
The research leading to these results has received funding from the European Community's Seventh

Framework Programme (FP7/2007-2013) under grant agreement n° 257930.

Secure and Trustworthy Composite Services

Deliverable ID: Preparation date:

D5.1 01 September 2011

Milestone: Released

Title:

ANIKETOS platform

design and platform basis

implementation

Seventh Framework Programme:

Call FP7-ICT-2009-5

Priority 1.4 Trustworthy ICT

Integrated Project

Editor/Lead beneficiary (name/partner):

Vasilis Tountopoulos/ATC

Internally reviewed by (name/partner):

Edith Félix/Thales, Achim Brucker /SAP

Approved by:

 Executive board

Abstract:

Aniketos is about establishing and maintaining trustworthiness and secure behaviour in a constantly

changing service environment. The project aligns existing and develops new technologies, methods, tools

and security services that support the design-time creation and run-time dynamic behaviour of composite

services, addressing service developers, service providers and service end users.

This deliverable presents the specifications and provides a baseline implementation of the Aniketos

platform, which facilitates as a reference to the envisaged functionalities, which have to be supported, as

well as guidance to the technical partners on the way to plug their individual components into the

platform. The deliverable exploits the work performed in all technical workpackages to provide the design

aspects needed for the interfaces and the communication of the Aniketos platform components with the

environment components both at design-time and runtime.

Dissemination level

PU Public 

CO Confidential, only for members of the consortium (including Commission Services)

D5.1: ANIKETOS platform design and platform basis implementation iii

Aniketos consortium

Aniketos (Contract No. FP7-257930) is an Integrated Project (IP) within the 7
th
 Framework

Programme, Call 5, Priority 1.4 (Trustworthy ICT). The consortium members are:

SINTEF ICT (SINTEF)

NO-7465 Trondheim

Norway

www.sintef.com

Project manager: Richard T. Sanders

richard.sanders@sintef.no

 +47 73 59 30 06

Technical manager: Per Håkon Meland

per.h.meland@sintef.no +47 73 59 29 41

Tecnalia Research & Innovation

(TECNALIA)

E-20009 Donostia - San Sebastian

Gipuzkoa (Spain)

www.tecnalia.com/en

Contact: Erkuden Rios Velasco

erkuden.rios@tecnalia.com

Consiglio Nazionale delle Ricerche

(CNR)

00185 Roma, Italy

www.cnr.it

Contact: Fabio Martinelli

Fabio.Martinelli@iit.cnr.it

Thales Services SAS (THALES)

78140 Velizy-Villacoublay, France

www.thalesgroup.com

Contact: Dhouha Ayed

dhouha.ayed@thalesgroup.com

Liverpool John Moores University

(LJMU)

Liverpool, L3 5UX, United

Kingdom

www.ljmu.ac.uk/cmp

Contact: Madjid Merabti

m.merabti@ljmu.ac.uk

Selex Elsag S.P.A. (ELSAG)

16154 Genova, Italy

www.selexelsag.com

Contact: Pucci Paolo

Paolo.Pucci@selexelsag.com

SEARCH-LAB Ltd. (SEARCH)

Budapest 1117, Hungary

www.search-lab.hu

Contact: Zoltán Hornák

zoltan.hornak@search-lab.hu

Atos Origin (ATOS)

28037 Madrid, Spain

www.atc.gr

Contact: Pedro Soria-Rodriguez

pedro.soria@atosresearch.eu

http://www.sintef.com/ses
http://www.tecnalia.com/en
http://www.cnr.it/sitocnr/Englishversion/Englishversion.html
http://www.thalesgroup.com/
http://www.ljmu.ac.uk/cmp
file://Zeus/Consulting/Projects/EU-ANIKETOS/Deliverables/D5.1%20-%20ANIKETOS%20platform%20design%20and%20platform%20basis%20implementation/Intermediate/www.selexelsag.com
http://www.search-lab.hu/
http://www.atc.gr/

iv D5.1: ANIKETOS platform design and platform basis implementation

Telecommunication Software and

Systems Group (TSSG)

Waterford, Ireland

www.tssg.org

Contact: Miguel Ponce de Leon

miguelpdl@tssg.org

Universita Degli Studi di Trento

(UNITN)

38100 Trento, Italy

www.unitn.it

Contact: Paolo Giorgini

paolo.giorgini@unitn.it

Athens Technology Center SA

(ATC)

15233 Athens, Greece

www.atc.gr

Contact: Vasilis Tountopoulos

v.tountopoulos@atc.gr

SAP AG (SAP)

69190 Walldorf, Germany

www.sap.com/research

Contact: Achim Brucker

achim.brucker@sap.com

ITALTEL S.P.A. (ITALTEL)

20019 Settimo Milanese, Italy

www.italtel.it

Contact: Maurizio Pignolo

maurizio.pignolo@italtel.it

Paris Lodron Universität Salzburg

(PLUS)

5020 Salzburg, Austria

www.uni-salzburg.at

Contact: Manfred Tscheligi

manfred.tscheligi@sbg.ac.at

Deep Blue SRL (DBL)

00193 Roma, Italy

www.dblue.it

Contact: Valentino Meduri

valentino.meduri@dblue.it

Wind Telecomunicazioni S.P.A.

(WIND)

00148 Roma, Italy

www.wind.it

Contact: Rita Spada

MariaRita.Spada@mail.wind.it

Dimos Athinaion Epicheirisi

Michanografisis (DAEM)

10438 Athens, Greece

www.daem.gr

Contact: Ira Giannakoudaki

i.giannakoudaki@daem.gr

http://www.tssg.org/
http://www.unitn.it/
http://www.atc.gr/
http://www.sap.com/research/
http://www.italtel.it/
http://www.uni-salzburg.at/
http://www.dblue.it/
http://www.wind.it/
http://www.daem.gr/

D5.1: ANIKETOS platform design and platform basis implementation v

Table of contents

Aniketos consortium.. iii
Table of contents ... v
List of figures ... vii
List of tables ... vii
Executive summary ... 1
1 Introduction ... 3

1.1 Aniketos motivation and background .. 3
1.2 Summary .. 3
1.3 Structure of this document ... 4
1.4 Relationships with other deliverables .. 4
1.5 Contributors ... 5
1.6 Acronyms and abbreviations .. 5
1.7 Change log ... 6

2 Aniketos Platform Overview ... 7
2.1 Overview of the Aniketos Platform Objectives ... 7
2.2 System level Requirements .. 8

2.2.1 Functional Requirements ... 8
2.2.2 Non-functional Requirements .. 9

2.3 The Aniketos Architecture ... 10
2.4 Layered-based architectural design .. 11
2.5 Development Methodology ... 14

3 Analysis of technological background .. 16
3.1 Introduction .. 16
3.2 Development of the Aniketos Platform ... 16

3.2.1 Eclipse Plug-in Mechanism ... 16
3.3 Web service composition standard languages ... 18

3.3.1 Business Process Modelling Notation ... 18
3.3.2 Business Process Execution Language .. 20

3.4 Security Framework Technologies .. 23
3.4.1 Introduction ... 23
3.4.2 Overview of security specifications... 24
3.4.3 OpenID and OAuth .. 28
3.4.4 SAML2 & XACML... 30

3.5 Communication Technologies ... 31
3.5.1 Enterprise Service Bus ... 31
3.5.2 SOAP Web Services .. 34
3.5.3 REST Web Services .. 34

3.6 Application Server Technologies ... 35
3.6.1 OSGi .. 35

3.7 Persistency and Information Storage Technologies ... 38
3.7.1 MySQL Database Server ... 38
3.7.2 PostgreSQL Database System ... 39
3.7.3 MongoDB .. 39
3.7.4 Conclusion ... 39

4 Description of the Aniketos components .. 40
4.1 Aniketos Platform components .. 40

4.1.1 Socio-technical Security Modelling Tool .. 40
4.1.2 Model Transformation Module ... 41

vi D5.1: ANIKETOS platform design and platform basis implementation

4.1.3 Trustworthiness Component .. 44
4.1.4 Verification module ... 47
4.1.5 Security Property Determination Module .. 51
4.1.6 Secure Composition Planner Module .. 55
4.1.7 Security Policy Monitoring Module .. 58
4.1.8 Threat Response Recommendation Module .. 59
4.1.9 Service Threat Monitoring Module ... 61
4.1.10 Notification module ... 66
4.1.11 Community Support Module ... 70
4.1.12 Threat Repository Module ... 72
4.1.13 Marketplace ... 76
4.1.14 Training Material Module ... 78

