, Japan Atomic Energy Agency, Naka-shi, Ibaraki (JP);PUSTOVITOV V D, Nuclear Fusion Institute, Russian Research Center 'Kurchatov Institute', Moscow (RU)
Bibliographic Reference: An article published in: Nuclear Fusion 47 (2007), pp. S404-S413
Availability: This article can be accessed online by subscribers, and can be ordered online by non-subscribers, at:
Record Number: 200719399 / Last updated on: 2007-09-11
Original language: en
Available languages: en