Servizio Comunitario di Informazione in materia di Ricerca e Sviluppo - CORDIS

New materials for optical applications by sol-gel processing

Passive as well as chi(2), chi(3) and amplifying materials can be fabricated by a sol-gel synthesis following an inorganic or an organic-inorganic nanocomposite (Nanomer) route. Linear waveguides were prepared using hydroslysis based Nanomer systems and embossing as a patterning technique. For applications in the 1.55 µm wavelength region a special chloro-silane based route was developed, resulting in low loss strip waveguides. Furthermore different Nanomer material systems were doped by dyes and different quantum dots to obtain chi(2) and chi(3) efficiency in waveguide applications. Pure inorganic material systems were used for preparation of thick oxide monolayers with main attention to crack free preparation and optical quality. A new technology for glass amplifying waveguides was created using commercially available glasses and glasses prepared by melting of xerogel powders. Further microoptical elements (gratings, Fresnel lenses) were made by an inorganic as well as a composite sol-gel route.