4.2 Environment components .. 79
4.2.1 Service Composition Framework .. 79
4.2.2 Service Runtime Environment ... 81

4.2.3 Identity Management Service .. 91
4.3 Summary of interfaces ... 93

5 Design of the Aniketos Marketplace ... 103
6 Aniketos Baseline Implementation.. 106

6.1 Aniketos Platform at design-time .. 106
6.1.1 Design-time related Aniketos Components ... 106
6.1.2 Template Eclipse Plug-in ... 107

6.2 Runtime Platform ... 108
6.2.1 Template OSGi Bundle ... 110

6.3 Implementation of the Aniketos Platform and Environment Components 111
7 Conclusions ... 114
References ... 115
8 Annexes ... 117

8.1 Runtime Template Component .. 117
8.1.1 Pre-requisites ... 117
8.1.2 Downloading ... 117
8.1.3 Running ... 119
8.1.4 Service Implementation ... 121

8.2 Template Eclipse Plugin and OSGI Component(s) ... 126
8.2.1 Pre-requisites ... 127
8.2.2 Getting started.. 127
8.2.3 Installing BPMN2 .. 127

8.2.4 Obtaining our (eu.aniketos.wp3.dummy.*) plugins and bundles 128
8.2.5 Executing the plugin and bundles .. 130

D5.1: ANIKETOS platform design and platform basis implementation vii

List of figures

Figure 1: Goal: establish and maintain security and trustworthiness in composite services 3
Figure 2: The objectives of the Aniketos project .. 7
Figure 3: Overview of the Aniketos Platform ... 10
Figure 4: Components in the Aniketos platform and in the environment ... 12
Figure 5: A layer-based conceptual representation of the Aniketos architectural design 13
Figure 6: The basic steps for delivering the Aniketos platform, based on the agile software

development methodology .. 14
Figure 7: Continuous interaction of WP5 with the development and assessment phases 15
Figure 8: The Eclipse plug-in architecture (please refer to [14]) .. 17
Figure 9: The Eclipse plug-in layers (please refer to [14]).. 17
Figure 10: Service composition: orchestration approach (please refer to [15]) 18
Figure 11: BPMN Diagram for travel booking process (please refer to [18]) 19
Figure 12: Example of a BPEL process (please refer to [20])... 22
Figure 13: Technologies and specifications for Web Service – based platforms: a) First-Generation, b)

Second Generation (please refer to [24]) ... 24
Figure 14: SSL protection across multiple services (please refer to [25]) .. 27
Figure 15: WS-Security Framework concept (please refer to [25]) .. 28
Figure 16: The OAuth Authorisation process steps (please refer to [31]) ... 30

Figure 17: An example topology for ESB (please refer to [35]) ... 31
Figure 18: The Mule ESB Architecture (please refer to [36]) ... 33
Figure 19: The OSGi Architecture (please refer to [40]) .. 36
Figure 20: The logical architecture of PRRS .. 84
Figure 21: The interfaces of the Service Monitoring Module ... 86
Figure 22: The runtime interfaces of MUSIC towards Aniketos .. 90
Figure 23: The Architecture of the Aniketos Marketplace .. 103
Figure 24: Register Service User Interface ... 104
Figure 25: Searching for Services ... 105
Figure 26: Typical processes related to design-time service composition (please refer to D1.2 [1]) . 106
Figure 27: The design-time related Components .. 107
Figure 28: General processes related to runtime reaction to changes and monitoring (please refer to

D1.2 [1]) .. 109
Figure 29: The Runtime Platform ... 110
Figure 30: Import project dialogue box ... 129
Figure 31: SVN Repository Information ... 129

Figure 32: Eclipse "Check out as" project wizard ... 130
Figure 33: Check out project selection .. 130
Figure 34: New Launch Configuration and Plugin tab ... 131
Figure 35: Eclipse Runtime: Plugin configuration tab .. 131
Figure 36: Show the View panel created by scp.client ... 132
Figure 37: The user interface of the template in runtime Eclipse ... 133
Figure 38: Output of the template shown in console of development Eclipse 133

List of tables

Table 1: Categorisation of functional requirements for the development of the Aniketos Platform 8

Table 2: Non-functional requirements for the development of the Aniketos Platform 9
Table 3: Web services standards and XML security specifications .. 25
Table 4: WS-Security Framework Standards ([25]) .. 28
Table 5: Open source ESB implementations and their corresponding license 32

viii D5.1: ANIKETOS platform design and platform basis implementation

Table 6: Relation of D5.1 implementations to D1.2 specifications... 94
Table 7: Status overview of the Aniketos platform and environment components implementation ... 111

D5.1: ANIKETOS platform design and platform basis implementation 1

Executive summary

The main objective of the Aniketos project is to establish and maintain security and trustworthiness in

composite services. In this context, this deliverable focuses on the design aspects and the baseline

implementation of the Aniketos platform, which provides the reference point for the development

activities of the next period.

The document identifies the layered view on the Aniketos architecture, which presents the currently

adopted components to support the functionalities envisaged for both the Aniketos platform and the

environment. In that sense, it specifies the interfaces of the components to security and trustworthiness

attributes, when designing, implementing, deploying and running composite services, while

emphasises on the design of the Aniketos Marketplace, which is being developed to store the security

specifications of the Aniketos compliant services and service compositions.

The deliverable elaborates on the methodological approach to develop the Aniketos components and

release the integrated Aniketos platform prototypes in two phases, specifically on M22 and M39. It

also presents the standardised approaches that have been adopted in Aniketos to provide design-time

and runtime support to secure service composition and analyses the security framework technologies,

which mainly focus on the support of security attributed in Web-based serviced-oriented systems.

The document is concluded with the principles of the baseline implementation of the Aniketos

platform at design-time and runtime, while summarising the guidelines for developing the Aniketos

platform and environment components, as a n attempt to provide a unified approach towards the

integrated view of the Aniketos platform support to design-time and runtime secure service

composition and deployment.

D5.1: ANIKETOS platform design and platform basis implementation 3

1 Introduction

1.1 Aniketos motivation and background

The Future Internet will provide an environment in which a diverse range of services are offered by a

diverse range of suppliers, and users are likely to unknowingly invoke underlying services in a

dynamic and ad hoc manner. Moving from today‘s static services, we will see service consumers that

transparently mix and match service components depending on service availability, quality, price and

security attributes. Thus, the applications end users may be composed of multiple services from many

different providers, and the end user may have little knowledge in the way of guarantee that a

particular service or service supplier will actually offer the security claimed.

Figure 1: Goal: establish and maintain security and trustworthiness in composite services

As depicted in Figure 1, Aniketos is about establishing and maintaining trustworthiness and secure

behaviour in a constantly changing service environment. The project aligns existing and develops new

technology, methods, tools and security services that support the design-time creation and run-time

dynamic behaviour of composite services, addressing service developers, service providers and service

end users.

Aniketos provides methods for analysing, solving, and sharing information on how new threats and

vulnerabilities can be mitigated. The project constructs a platform for creating and maintaining secure

and trusted composite services. Specifications, best practices, standards and certification work related

to security and trust of composite services are promoted for inclusion in European reference

architectures. Our approach to achieving trustworthiness and security of adaptive services takes

account of socio-technical aspects as well as basic technical issues.

1.2 Summary

This deliverable covers the need for a baseline prototypical implementation of the Aniketos platform

early in advance, in order to guide the development activities of the project and provide a common

background for the Consortium on the envisaged technologies that are necessary to build such a

platform.

RuntimeDesign-time

Service providersService developers

• Discovery and composition support

based on trustworthiness, security

properties and metrics

• Relevant threat awareness

Compose

Provide

• Trust and security

monitoring

• Threat notification

•Self-protection

•Trust evaluation

•Security validation

Service end users

Invoke

Component change

Change of threats
Change of environment

Adapt/recompose

• End user trust

assurance and

acceptance

• Identification of

responsible party

4 D5.1: ANIKETOS platform design and platform basis implementation

The deliverable takes advantage of the work performed in all technical work-packages and exploits the

project design aspects needed to make the specifications for the interfaces and the communication of

the Aniketos platform components with the environment components both at design-time and runtime.

The baseline implementation facilitates as a reference to the envisaged functionalities, which have to

be supported, as well as guidance to the technical partners on the way to plug their individual

components into the platform.

The deliverable provides the specifications of all the developed interfaces, based on which the

foreseen interactions between the Aniketos components are established, as well as the way to

interoperate with external platforms. The final outcome of this prototype is a baseline implementation

conforming to common standards and implementation approach, which will be exploited by the

Consortium to provide their work towards delivering an integrated platform close to project end.

