Community Research and Development Information Service - CORDIS

Convective effects in solidification

A software tool has been built for treating convective effects in solidification. It is articulated in a numerical frame code, and in a series of modules dedicated to specific cases. It is a contribution to rapid prototyping in the industrial sectors of shape casting foundry, and of crystal solidification processing.
As an example, it was applied to a piece in form of a 3-dimensionall loop, representing a massive cast iron piece with a core. The reslts showed how the flow separates, how solidification occurs during filling, and how paricles initially suspended in the liquid are distributed during solidification.

This software is particularly orientated to 3 kind of problems:
Solidification in thin wall castings, emphasizing the problems of fluid length and of cold shut. A criterion function was implementated and tested experimentally on a series of cast iron and aluminium-silicon thin plates. The fluid length was measured in a series of casting tests on an aluminium alloy in low pressure and high pressure conditions. The results were represented by a simple 1-dimensional model enabling to presict the ability to produce thin elongated casting pieces.
Solidification in the presence of particles in suspension (inclusions, inoculants, reinforcing particles in metal-matrix-composites, equiaxed crystals). According to relative flw and solidification conditions, they can be either entrapped in the solid or pushed at the interface.
Striations and banding phenomena in massive solidification products, including massive crystals. Dedicated modules treated coupled thermo-capillary and thermo-gravity flows, either by streamline diffusion method, or by Fourier transform spectral method. They were applied to floating zone crystal growth. The example showed the transition from stready axi-symetrical to 3D-steady, then to oscillatory growth.

Reported by

Institut National Polytechnique de Grenoble
ENSHMG BP 95
38402 St Martin d'Heres
France
See on map
Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top