Servicio de Información Comunitario sobre Investigación y Desarrollo - CORDIS

FP5

FINGER Informe resumido

Project ID: QLG2-CT-1999-00920
Financiado con arreglo a: FP5-LIFE QUALITY
País: Netherlands

Antisense modulation as therapeutic tool

Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frame shifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis of a largely functional dystrophin, associated with a milder Becker muscular dystrophy phenotype. We have previously successfully targeted 20 different DMD exons that would, theoretically, be beneficial for >75% of all patients.

To further enlarge this proportion, we here studied the feasibility of double and multiexon skipping. Using a combination of AONs, double skipping of exon 43 and 44 was induced, and dystrophin synthesis was restored in myotubes from one patient affected by a nonsense mutation in exon 43. For another patient, with an exon 46-50 deletion, the therapeutic double skipping of exon 45 and 51 was achieved. Remarkably, in control myotubes, the latter combination of AONs caused the skipping of the entire stretch of exons from 45 through 51. This in-frame multiexon skipping would be therapeutic for a series of patients carrying different DMD-causing mutations. In fact, we here demonstrate its feasibility in myotubes from a patient with an exon 48-50 deletion. The application of multiexon skipping may provide a more uniform methodology for a larger group of patients with DMD.

Since the initial characterization of the genetic defect for Duchenne muscular dystrophy, much effort has been expended in attempts to develop a therapy for this devastating childhood disease. Gene therapy was the obvious answer but, initially, the dystrophin gene and its product seemed too large and complex for this approach. However, our increasing knowledge of the organization of the gene and the role of dystrophin in muscle function has indicated ways to manipulate them both. Gene therapy for Duchenne muscular dystrophy now seems to be in reach.

The dystrophin deficiency leading to the severely progressing muscle degeneration in Duchenne muscular dystrophy (DMD) patients is caused by frame-shifting mutations in the DMD gene. We are developing a reading frame correction therapy aimed at the antisense-induced skipping of targeted exons from the pre-mRNA. Despite introducing a (larger) deletion, an in-frame transcript is generated that allows the synthesis of a slightly shorter, but largely functional dystrophin as found in the mostly milder Becker muscular dystrophy (BMD).

We have recently demonstrated both the efficacy and high efficiency of the antisense-induced skipping of numerous exons from the DMD transcript in control muscle cells. In principle, this would restore the reading frame in over 75% of the patients reported in the Leiden DMD mutation database. In this study, we in fact demonstrate the broad therapeutic applicability of this strategy in cultured muscle cells from six DMD patients carrying different deletions and a nonsense mutation. In each case, the specific skipping of the targeted exon was induced, restoring dystrophin synthesis in over 75% of cells. The protein was detectable as soon as 16 h post-transfection, then increased to significant levels at the membrane within 2 days, and was maintained for at least a week.

Finally, its proper function was further suggested by the restored membranal expression of four associated proteins from the dystrophin-glycoprotein complex. These results document important progress towards a clinically applicable, small-molecule based therapy.

Información relacionada

Contacto

J.P. ROTMANS, (Divisiemanager Bedrijfsvoering, Divisie 5 )
Tel.: +31-71-5276010
Correo electrónico
Síganos en: RSS Facebook Twitter YouTube Gestionado por la Oficina de Publicaciones de la UE Arriba