1.3 Structure of this document

The document is structured as follows:

 Section 2 makes an overview of the Aniketos technological areas and research objectives, which

guide the development of the Aniketos platform, and summarises the system level functional and

non-functional requirements. Then, Section 2 refers to the Aniketos envisaged functionalities and

presents the architectural design aspects of the actual Aniketos platform implementation.

Moreover, this section elaborates on the methodological approach to develop the Aniketos

components and release the integrated Aniketos platform prototypes.

 Section 3 makes an overview of the existing state-of-the-art in the areas reflecting the Aniketos

developments. In that respect, it presents the standardised approaches that have been adopted in

Aniketos to provide design-time and runtime support to secure service composition. It analyses the

security framework technologies, which mainly focus on the support of security attributed in Web-

based serviced-oriented systems. Section 3, also, presents the communication technologies that are

adopted to support the interaction between the distributed Aniketos components, facilitating the

interaction with external platforms as well.

 Section 4 summarises the Aniketos platform and environment components, focusing on the

description of the interfaces and the methods, which have been designed and have been

implemented, as first prototypes in a baseline form, to offer a common realisation background on

how the Aniketos platform can work in real life scenarios, from an integrated perspective.

 Section 5 describes the design of the Aniketos Marketplace, which is being developed to store the

security specifications of the Aniketos compliant services and service compositions.

 Section 6 elaborates on the Aniketos baseline implementation; it distinguishes between the Design

Time Platform implementation, which facilitates the required functionalities for discovering

existing services, selecting service components, validating services, establishing contracts,

assembling service compositions and deploying services, and the Runtime Platform

implementation, which facilitates the required functionalities for monitoring service execution,

validating services, reacting to changes in service provisioning, recomposing services and

reconfiguring contracts.

 Section 7 summarises the scope of this deliverable and provides links to future work in WP5

 Section 8 summarises, as Annex to this document, the guidelines for developing the Aniketos

components towards a unified approach to facilitate the integrated view of the Aniketos platform

support to design-time and runtime secure service composition and deployment.

1.4 Relationships with other deliverables

The baseline implementation of the Aniketos platform, which is presented in this document, reflects

the work that has been performed in the first year of the project in all the technical work-packages

(WPs). The reference point for this document consists of the Aniketos Deliverable ―D1.2: First

D5.1: ANIKETOS platform design and platform basis implementation 5

Aniketos architecture and requirements specification‖, which presents the architectural aspects of the

whole project. In principle, D5.1 is affected by all the Aniketos deliverables, which are active in this

period in WP1-WP4, but we mainly refer to ―D2.1: Models and methodologies for embedding and

monitoring trust in services‖, ―D3.1: Design-time support techniques for secure composition and

adaptation‖ and ―D4.1: Methods and design for the response to changes and threats‖, which activities

ran in parallel to D5.1.

1.5 Contributors

ATC has shared the major effort in the preparation of this document, but all project partners with

effort in WP5 or mainly involved in WP1-WP4 (SINTEF, ESI, CNR, LJMU, THALES, ELSAG,

ATOS, SAP and ITALTEL) have significantly contributed mainly to the specification of the

components‘ interfaces and the baseline development of the Aniketos platform and environment

components, as well as the preparation of the design-time and runtime templates. It should be noted

that interactions and discussions with the rest of the Consortium partners was necessary to align the

activities in this deliverable with the relevant ones, performed in the technical WPs. To this end, the

partners, with effort allocated in the target WPs, acted as the contact points.

1.6 Acronyms and abbreviations

ASD Agile Software Development S&D Security and Dependability

CDDL
Common Development and Distribution

License
SAML

Security Assertion Markup

Language

CMM Contract Manager Module SCPM
Secure Composition Planner

Module

CSV

M

Composition Security Validation

Module
SDK Software Development Kit

CVS Concurrent Versions System SOA Service-Oriented Architecture

ESB Enterprise Service Bus SOAP Simple Object Access Protocol

GPL GNU General Public License SPDM
Security Property

Determination Module

IDE Integrated Development Environment SRF Serenity Runtime Framework

JDT Java Development Tools SSL Secure Sockets Layer

OAuth Open Authorization UDDI
Universal Description,

Discovery, and Integration

ORM Object Relational Mapping W3C World Wide Web Consortium

PDE Plug-in Development Environment WSDL
Web Services Description

Language

PDP Policy Decision Point
XACM

L

Extensible Access Control

Markup Language

PEP Policy Enforcement Point XKMS XML Key Management

PRRS
Platform for Runtime Reconfigurability

of Security
XML Extensible Mark-up Language

PVM Property Verification Module XRI Extensible Resource Identifier

RCP Rich Client Platform

REST Representational State Transfer

6 D5.1: ANIKETOS platform design and platform basis implementation

1.7 Change log

No change log entries.

D5.1: ANIKETOS platform design and platform basis implementation 7

2 Aniketos Platform Overview

2.1 Overview of the Aniketos Platform Objectives

Following the main objective of the Aniketos project to ―establish and maintain security and

trustworthiness in composite services‖ as shown in Figure 1, this section provides in detail the main

research and technological areas, which the Aniketos platform functionalities should span across.

The Aniketos platform stays upon the Environment systems, as it was described in D1.2 [1]. Service

composition, service runtime and service storage have been identified as the principal groups of

components, which facilitate the environment functionalities. Upon them, the Aniketos platform

stands as the overlay layer to support security and trustworthiness attributes, when designing,

implementing, deploying and running composite services. In that sense, the Aniketos objectives are

visualised in Figure 2.

Figure 2: The objectives of the Aniketos project

In more details, the project delivers the Aniketos platform, which targets to advance the state-of-the-

art in the area of service composition by creating and maintaining secure and trusted composite

services. Through the appropriate specification of methods and development of tools and services, the

Aniketos platform aims to support the whole service life cycle in service engineering, ranging from

service implementation, discovery and composition to service management, adaptation and

reconfiguration.

As future internet services can be dynamically composed or evolved, the Aniketos platform defines

trust models and security policies, through which the interested stakeholders can define, validate and

monitor trustworthiness and security properties. These properties can be used to overcome the

shortcomings in service engineering when dealing with security violation issues.

Security violations can occur when system and services are vulnerable to intruders, which may affect

the set security standards and the quality of experience received by the users. Towards this direction,

the Aniketos platform tries to address potential loss on service availability and end user trust by

efficiently analysing, solving and sharing information on how new threats and vulnerabilities can

affect service composition and can be mitigated, so that the composed services can be automatically

reconfigured to adapt the new conditions.

On top of that, the Aniketos platform adds a socio-technical perspective to the way that security and

trustworthiness are addressed in service engineering. Since service and service-based system target to

highly business-oriented environments, the respective processes, which are being supported through

the deployment of the appropriate composite services, are governed from both technical and social

aspects, which should be tackled together once security and trust are considered.

8 D5.1: ANIKETOS platform design and platform basis implementation

In parallel to the above main axis of the Aniketos platform objectives, the relevant design and

implementation activities target to the promotion and contribution to open European reference

architectures and specifications, best practices, standards and certification work related to security and

trust of composite services. Through the instantiation and deployment of the platform in real life

applications, the project aims to demonstrate and evaluate the practical usability of the platform and

investigate on real end user needs, acceptance and trust of new composite services in realistic case

studies representing highly relevant services critical and typical to the future European infrastructure.

2.2 System level Requirements

Based on the work performed in D1.2 [1] and the identification of system level functional and non-

functional requirements, this section presents the generic functionalities, which should lead the work

in WP5.

2.2.1 Functional Requirements

In Section 3 of D1.2 [1], a number of user level functional requirements have been identified for the

project life cycle. This list has been assessed to address and guide the work performed in the technical

WPs (WP1-WP5). On this Section, only those requirements which refer to the integrated platform are

considered, which are mapped to general functionality categories, as shown Table 1.

Table 1: Categorisation of functional requirements for the development of the Aniketos

Platform

Category Short Description Relevant Requirements

Resource

Processing

Analysis and process of

services, including security

and trust

S01A-3 Trustworthiness ranking

S22A-5
Marketplace allows service providers

to renegotiate trust

S30B-2 Aniketos infrastructure

S31A-5
Dynamic management of circle of

trust

S32A-1 Analyse federated services

S36A-1 Pay for trust determination

S14A-4 Rank services

Resource

Sharing

Notification and awareness of

service attributes

S36A-4 Advertisement on the platform

S50B-1 Distributed manipulation of trust

S01A-1 Publish trust properties

S04A-2 Upload specifications

S04A-3 Usage conditions

S05A-2 Trust awareness

S11B-2 Event logging

User Interaction Interaction with the end user

S11B-1 End user choosing

S18A-1 End user trust threshold

S20A-1 Interface for checking trustworthiness

S20A-2
Interface for informing about used

components

Community and

Training

Support

Administration and support for

exchanging knowledge about

Aniketos developments

S02B-1
Guidelines to composition with end

user involvement

S04A-1 Developer centre

S12A-1 Aniketos overview

S12A-2 Aniketos infrastructure

S12A-3 Aniketos supportive services

D5.1: ANIKETOS platform design and platform basis implementation 9

Category Short Description Relevant Requirements

S28A-2 Methodology for using Aniketos

S36A-2 Register for Aniketos support

S38A-1 Support service developers

Quality Metrics
Reflecting non-functional

platform characteristics

S23B-1 Predicted computation needs

S23B-2
Required response time for selecting

algorithm

2.2.2 Non-functional Requirements

This section analyses the non-functional requirements for developing the Aniketos platform

components (no special focus is given to address non-functional requirements through the

implementation of the environment components).

