

Swarms of self-assembling artefacts

Results in Brief

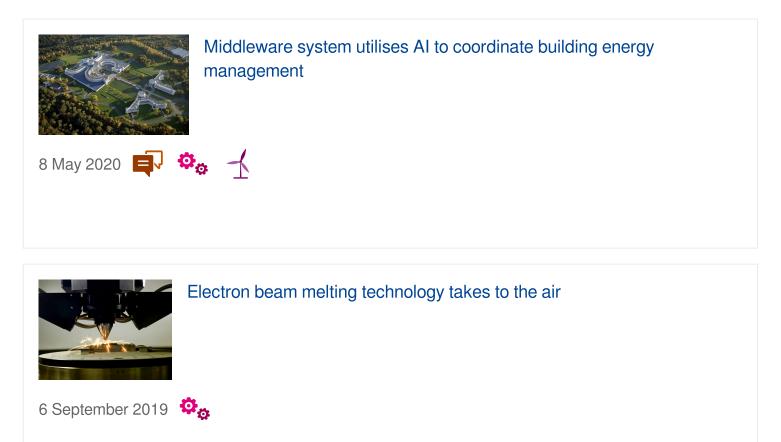
Swarming with self-assembling robots

Under the auspices of the SWARM-BOTS project a novel, simple, insect-like, robot hardware, the s-bot was built of inexpensive parts aimed for swarm robotics applications.

One of the key developments of the SWARM-BOTS project is the design and implementation of a swarm-bot, that is an artefact consisting of 35 s-bots. This colony features increased self-organising and selfassembling capabilities to adapt to its environment.

The hardware design of an s-bot is based on a differential TREELS drive system that consists of TR-acks and wh-EELS. Aided by motor control each treel allows the s-bot to move in the environment and rotate on the spot. Via a motorised axis the motor base with the treels can rotate with respect to the main body of the s-bot.

There are two types of possible physical interconnections between s-bots, a rigid and a semi-flexible connection. Rigid connections can be accomplished with the aid of a gripper that is mounted on a horizontal active axis. This gripper has a huge acceptance area that offers a secure grasp at various angles and lift another s-bot if required.


On the other hand, flexible arms actuated by three motors found at the point of attachment on the main body allowing implementation of semi-flexible connections. The arm can perform movements with three degrees of freedom laterally and vertically with extension and retraction options as well.

Each s-bot constitutes a totally independent mobile robot capable of navigating in an autonomous way, perceiving its surrounding environment and grasping objects. S-bots can communicate with each other through advanced sensors and join themselves in either a rigid or flexible way to form a swarm-bot.

On the basis of a distributed adaptive control architecture mimicking ant colony behaviours, swarm-bots can accomplish difficult tasks such as exploration, navigation and transportation of heavy objects on very rough terrains. Potential applications could involve semi-automatic space exploration, search for rescue or underwater exploration.

Collaboration is sought with a company active in consumer electronics (cleaning), or logistics, or cargo organisation, or special-purpose exploration. The partner needs to be willing to develop a commercial system for transportation, surveillance, exploration, or cleaning activity.

Discover other articles in the same domain of application

Cell function profiling to assess clone stability in drug bioreactors

31 January 2020 🔅

29 August 2018 🤷 🚓

Project Information

SWARM-BOTS

Grant agreement ID: IST-2000-31010

Project website 🛃

Project closed

Start dateEnd date1 October 200131 March 2005

Funded under Programme for research, technological development and demonstration on a "User-friendly information society, 1998-2002"

Total cost € 2 171 037,00

EU contribution € 1 000 000,00

Coordinated by UNIVERSITE LIBRE DE BRUXELLES Belgium

Last update: 13 February 2006

Permalink: <u>https://cordis.europa.eu/article/id/82420-swarming-with-selfassembling-robots</u>

European Union, 2025