An EU-funded project has designed and fabricated reliable power modules that can endure very high temperatures – above 200 °C – using ‘silicon carbide’ (SiC).

Currently, most semiconductors are made out of silicon. However, silicon cannot correctly function above approximately 200 °C, and there are some important applications above that range. Offering increased operating temperatures, semiconductors based on SiC have already gained momentum in electric vehicles as well as in energy and aerospace industries.

Overcoming reliability issues of SiC semiconductors and the surrounding package was the aim of the EU-funded project MATPLAN (Construction of bespoke evaluation power modules). To this end, project partners fabricated and tested a
sintered SiC power module with low stray inductance to see if it met the requirements at high temperatures.

The 10 kW SiC power module consisted of four SiC metal oxide semiconductor field-effect transistors and four Schottky barrier diodes. Project partners implemented a new packaging concept involving silver sintering, a silicon nitride substrate, no wire bonds, no baseplate and a flexible printed circuit board foil with integrated terminals.

By using the newly developed SiC-based chip set and the new packaging technology, the SiC power module proved to successfully operate at 200 °C.

Project partners also produced compliant pillars for interconnecting power semiconductors (dies) with a high-voltage circuit breaker – a switch designed to protect circuits from overloads or short circuits.

The MATPLAN packaging solutions eliminate the need for using unreliable aluminium wire bonds, replacing them with seamless contacting techniques on either side of the active semiconductor. Thus, they provide reliable low-inductance contact with a low thermal resistance.

Project packaging solutions are easy to manufacture and come at a low cost compared to current double-sided cooled structures. By making the use of high-temperature semiconductor devices easier, they should find wide application in the aerospace industry.

Keywords

Semiconductor, packaging, power modules, high temperatures, silicon carbide, aerospace

Project Information

MATPLAN

Grant agreement ID: 304851

Status
Closed project

Start date
1 April 2012

End date
31 March 2014

Funded under
FP7-JTI

Overall budget
€ 246 424

EU contribution
€ 150 694

Coordinated by
DYNEX SEMICONDUCTOR LIMITED

United Kingdom
This project is featured in...

RESEARCH*EU MAGAZINE
New horizons for the textile value chain

Discover other articles in the same domain of application

Once overlooked industrial energy recycling heats up

Whether warm like a summer day or hot as lava, industrial waste heat will be wasted no more

A novel direct heat exchange concept helps energy-intensive industries reuse