The Aniketos platform should satisfy a set of non-functional requirements, which will ensure the

normal operation of the system and the provision of a proper environment for the desired system level

functionalities, which were analysed in the previous section. The non-functional requirements are

depicted on Table 2.

Table 2: Non-functional requirements for the development of the Aniketos Platform

ID Non-functional Requirement Description

NF1. Persistence The system should provide back-up options for the

contents of the services description and their associated

profiles. All the repositories should be based on

implementation able to tackle persistence problems,

which ensure that data is maintained in case of a node

failure.

NF2. Portability The developed modules should target to be adapted to

multiple end user devices, thus the relevant

technologies to be as device agnostic as possible.

NF3. Performance This requirement has to do with QoS characteristics,

such as the response time of an Aniketos compliant

service request or the needed resource utilisation

schema to support the Aniketos functionalities

NF4. Scalability/Expandability The platform should be able to handle the increasing

size of services and the simultaneous users accessing

the supported functionalities, as well as being open to

new ones.

NF5. Availability The platform should ensure that users have always

access to data and associated assets 24/7 with 99.9%

reliability. This requirement entails stability in the

presence of localized failure.

NF6. Usability The platform should have an attractive and intuitive

User Interface. All the UI level functionalities should be

validated on their usability through user-centric

assessment and observation.

NF7. Interoperability/conformance with

standards

The platform should conform to standards when

developing the individual components and their

interfaces, in order for the system to be maintainable

and to be able to interface with existing solutions or be

extended with future functionalities.

10 D5.1: ANIKETOS platform design and platform basis implementation

ID Non-functional Requirement Description

NF8. Security The platform should support security mechanisms,

which cater for the resources identification and the

trusted provision of services in a SOA-based paradigm

2.3 The Aniketos Architecture

In order to accomplish the defined goals and objectives, as they were also analysed in Section 2.1, the

Aniketos platform is designed so as to address security and trustworthiness in service composition in a

three mode manner; design-time support, runtime support and community support. Figure 3 makes an

overview of the Aniketos platform, as it has already been introduced in [2].

Figure 3: Overview of the Aniketos Platform

At design time, the Aniketos platform consists of methodologies and tools that define and evaluate

trustworthiness and risk-based security properties over and between external service components.

This phase mainly involves a principal platform role, which is the service developer. The main

functionalities, which are offered to the service developer, are summarised in the following:

 Perform service discovery and composition based on security properties and metrics, not just

functional descriptors

 Select service providers and components by trustworthiness aspects for service composition

 Get informed about known threats and vulnerabilities

At runtime, the Aniketos platform is exploited to monitor and evaluate the trustworthiness and

security violations of service components, also considering contextual information, such as any change

in operation conditions and users‘ behaviour.

This phase mainly involves a principal platform role, which is the service provider. The main

functionalities, which are offered to the service provider, are summarised in the following:

The ANIKETOS platform

Design-time support Runtime support

Community support

Trustworthiness monitoring and

evaluation

Runtime validation of secure service

behaviour

Composite service adaptation and

recompostion

Trustworthiness definition and

evaluation

Security property definition and

evaluation

Composite service analysis and

preparation

ANIKETOS market place

Threat analysis and notification

End user trust and assurance

Reference architecture and patterns

D5.1: ANIKETOS platform design and platform basis implementation 11

 Allow for proactive increase in trustworthiness by asking for more credentials

 Receive emerging threat notifications on potential damages in case of attack

 Assess the potentials for dynamic adaptation or recomposition of the service

In the community support mode, the Aniketos platform acts as the repository for providing all the

necessary material to the interested stakeholders, including example services, demonstration material,

tutorials, development patterns and guidelines. All the potential Aniketos platform user roles are

involved in the community support mode, as follows:

Service developers:

 Find the Aniketos reference architecture and design patterns

 Provide threat analysis to guide design-time composition based security goals or service

components included in the composite service

Service Providers:

 Provide notification to trigger runtime adaptation/recomposition based security goals or service

components included in the composite service

The community support enables a certification programme that allows single-point-of-trust, enables

responsibility handling and assures the end user in an easy and understandable way how he/she should

relate to this service. The Aniketos marketplace offers a way of requesting/offering service

components with defined security and trustworthiness properties, facilitating post-project continuation

and development through revenue income.

2.4 Layered-based architectural design

Based on the specifications of D1.2 [1], this section maps the logical view of the Aniketos platform

and environment components to a conceptual representation, which allocates the current

implementation to a layered architecture, which is an instantiation of a Service-Oriented Architecture

(SOA)-based system reference architecture [3][4][5].

SOA is widely used as an architectural pattern for contemporary systems development and integration.

Its main principle is the separation of functionality into different units which interoperate with each

other over a network. These units are usually developed as Web services and are reused by the system

in order to achieve the desired functionality. A 'Web service' is defined by the World Wide Web

Consortium (W3C), as "a software system designed to support interoperable machine-to-machine

interaction over a network" [6]. The Web services can interoperate by exchanging data with each other

directly, or by being coordinated by a central mechanism of the system. In general, SOA focuses on

loose coupling of services in terms of used technology and programming language. By using common

standards, web services have little or no dependency on each other, a fact that offers flexibility and

scalability to the system. SOA is considered to be the evolution of the distributed systems architecture

approach.

12 D5.1: ANIKETOS platform design and platform basis implementation

Figure 4: Components in the Aniketos platform and in the environment

Figure 4 makes an overview of the components in Aniketos platform and the environment, as they

have been identified in D1.2 [1]. This view can be conceptually transformed into the layered-based

representation of the Aniketos architectural design, which is shown in Figure 5.

In this layered structure, the top layer consists of the Interaction Layer, which enables the

communication with the target end users. The components placed there offer a graphical

representation of the tools to enable the users to interact with the rest of the Aniketos platform and

environment components, both at design and runtime. At the same level, we could include the web

services exposed externally by Aniketos to be consumed by other systems, platforms, tools, or devices.

 cmp Components

Aniketos platform

Socio-technical

Security Modelling tool

Env ironment

Serv ice

composition

framework

Monitor

trustworthiness

module

Contract negotiation

module

Security v erification

module

Trustworthiness

prediction module

Serv ice runtime

env ironment

Security property

determination

module

Security policy

monitoring module

Serv ice

recomposition

mechanism

Serv ice adaptation

mechanism

Notification module

Threat repository

module

Serv ice threat

monitoring module

Threat response

recommendation

module

Community support

module

Marketplace

module

Training material

module

Model

transformation

module

Serv ice

specification/planning

mechanism

Serv ice discov ery

mechanism

Serv ice execution

mechanism

Serv ice registry

Serv ice v alidation

mechanism

Aniketos compliant

serv ice

Security monitoring

module

Identity management

mechanism

Context sensor

Serv ice client

platform

Secure composition

planner module

Trust and security

characteristics

Change of threat level

Change of

security

properties

Binding:

Threat-Service

Contract requirements

used during

uses

uses

Lookup

Change of

trustworthiness

Contract

bound

using

Model

Registered in

D5.1: ANIKETOS platform design and platform basis implementation 13

Furthermore, all the resources exposed via HTTP protocol by the system to enable the interconnection

of the components, ranging from RESTful and/or SOAP web services, can be placed here as well.

Figure 5: A layer-based conceptual representation of the Aniketos architectural design

At a second level, the Business Logic Layer hosts the components responsible for the business logic of

the platform. More precisely, this layer hosts the components dealing with the analysis of security

properties and trustworthiness in secure service composition, the monitoring of threats and the

assessment of vulnerabilities. All of the Aniketos platform and environment components maintain at

least a part exposing some kind of business logic.

At a third level, the Data Access Layer contains all the components, which are responsible for

providing data access functionalities to the upper layer components. These objects encapsulate

complexity of the data source models, including the service specifications, the threat definition part,

the supporting documentation and training material, and offering a simplified facade to be used

directly by the consumer components.

