Wspólnotowy Serwis Informacyjny Badan i Rozwoju - CORDIS

FP7

SPEDIS Wynik w skrócie

Project ID: 624199
Źródło dofinansowania: FP7-PEOPLE
Kraj: Włochy

Symetrie, całkowalność i rachunek dyskretny

Na najbardziej podstawowym poziomie wszechświat wydaje się składać z dyskretnych obiektów a nie ciągłej materii, jednak aktualnie dostępne rachunki modelują zachowanie ciągłe wszechświata. Aby móc badać zjawiska dyskretne, potrzebne są lepsze narzędzia matematyczne. Należą do nich symetrie i całkowalność.
Symetrie, całkowalność i rachunek dyskretny
Czasoprzestrzeń jest skwantowana i daje się scharakteryzować przy pomocy długości Plancka. Nawet w większych skalach, w których świat wydaje się ciągły, wiele ważnych zjawisk ma charakter dyskretny, jak na przykład w przypadku zjawisk zachodzących w kryształach czy też w łańcuchach molekularnych lub atomowych. Dlatego też równania różnicowe mogą być bardziej fundamentalne niż równania różniczkowe. Równania różniczkowe trzeba ponadto często rozwiązywać numerycznie, a to oznacza, że należy je poddać dyskretyzacji — czyli przybliżeniu przy pomocy układu różnicowego.

Celem projektu SPEDIS (Symmetry preserving discretization of integrable, superintegrable and nonintegrable systems) było opracowanie i zastosowanie skutecznych narzędzi matematycznych do badania zjawisk kwantowych i klasycznych w warunkach dyskretnych.

Naukowcy byli zainteresowani przede wszystkim modelami, które posiadają symetrię i właściwości całkowalne, w tym w szczególności całkowalnymi i super-całkowalnymi modelami o skończonych i nieskończonych liczbach wymiarów. Układy całkowalne mają tyle samo przemiennych całek ruchu co stopni swobody (których liczba może być nieskończona). Układy super-całkowalne mają więcej całek ruchu niż stopni swobody, a całki te tworzą ciekawe algebry nieabelowe. Całki ruchu są powiązane z symetriami układu. Mogą być to symetrie punktów Liego, ale zwykle są uogólnionymi symetriami i tworzą bardziej ogólne algebry.

Założeniem projektu było zbadanie i wykorzystanie symetrii Liego równań różnicowych oraz dokonanie dyskretyzacji równań różniczkowych, z zachowaniem ich najważniejszych właściwości. Chodzi tu o ich symetrie punktów Liego, symetrie uogólnione, całkowalność i super-całkowalność.

Owocem prac są liczne artykuły naukowe. Cztery publikacje poświęcone są nowej dziedzinie, jaką jest dyskretyzacja z zachowaniem symetrii równań częściowo różniczkowych, a wyniki tych prac mają praktyczne zastosowania w zakresie całkowania geometrycznego. Trzy inne publikacje dotyczą równań z nieskończonymi wymiarowymi algebrami symetrii. Kolejne trzy opisują natomiast nieliniowe zwykłe równania różnicowe i różniczkowe: konstrukcję wzorów pierwszych całek, dyskretyzacji i nieliniowej superpozycji. W czterech artykułach analizowane są nowe rodzaje układów super-całkowalnych. Są to między innymi cząstki w polach magnetycznych, cząstki posiadające spin oraz całki ruchu wyższego rzędu.

Powiązane informacje

Tematy

Life Sciences

Słowa kluczowe

Narzędzia matematyczne, równania różnicowe, równania różniczkowe, SPEDIS, całkowalne
Numer rekordu: 183068 / Ostatnia aktualizacja: 2016-07-26
Dziedzina: Technologie przemysłowe