Community Research and Development Information Service - CORDIS

Novel fungal enzymes benefit biotech sector

Dry plant material, also known as biomass or lignocelluloses, represents the most abundant resource on Earth for the production of biofuels. Enzymes used by fungi to breakdown lignocelluloses can also act as cost-efficient and environment-friendly industrial biocatalysts.
Novel fungal enzymes benefit biotech sector
The EU-funded 'Fungi in white biotechnology: Expression of novel lignocellulose degrading enzymes' (FUNBIO) project was established to gain insight into lignocellulose-degrading enzymes. Researchers produced and characterised new fungal enzymes for breaking down lignocelluloses and developed recombinant protein expression techniques for mushroom (basidomycete) fungal enzymes.

Different species of lignin-degrading white rot fungi were used as model organisms. Physisporinus rivulosis, a highly selective fungal species that decomposes softwoods was selected for converting woodchips to paper in biopulping industry.

Researchers cloned and characterised two heat-tolerant enzymes called laccases. The first enzyme, Lac1, showed thermal activation for oxidation of phenolic substrates, an ability that had only been previously recorded in a few laccases. Structural models of Lac1 and Lac2 showed differences in amino acid composition possibly explaining the distinct catalytic properties of enzymes. Researchers found that the production of lignin peroxidase, manganese peroxidase and laccase increased when wood was employed as a carbon source for P. Radiate.

Agaricus bisporus (common or button mushroom), is the most commercially available edible fungus. This fungus is ideal for growing on agricultural lignocellulose waste and in soil litter due to its ability to grow in humus-rich leaf litter. FUNBIO researchers sequenced the genome of A. Bisporus and used computer models to study the enzymes involved in degrading lignin. The heme-thiolate-peroxidase enzymes employed by this mushroom were distinct from wood-degrading fungi explaining its ability to breakdown lignin and related metabolites found in soil litter.

Project partners also studied the nutritional demands for enzyme production and mycelial growth in six genetically isolated wild species of mushroom from the genus Agaricus. Transcriptome data obtained from compost cultures of A. Bisporus revealed the importance of both manganese peroxidases and multicopper oxidases while growing on lignocelluloses.

The work of FUNBIO will have a significant socioeconomic impact by furthering the development of industrial biotechnology in Europe. In addition, it has helped educate and train biotechnologists of the future and raised the research group's international profile.

Related information

Follow us on: RSS Facebook Twitter YouTube Managed by the EU Publications Office Top