The following should be clarified that the internal structure of each component maintains software

blocks, which may refer to more than one layer. For example, the Marketplace component exposes an

interaction layer module, which enables end user to search for service specifications, including

specific security characteristics. On the other hand, the socio-technical security modelling tool offers

an interface for the end users to specify security assertions in service compositions, but it also

maintains a business logic behind, which refers to the association model actors to certain notations.

For simplicity reasons, Figure 5 only allocates the components only to that layer, which seems to be

closer to the main responsibility of each component.

With respect to Figure 4, Figure 5 makes the following grouping of components (which is close to the

actual implementation):

 The Trustworthiness Component includes the functionalities of Trustworthiness Prediction and

Trustworthiness Monitoring;

Socio-technical

security modelling tool

Model transformation

module

Trustworthiness

Component

Verification

Component

Security property

determination module

Secure composition

planner module

Security policy

monitoring module

Threat response

recommendation

module

Service threat

monitoring module

Notification module

Community support

module

Threat repository

module
Marketplace

Service composition

framework

Training material

module

Service runtime

environment

Identity management

service

Interaction Layer

Data Access Layer

Business Logic

 Layer

14 D5.1: ANIKETOS platform design and platform basis implementation

 The Verification Component encapsulates the functionalities of the Contract Manager Module, the

Property Verification Module and the Composition Security Validation Module;

 The Marketplace maintains a service discovery mechanism, which facilitates accessing the

relevant Service Registry;

 The Service Composition Framework includes service specification/ planning and service

validation mechanisms;

 At the time being, the Service Runtime Environment incorporates the mechanisms for service

execution, recomposition, adaptation and monitoring.

2.5 Development Methodology

This section describes the development methodology, which has been adopted in Aniketos to ensure

that the project developments are produced on time and are compliant to the quality standards set in

the project.

A number of available software design methodologies have to be examined [7], in order to come up

with this methodology which better fits the Aniketos objectives. All of the proposed methodologies in

the literature expose specific benefits and drawbacks and target to different level of detail the design

and specification of the appropriate architecture to guide the software development.

For the sake of Aniketos, the project follows the Agile Software Development (ASD) methodology,

which is a group of software development methodologies based on iterative and incremental

development, where requirements and solutions evolve through collaboration between self-organizing,

cross-functional teams.

There are many specific ASD methods. Most of them promote development, teamwork, collaboration,

and process adaptability throughout the life-cycle of the project. ASD goes beyond traditional software

development processes and exploits an evolutionary method that is an iterative and incremental

approach to software development. Thus, the requirements and design phases are iteratively met with

the development phase to incrementally produce system software releases, which can be assessed over

the suitability, the maturity and the immediate business value (through the envisaged piloting phase).

On top of them, ASD foresees an intense testing phase, in which the unit testing is achieved from the

developer‘s perspective and the acceptance testing is conducted from the customer‘s perspective.

Figure 6: The basic steps for delivering the Aniketos platform, based on the agile software

development methodology

Following the general project time plan, which identifies the interactions of WP5 with other WPs, the

ASD leads to a time plan for WP5 as depicted in Figure 6. ASD states that ―the best architectures,

requirements, and designs emerge from self-organising teams‖, while ―working software is the

primary measure of progress‖. Thus, the Aniketos software methodology approaches the end user

requirements iteratively by frequently delivering working software prototypes. These prototypes

M18 M42M6 M30M1

D5.1 D5.2 D5.3

ü

ü Initial Design
ü Baseline

implementati
on

ü

ü Integration of basic
functionalities for both
design and run-time
support of security
aspects in service
composition

ü Security policies and
assertions

ü

ü Support of design and run-time trustworthiness in
service composition

ü Feedback from real life scenarios usage
ü Report on the integrated platform manual

Intermediate
Release

Intermediate
Release

Intermediate
Release

D5.1: ANIKETOS platform design and platform basis implementation 15

enable the project development and business teams to work together and maximise the quality of the

produced output.

ASD, which bears similarities with the rapid application prototyping (RAP) methodology [8], is

suitable for the Aniketos development strategy, mainly because:

 A parallel process between requirements gathering from the end users and developing of the

respective software environment can be followed, leading to business oriented people to actively

participate in the specification of use cases and the evaluation of the system developments and

provide valuable feedback in an iterative way;

 The work on individual research areas is split among small groups comprising the separate WP

development teams;

 As an IP research project, Aniketos can be benefit of frequent releases to align the work done

among the individual teams;

 The producing releases can be exchanged among senior technical teams and business oriented

groups to evaluate the effectiveness of the platform in real business situations.

In order to ensure compliance of all developments to a common strategy, a continuous and iterative

interaction of WP5 with the core development phase and the evaluation and assessment phase (through

the deployment of the appropriate case studies) is adopted, as shown in Figure 7, while the following

procedures have been defined:

 WP5 defines the way that the Aniketos platform components are being implemented, through the

specification of templates for delivering the design and run time functionalities;

 WP1-WP4 implementation is guided by these templates, which provide their interfaces based on

the envisaged functionalities and their high-level specifications in D1.2 [1], detailed respectively

in D2.1 [9], D3.1 [10] and D4.1 [11];

 WP5 wraps the technologies developed in WP1-WP4 and delivers prototypes of the Aniketos

platform, which can interoperate with the environment components and offer certain

functionalities at design and run time;

 The integrated package is exploited by the piloting activities to deploy real life scenarios (case

studies) on the use of Aniketos;

 The deployed case studies are assessed on the usability of the Aniketos platform to express real

business needs and advance current business practices in the selected domains.

Figure 7: Continuous interaction of WP5 with the development and assessment phases

WP1

Developments
WP2

Developments

WP3

Developments

WP4

Developments

WP5 Integration

WP6 Piloting

WP7 Evaluation

16 D5.1: ANIKETOS platform design and platform basis implementation

3 Analysis of technological background

3.1 Introduction

This section presents the background which is relevant to the developments of the Aniketos platform.

As previously mentioned in this document and recalling the project research and scientific objectives

as depicted in Figure 2, the Aniketos development targets to support security and trustworthiness in

service composition both at design time and runtime. As such, the technologies, which are deemed

necessary for doing so span across the design time specification of composite services, the analysis of

existing security mechanisms and the runtime deployment and management of composite services.

More specifically, the remaining of this section is split as follows:

 It adopts Eclipse as the Software Development Kit (SDK) and presents the Eclipse plug-in

mechanism for supporting the service modelling and composition at design time.

 It presents the main Web service composition standard languages which are core to Aniketos

secure composition concepts.

 It analyses the security framework technologies giving emphasis on the security specifications for

Web-based systems.

 It presents the communication technologies for enabling the remote Aniketos platform

components to interoperate with each other and with external environment components and other

third party platforms.

 It focuses on the technologies for the runtime support of security and trustworthiness in service

composition.

 It elaborates on the technologies for the data access layer, considering persistency and data storage

functionalities.

It should be noted that the analysis of the Aniketos-related technologies in the next paragraphs of this

Section 3 is based on the respective bibliography, which is referred in line with text. Where

appropriate, the original information has been reworked to fit the needs of the Aniketos project. In that

respect, the presentation of the Aniketos relevant technologies in Section 3 is not an intellectual

property of the Aniketos Consortium, but belonging to the corresponding references.

3.2 Development of the Aniketos Platform

3.2.1 Eclipse Plug-in Mechanism

As per [12], Eclipse employs plug-ins in order to provide all of its functionality on top of (and

including) the runtime system, in contrast to some other applications where functionality is typically

hard coded. The runtime system of Eclipse is based on Equinox [13], an OSGi standard compliant

implementation.

This plug-in mechanism is a lightweight software framework. In addition to allowing Eclipse to be

extended using other programming languages, such as C and Python, the plug-in framework allows

Eclipse to work with typesetting languages like LaTeX, networking applications such as telnet, and

database management systems. The plug-in architecture supports writing any desired extension to the

environment, such as for configuration management. Java and Concurrent Versions System (CVS)

support is provided in the Eclipse SDK, with Subversion support provided by third-party plug-ins.

With the exception of a small run-time kernel, everything in Eclipse is a plug-in. This means that

every developed plug-in integrates with Eclipse in exactly the same way as other plug-ins; in this

respect, all features are "created equal". Eclipse provides plug-ins for a wide variety of features, some

of which are through third parties using both free and commercial models. Examples of plug-ins

D5.1: ANIKETOS platform design and platform basis implementation 17

include a UML plug-in for Sequence and other UML diagrams, a plug-in for Database Explorer, and

many others.

