Servicio de Información Comunitario sobre Investigación y Desarrollo - CORDIS

Role of Ctm-PrP and Dpl in oxidative stress

We participated to a work with a Japanese group were copper was quantified using Zeeman graphite furnace atomic absorption spectroscopy, in immortalised PrP gene (Prnp)-deficient neuronal cells transfected with Prnp and/or Prnd, which encodes PrP-like protein (PrPLP/Dpl), in the presence or absence of oxidative stress induced by serum deprivation. In the presence of serum, copper levels were not significantly affected by the expression of PrP and/or PrPLP/Dpl, whereas serum deprivation induced a decrease in copper levels that was inhibited by PrP but not by PrPLP/Dpl. The inhibitory effect of PrP on the decrease of copper levels was prevented by overexpression of PrPLP/Dpl. These findings indicate that PrP specifically stabilises copper homeostasis, which is perturbed under oxidative conditions, while PrPLP/Dpl overexpression prevents PrP function in copper homeostasis, suggesting an interaction of PrP and PrPLP/Dpl and distinct functions between PrP and PrPLP/Dpl on metal homeostasis. Taken together, these results strongly suggest that PrP, in addition to its antioxidant properties, plays a role in stabilising cellular copper homeostasis under oxidative conditions.

Información relacionada

Reported by

CENTRE NATIONAL DE RECHERCHE SCIENTIFIQUE, UPR 1142
141, rue de la Cardonille
34396 Montpellier
France
See on map
Síganos en: RSS Facebook Twitter YouTube Gestionado por la Oficina de Publicaciones de la UE Arriba