Servicio de Información Comunitario sobre Investigación y Desarrollo - CORDIS

FP6

TI- NANOTUBES Informe resumido

Project ID: 33313
Financiado con arreglo a: FP6-NMP
País: Germany

Final Report Summary - TI- NANOTUBES (Preparation, characterisation and application of self-organised titanium oxide - nanotubes)

The TI-NANOTUBES project pertained to the preparation, characterisation as well as the applications of self-organised titanium oxide (TiO2) nanotubes. Its main objectives consisted in creating metal oxide porous structures by means of electrochemical anodisation. The anodising process would enable the self-organisation of the TiO2 nanotubes (NTs) of a similar degree of order as of the porous aluminium oxide's (Al2O3) and the silicon's (Si) NTs. Furthermore, the project aimed to investigate the key self-ordering mechanisms of TiO2 nanotubes by means of various surface control technologies such as Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Nuclear reaction analysis (NRA), Time-of-flight secondary ion mass spectrometry (TOF-SIMS), Medium energy ion scattering (MEIS), Rutherford backscattering spectrometry (RBS). The research into self-organisation properties could potentially lead to solar energy conversion applications such as dye sensitised solar cells.

The project achieved in doping TiO2 with silver (Ag) as well as with iron (Fe). The Ag- and Fe-modified nanotube arrays exhibited an enhanced photocatalytic activity, therefore, enabling possible the solar energy conversion applications. TiO2 nanotubes have been created on sputtered Ti substrates and RBS provided further information regarding the oxide production efficiency, while RBS and NRA demonstrated the composition of nanotubes, namely the presence of fluorine as well as carbon contaminants of titania. Furthermore, a polarised micro-Raman investigation has been performed in order to study the phase composition, the finite size, the orientation and antenna effects of self-assembled anodised TiO2 nanotube arrays. Finally, the project proceeded with the characterisation of Ti-nanotubes, with photo-induced applications as well as with several efficient solar energy conversion related applications.

Información relacionada

Contacto

Julia KUNZE, (Senior Scientist)
Tel.: +49-9131852-7580
Fax: +49-9131852-7582
Correo electrónico
Síganos en: RSS Facebook Twitter YouTube Gestionado por la Oficina de Publicaciones de la UE Arriba