Eclipse is an open platform [14], i.e. it is designed to be easily extensible by third parties. Around the

Eclipse SDK new products and tools (plug-ins) can be created, as shown on the Eclipse plug-in

architecture in Figure 8. A plug-in is nothing but another java program, which extends the

functionality of Eclipse in some way. Each Eclipse plug-in can either consume services provided by

other plug-in or can extend its functionality to be consumed by other plug-ins. The plug-ins are

dynamically loaded by Eclipse at run time on demand basis.

Figure 8: The Eclipse plug-in architecture (please refer to [14])

Figure 9: The Eclipse plug-in layers (please refer to [14])

Eclipse SDK consists of the following layers, as shown in Figure 9:

18 D5.1: ANIKETOS platform design and platform basis implementation

 Rich Client Platform (RCP): On the bottom is RCP which provides the architecture and

framework to build any rich client application.

 Integrated Development Environment (IDE): It is a tools platform and a rich client application

itself. We can build various form of tooling by using IDE for example Database tooling.

 Java Development Tools (JDT): It is a complete java IDE and a platform in itself.

 Plug-in Development Environment (PDE): It provides all tools necessary to develop plug-ins and

RCP applications.

All the layers in eclipse SDK are made up of plug-ins. Except from a small kernel, almost all of the

functionality of eclipse is located in different plug-ins.

A plug-in can be delivered as a jar file. A plug-in is self-contained bundle in a sense that it contains

the code and resources that it needs to run: code, image files, resource bundles etc. A plug-in is self-

describing by means of describing which it is and what it contributes to the world. It also declares

what it requires from the world.

3.3 Web service composition standard languages

Web service composition can be viewed in a process-oriented perspective, so a language to define how

the web services have to be composed into business processes is needed.

There are two ways the services can be composed, namely orchestration or choreography. Here we

will focus on orchestration, in which a central process invokes operations to be performed by the web

services involved and coordinates the execution of the operations. The central process is a web

services itself and is available through interfaces to clients that want to consume the new composite

service. The orchestration approach is shown in Figure 10.

Figure 10: Service composition: orchestration approach (please refer to [15])

In process-oriented approach, service composition is described by the means of workflow languages

and technologies. The composition workflow defines the operations to invoke and define the execution

order of the invocations.

We will consider the following workflow languages, considered as de facto standards for Web Service

Composition, namely:

 Business Process Modelling Notation (BPMN), which is a graphical representation used to model

the processes within a workflow;

 Business Process Execution Language for Web Services (BPEL4WS, also known as BPEL); it is

an XML-based service composition languages for building, specifying and executing business

processes for web services composition

3.3.1 Business Process Modelling Notation

As said, service orchestration needs to define the sequence of steps within a business process,

including conditions and exceptions, and then creates a central controller to implement the sequence.

In a SOA environment, the individual steps of the sequence are implemented by operations on web

services. The sequence can be implemented with a variety of different techniques. For complex

orchestrations, a tool to create a visual model of the sequence can be used. From the visual model it

should be possible to generate the code that executes that sequence, typically within a dedicated run-

D5.1: ANIKETOS platform design and platform basis implementation 19

time environment. This is the typical BPM approach [16]. BPMN is today‘s standards for

orchestration.

BPMN was created by the Business Process Management Initiative (BPMI) and has been designed

specifically with web services in mind. Its first goal was to provide a notation for process modelling

that was readily understandable by all business users. Business users range from the business analysts

that create the initial drafts of the processes to the technical developers responsible for implementing

the technology that will perform those processes.

BPMN is a flow chart based notation for defining business processes. The modelling of the business

process aims at capturing the ordered sequence of business activities, i.e. the workflow. BPMN

proposes language constructs that facilitate the modelling of workflows at a high level.

BPMN is well suited for modelling web services based business processes and is closely related to

service composition languages like BPEL, described in the next paragraph. It can support different

methodologies as well as different modelling goals (e.g., orchestration and choreography).

The modelling in BPMN is done by expressing business processes through the so called business

diagrams. A business process diagram is based on flowchart techniques, so it‘s an intuitive notation

easily understandable by technical as well as business users.

A business process diagram is a simple diagram built up by using a small set of graphical elements.

The core set of graphical elements can be grouped into four main categories [17]:

 Flow objects: events, activities and gateways;

 Connecting objects: sequence flow, message flow and association

 Swimlanes: pool and lane

 Artifacts: data object, group and annotation

As an example of the process model, Figure 11 shows a BPMN model for a travel booking process.

The process begins with the receipt of a request for a travel booking. After a check on the credit card,

reservations are made for a flight, a hotel and a car. The car reservation may take more than one

attempt before it is successful. After all three reservations are confirmed, a reply is sent.

Figure 11: BPMN Diagram for travel booking process (please refer to [18])

20 D5.1: ANIKETOS platform design and platform basis implementation

BPMN diagrams, as the example in Figure 11, can be used within many methodologies and for many

purposes, from high-level descriptive modelling to detailed modelling intended for process execution.

When one of the purposes of the process model is to define process execution and create the BPEL file

for this purpose, then the process model will have to be developed with a modelling tool designed for

this purpose. The diagram itself will not display all the information required to create a valid BPEL

file.

A BPMN diagram is intended to display the basic structure and flow of activities and data within a

business process. Therefore, a modelling tool is necessary to capture the additional information about

the process that is necessary to create an executable BPEL file. This means that a Business Process

developed by a business analyst can be directly applied to a BPM engine instead of translating it into

other languages.

3.3.2 Business Process Execution Language

The Business Process Execution Language (BPEL), standardized by OASIS in 2004 [19], is one of the

most important technologies of SOA. It consists in an XML-based language for building, specifying

and executing business processes for web services composition and orchestration. Through BPEL, a

programmer can describes a business process in an executable or abstract way.

 An executable business process specifies the exact details of a business process and can be

executed by an orchestration engine. BPEL is usually used to specify this kind of business process.

 An abstract business process does not include the internal details of the process flow and is not

intended to be executed. It is rarely used and it is usually defined to describe the behaviour of a

service without knowing in which business process it will take part.

One of BPEL's primary roles is to model Web service interactions on a distributed system by defining

a new web service which is the composition of a set of existing services. This new composed web

service has a proper WSDL interface that provides a set of operations like any other web services.

Only through these operations, it is possible to invoke the executable business process.

BPEL basically consists of a set of primitive and structure activities.

The first ones are used for common tasks such as:

 Invoking other web services : <invoke>

 Waiting for a client to invoke the business process: <receive>

 Manipulating data variable: <assign>

 Indicating faults and exceptions: <throw>

 Generating a response: <reply>

 Waiting for some time: <wait>

 Terminating the process: <terminate>

The structure activities are the combination of these primitive activities. They enable the possibility to

build more complex algorithms and so to specify the steps of the business process.

 <sequence>: to define a set of activities that will be invoked in an ordered sequence

 <while>: to define loops, etc.

 <flow>: to define a set of activities that will be invoked in parallel

 <switch>: Case-switch construct for implementing branches

 <pick>: to select one or several alternative paths

In Figure 12, an example of a BPEL process is shown. It is composed only by a sequence of three

activities.

In order to be executed a BPEL process requires a BPEL engine, which also provides the possibility to

control the process instances that are executing. Some of the most popular BPEL engines based on

Java EE are Apache ODE, ActiveVOS, jBPM, Oracle BPEL Process Manager and OW2 Orchestra.

D5.1: ANIKETOS platform design and platform basis implementation 21

BPEL is often associated with BPMN, which also seeks to streamline the BPM modelling process.

Unlike BPEL, BPMN has a visual component that makes it easier to understand for business people

not familiar with programming.

22 D5.1: ANIKETOS platform design and platform basis implementation

Figure 12: Example of a BPEL process (please refer to [20])

D5.1: ANIKETOS platform design and platform basis implementation 23

3.4 Security Framework Technologies

3.4.1 Introduction

As per [21], ―the Web services platform is defined through a number of industry standards that are

supported throughout the vendor community. First-generation technology platforms comprise the

following core open technologies and specifications‖:

 Web Services Description Language (WSDL)

 XML Schema Definition Language (XSD)

 SOAP (formerly the Simple Object Access Protocol)

 UDDI (Universal Description, Discovery, and Integration) [22]

 WS-I Basic Profile

These specifications have been around for some time and have been adopted across the IT industry.

However, the platform they collectively represent seriously lacks several of the quality of service

features required to deliver mission critical, enterprise-level production functionality.

