Reliably e-boosting nuclear power safety

Joint efforts between China and the EU have helped to ensure that the nuclear power industry has state-of-the-art methods and data for assessing safety-critical software.

Modern nuclear power plants require digital 'Instrumentation and control' (I&C) systems that can reliably monitor all operational aspects and dynamically make adjustments to ensure safety. Software in such systems requires an assessment approach to ensure that they are as fault-free as possible. Moreover, differences in licensing approaches adopted in each country hinder the establishment of best practices.

In the context of the EU-funded project HARMONICS (Harmonised assessment of reliability of modern nuclear I&C software), five European countries collaborated with China to provide support to the nuclear power industry in evaluating the software of
safety-critical systems.

HARMONICS researchers built on the results of two previous research projects, namely CEMSIS (Cost effective modernisation of systems important to safety) and BE-SECBS (Benchmark exercise on safety evaluation of computer based systems). In addition, the end-users’ needs and experiences in China and the EU were reviewed.

Before the end of the project, the researchers proposed a framework for software verification integrating rule-based, goal-based and risk-informed approaches. The goal-based approach requires a complete and coherent initial set of goals. The rule-based approach alone is insufficient as it cannot by itself demonstrate that a system is safe enough for a given application.

The applicability and acceptability of each approach were tested in a series of case studies of digital protection systems. The results were used to provide practical guidelines for integrating the three approaches to get a consistent process for verifying digital I&C systems. The HARMONICS project also investigated static source code analysis and formal verification.

HARMONICS activities have provided a sound basis for testing digital I&C technologies used in nuclear power plants to ensure efficiency and safety. Licensing of digital I&C systems is expected to become more transparent while harmonisation of I&C systems among European countries and beyond could facilitate the sharing of best practices.

Keywords

Nuclear power, safety-critical software, instrumentation and control systems, best practices, formal verification

Project Information

<table>
<thead>
<tr>
<th>HARMONICS</th>
<th>Grant agreement ID: 269851</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project website</td>
<td>Link</td>
</tr>
<tr>
<td>Status</td>
<td>Closed project</td>
</tr>
<tr>
<td>Start date</td>
<td>12 January 2011</td>
</tr>
<tr>
<td>End date</td>
<td>11 January 2015</td>
</tr>
</tbody>
</table>

Funded under FP7-EURATOM-FISSION

Overall budget € 1 577 237

EU contribution € 999 458

Coordinated by Teknologian tutkimuskeskus VTT Oy Finland
This project is featured in...

RESEARCH*EU MAGAZINE
Blurring the lines: man meets machine

NO. 51, APRIL 2016

RESEARCH*EU MAGAZINE
Road safety: towards zero fatalities?

NO. 42, MAY 2015

Discover other articles in the same domain of application

NEW PRODUCTS AND TECHNOLOGIES
New low-consumption diesel engine generates less contaminating particles

9 October 2019

NEWS
A silver lining lights the way to thinner, more efficient solar cells
Europe-Mexico collaboration tackles unconventional geothermal systems

26 March 2020

Record number: 90954

© European Union, 2020