(a - please refer to [23])

24 D5.1: ANIKETOS platform design and platform basis implementation

(b - please refer to [23])

Figure 13: Technologies and specifications for Web Service – based platforms: a) First-

Generation, b) Second Generation (please refer to [24])

Some of the greatest quality of service-related gaps in this first-generation platform lie on the areas of

message-level security, cross-service transactions, and reliable messaging. These, along with many

other extensions, are being provided by a second-generation Web services platform(s), consisting of a

set of Web services technologies and specifications which will be briefly described in the next section.

3.4.2 Overview of security specifications

This section makes an overview of the security specifications and relevant standards, as they are

exhaustively presented in [25]. For the sake of completeness of this document, these aspects are

reproduced here, based on the analysis given in [25]. Once again, the information provided in this

section is not an intellectual property of the Aniketos Consortium, but belonging to the corresponding

reference [25].

As the complexity and sophistication of application and business logic within Web services increases,

so does the risk associated with putting business intelligence ―out there‖. The purpose of this section is

to create an awareness of the general aspects of Web services security. While the security framework

D5.1: ANIKETOS platform design and platform basis implementation 25

established by many specifications that provide standards for XML and Web services is relatively

new, most of the principles behind these standards are not. The fundamental characteristics of a

primitive security architecture are just as relevant to service-oriented environments as they are to

traditional distributed applications.

The following Table 3 shows some of the most important Web services standards and XML security

specifications, organized by how they relate to the common security requirements of identification,

authentication, authorization, confidentiality and integrity in the realm of service-oriented

architectures.

Table 3: Web services standards and XML security specifications

Identification

The recipient of a message needs to be able to

identify the sender.

WS-Security Framework

Extensible Access Control Markup Language

(XACML)

Extensible Rights Markup Language (XrML)

XML Key Management (XKMS)

Security Assertion Markup Language (SAML)

OpenID

OAuth

Authentication

The recipient of a message needs to verify that

the claimed identity of the sender is valid.

Authorisation

The recipient of a message needs to determine

the level of the sender‘s security clearance.

This can relate to which operations or which

data the sender is granted access to.

Confidentiality

The contents of a message cannot be viewed

while in transit, except by authorized services.

WS-Security Framework

XML-Encryption

Secure Sockets Layer (SSL)

Integrity

A message remains unaltered during

transmission, up until actual delivery.

WS-Security Framework

XML-Digital Signatures

These and other specifications form the building blocks that can be assembled to create service-

oriented security models. In the following, a brief overview of each specification is given.

XML Key Management Specification (XKMS)

XML Key Management establishes standard means of obtaining and managing public keys. Even

though XKMS is compatible with a number of public key infrastructure (PKI) technologies, it does not

require any of them, and removes the need for integrating proprietary PKI products.

The XML Key Management specification consists of two complementary standards: the XML Key

Registration Service and the XML Key Information Service specifications. Together, they allow for

the integration of a number of security technologies, including digital signatures, certificates, and

revocation status checking. For instance, XKMS can enlist XML-Digital Signatures to protect the

integrity of XML document content.

Extensible Access Control Markup Language (XACML) and Extensible Rights Markup

Language (XrML)

The XACML specification consists of two related vocabularies: one for access control and one that

defines a vocabulary for request and response exchanges. Through these languages, the creation of

fine-grained security policies is possible.

26 D5.1: ANIKETOS platform design and platform basis implementation

It is important not to confuse XACML with the WS-Policy specification, which also can be used to

define policies, and is considered part of the WS-Security framework. The main conceptual difference

between these two languages is that while XACML is based on a well-defined model that provides a

formal representation of the access control security policy and its working, WS-Policy has been

developed without taking into consideration this modelling phase [26]. An additional specification that

may be relevant to certain environment, if someone transports files with different digital formats, is

the Extensible Rights Markup Language (XrML).

Security Assertion Markup Language and OpenID

Single sign-on technologies address an administration problem that has emerged when an enterprise

environment consists of applications that independently control user access lists. If a single sign-on

system is not already in place, adding Web services can contribute to the decentralized proliferation of

user credentials. By opening up new integration channels, more users may be required to access

applications. This can lead to an ever-increasing maintenance effort.

Popular technologies for single sign-on include the Security Assertion Markup Language (SAML)

[27] and the OpenID [28]. They provide mechanisms for both authentication and authorization

processes. Both request and response message formats are defined to facilitate the transmission of

necessary credentials within a Web service activity.

SAML and OpenID are decentralized standards, meaning that are not controlled by any website or

service provider.

Oauth (Open Authorization)

OAuth (Open Authorization) is defined in [29] as an open standard for authorization. OAuth allows

users to share their private resources stored on one site with another site without having to hand out

their credentials, typically username and password. As per [29], ―OAuth allows users to hand out

tokens instead of credentials to their data hosted by a given service provider. Each token grants access

to a specific site for specific resources and for a defined duration. This allows a user to grant a third

party site access to their information stored with another service provider, without sharing their access

permissions or the full extent of their data.‖

XML-Encryption and XML-Digital Signatures

These two key specifications protect the actual content within XML documents.

The XML-Encryption [30] specification contains a standard model for encrypting both binary and

textual data, as well as a means of communicating information essential for recipients to decrypt the

contents of received messages.

XML-Digital Signatures establishes a standardized format for representing digital signature data.

Digital signatures establish credibility within a message, as they assure the recipient that the message

was in fact transmitted by the expected partner service. It also provides a means of communicating

that the message contents were not altered in transit, as well as support for standard non-repudiation.

As with the XML-Encryption standard, XML-Digital Signature also supports binary and textual data.

Secure Sockets Layer

The Secure Sockets Layer (SSL) technology enables transport-level security. Accessing a secured site

using a browser is a fairly safe procedure, when communication is encrypted. That is because the

connection is exclusive to the client browser and the Web server that acts as the gateway to internally

hosted application logic.

As per [25], once a Web service transmits a message it does not always know where that message will

be travelling to, and how it will be processed before it reaches its intended destination. A number of

intermediary services may be involved in the message path, and a transport-level security technology

will protect the privacy of the message contents only while it is being transmitted between these

intermediaries (see Figure 14).

D5.1: ANIKETOS platform design and platform basis implementation 27

In other words, SSL cannot protect a message during the time that it is being processed by an

intermediary service. This does not make SSL unnecessary within a service-oriented communications

framework, it only limits its role. A number of additional technologies (discussed throughout this

section) are required to facilitate the message-level security required for end-to-end protection.

Figure 14: SSL protection across multiple services (please refer to [25])

WS-Security framework

This important document establishes fundamental and conceptual security standards, and also defines

a set of supplementary specifications that collectively form a Web service-centric security framework.

WS-Security (also known as the Web Services Security Language) can be used to bridge gaps between

disparate security models, but also goes beyond traditional transport-level security to provide a

standard end-to-end security model for SOAP messages.

Because service-oriented environments sometimes require that intermediaries be involved with the

delivery of messages, an end-to-end security model is needed, so that the contents of SOAP messages

remain protected throughout a message path. This is different from the traditional point-to-point

model, for which transport-level security has generally been sufficient. In fact, you could view a

message path involving intermediaries as a series of point-to-point connections.

28 D5.1: ANIKETOS platform design and platform basis implementation

Figure 15: WS-Security Framework concept (please refer to [25])

To secure a message path from end-to-end, WS-Security implements security measures through the

use of SOAP header blocks that travel with the message.

Although the WS-Security framework complements a number of the specifications described earlier in

this section, it is supported further by a series of supplementary standards.

Table 4: WS-Security Framework Standards ([25])

WS-Security Framework

WS-Policy WS-Trust WS-Privacy

WS-SecureConversation WS-Federation WS-Authorization

3.4.3 OpenID and OAuth

OpenID promotes an open source and decentralized system for identity management purposes,

especially intended for federated authentication. Through OpenId, a user identifier is converted to an

URL or Extensible Resource Identifier (XRI), which is a scheme and resolution protocol for Internet,

specifically designed for digital identity in a cross-domain SSO environment, provided by an Identity

Provider. In this way, users can be authenticated by any server that supports this specification, without

creating a new user account. User must only select a suitable identity provider.

A user accepts an identity assertion from any identity provider (although clients are free to whitelist or

blacklist providers). All that OpenID is supposed to do is to allow an OpenID provider to prove that

the user is the delegated to make use of specific resources.

OpenID Scenario

 User wants to access his account on flickr.com.;

 Flickr .com - the “Relying Party” in OpenID speech, asks the user for his OpenID, an URL or

XRI depending on OpenID version used;

 User enters his OpenID. The Identity Provider and the relying party establish a link (via a shared

key), used for signing the messages between them. By using this link, the need for verifying each

message‘s signature is removed;

D5.1: ANIKETOS platform design and platform basis implementation 29

 Flickr.com redirects the user to his OpenID provider. After transforming this ID into a canonical

URL.The relying party then begins a search process to find the OP Endpoint URL, which is

required to perform the authentication process;

 User authenticates himself to the OpenID provider. The Identity Provider verifies the user is

allowed to start an authentication process against that provider;

 OpenID provider redirects the user back to flicker.com, setting the result of the authentication

process;

 Flickr.com allows the user to access his account. The relying party verifies the information

provided by the Identity Provider.

OAuth [31] is intended for delegated authorisation, to grant access to functionality, data access, etc…

without having to deal with the original authentication provider. A user registers with an identity

provider, which provides authorization tokens, which it will accept to perform actions on the user's

behalf. Meaning the user is authorizing a third-party service access its personal data, without giving

out a password. OAuth ―sessions‖ generally live longer than ―user sessions‖.

OAuth is a service that is complementary to, but distinct from OpenID. The process of the OAuth and

the relevant steps are seen in Figure 16.

As an example: Flickr uses OAuth to allow third-party services to post and edit a person‘s picture on

their behalf, without them having to give out their flicker username and password.

Google [32] provides a paradigm on how to use and practise with the OAuth authorisation ―dance‖

scenario.

OAuth Scenario

 User is on flickr.com and wants to import his contacts from gmail.com;

 Flickr.com - the ―Consumer‖ in OAuth speech, redirects the user to gmail.com - the ―Service

Provider‖;

 User authenticates himself to gmail.com (which can happen by using OpenID as we described

previously);

 gmail.com asks the user whether he wants to authorise flickr.com to access his contacts;

 User makes his choice;

 gmail.com redirects the user back to flickr.com.;

 Flickr.com retrieves the contacts from gmail.com.;

 Flickr.com informs the user that the import was successful.

30 D5.1: ANIKETOS platform design and platform basis implementation

Figure 16: The OAuth Authorisation process steps (please refer to [31])

3.4.4 SAML2 & XACML

A critical component for the implementation of federated identity is the SAML, an XML framework

for exchanging data. The Liberty Alliance Project builds on SAML to deliver more extensive

federated identity.

On the other hand, OASIS has provided XACML that allows the designer to acquire this structure in

an easier way.

Both specifications apply to the same domain: authentication, authorisation and access control domain.

Although they belong to the same domain, they address different problems. SAML focuses on

providing a mechanism for making authentication and authorisation assertions and communicating

them between cooperating parties, whereas XACML focuses on providing the mechanism for arriving

at those authorization decisions. In addition to process the authorization requests, XACML also

defines the way for creating the complete infrastructure of rules, policies, and policy sets to arrive at

the authorization decisions.

For example, imagine a scenario where a subject makes a request to access a resource. The Policy

Enforcement Point (PEP) checks with the Policy Decision Point (PDP) before making an access

decision. Generation of the request to access the resource and the subsequent response granting or

D5.1: ANIKETOS platform design and platform basis implementation 31

denying access falls under the domain of SAML. XACML addresses the exchange of policy decisions

between the PEP and the PDP.

3.5 Communication Technologies

The communication infrastructure of the Aniketos Platform will follow the design principles of the

Service Oriented Architecture. The case studies that will be examined during the projects lifetime

involve a SOA-based system, i.e. a system that packages functionality as a suite of interoperable

services, which can be used within multiple, separate systems from several business domains.

A SOA system can be implemented with a number of different technologies. In this section, we

examine how an Enterprise Service Bus (ESB) can assist in the implementation of a reliable SOA-

based system. Finally, this section compares REST and SOAP Web services, which are the main

communication technologies available today.

3.5.1 Enterprise Service Bus

An ESB [33][34] is a software architecture construct, which provides fundamental services for

complex architectures via an event-driven and standards-based messaging engine (the bus).

Developers typically implement an ESB using technologies found in a category of middleware

infrastructure products, usually based on recognized standards.

An ESB takes the complexity out of integration, providing connectivity to a wide range of

technologies and creating services that can be reused across an organization. An ESB does not itself

implement SOA, but provides the features with which one may implement such.

Developers can exploit the features of an ESB in order to integrate applications and services without

custom code. Developers can shield services, regardless of location, from message formats and

transport protocols. Data can be transformed and exchanged across varying formats and protocols.

Figure 17 depicts the architecture of a SOA system implemented with an ESB. The system integrates

new and legacy applications that need to communicate with each other and exchange information. A

variety of technologies, protocols and message formats are used.

Figure 17: An example topology for ESB (please refer to [35])

32 D5.1: ANIKETOS platform design and platform basis implementation

The ESB hides the implementation details of one module from other components. All components

send and receive messages to the ESB. The ESB is responsible for delivering the messages to the

recipients in the appropriate format.

If one component is momentarily unavailable or is being replaced by a new one, the system is not

affected. The ESB waits for a component to be available again in order to deliver the message.

3.5.1.1 Major ESB Solutions

A study on the available ESB implementations in the literature has been performed in order to come

up with the appropriate solution to be adopted in Aniketos. The study has been based on certain

criteria, which are mainly lie on the assumptions that the project should adopt a reliable open source

solution, which is widely used in other commercial and R&D activities and can be directly integrated

into the project, without any major need for specialised customisation.

Table 5 summarises the most common open source ESB implementations and their corresponding

license scheme.

Table 5: Open source ESB implementations and their corresponding license

System License Comments

Mule ESB

http://www.mulesoft.org/

CPAL (OSI-

approved

license, bundles

other open

source libraries

that are made

available under

their respective

licenses.

Most widespread used ESB

system

Apache Service Mix

http://servicemix.apache.org/home.html
Apache license

Includes JBI container,

enterprise support available

Open ESB

http://java.net/projects/open-esb/
CDDL-1.0 -

Petals ESB

http://petals.ow2.org
LGPL 2.0 -

Swordfish

http://www.eclipse.org/swordfish/

Eclipse

Foundation

Software User

Agreement

Project in incubation phase

Given these solutions, the Mule ESB and Apache Service Mix have been selected in Aniketos to

support the communication between the different components. The selection has been based on the

following factors:

 Both Mule ESB and Apache Service Mix are open source popular solutions for an ESB

implementation;

 They have extensible documentation and support communities in case the project faces any

problems importing them into Aniketos;

 The exploitation of two popular ESB solutions can maximise the acceptance and independence of

the Aniketos platform to specific ESB implementations.

http://www.mulesoft.org/
http://www.mulesoft.org/licensing-mule-esb
http://servicemix.apache.org/home.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://java.net/projects/open-esb/
http://www.opensource.org/licenses/cddl1.php
http://petals.ow2.org/
http://en.wikipedia.org/wiki/LGPL
http://www.eclipse.org/swordfish/
http://www.eclipse.org/legal/epl/notice.php
http://www.eclipse.org/legal/epl/notice.php
http://www.eclipse.org/legal/epl/notice.php
http://www.eclipse.org/legal/epl/notice.php

D5.1: ANIKETOS platform design and platform basis implementation 33

3.5.1.2 Mule ESB

Mule ESB™ [36] is world‘s most widely used open source enterprise service bus. It has been

downloaded millions of times and has thousands productions deployments. Mule ESB architecture is

depicted in Figure 18. This lightweight architecture and simplified development model allows

developers to easily create and integrate application services. Mule ESB takes the complexity out of

integration, enabling developers to easily build high-performance, multi-protocol interactions between

heterogeneous systems and services.

Figure 18: The Mule ESB Architecture (please refer to [36])

The main features of Mule ESB are:

 Service Mediation

- Message Routing

- Separate business logic from messaging

- Shield services from message formats and protocols

- Enable location-independent service calls

- Provides protocol bridging

 Message Routing

- Route messages based on content and complex rules

- Filter, aggregate and re-sequence messages

 Data Transformation

- Exchange data across applications with varying data formats

- Manipulate message payload, including encryption, compression and encoding

transformations

34 D5.1: ANIKETOS platform design and platform basis implementation

- Format messages across heterogeneous transport protocols data types

 Service creation & hosting

- Expose end-points, EJBs, Spring beans, and Plain Old Java Objects (POJOs) as services

- Host services as a lightweight service container

3.5.1.3 Apache ServiceMix

Apache ServiceMix [37] is an enterprise-class open-source distributed ESB and SOA toolkit. It was

built from the ground up on the semantics and APIs of the Java Business Integration (JBI)

specification JSR 208 and released under the Apache License.

The main features of Apache ServiceMix are:

 Reliable messaging with Apache ActiveMQ

 Messaging, routing and Enterprise Integration Patterns with Apache Camel

 WS-* and RESTful web services with Apache CXF

 Loosely coupled integration between all the other components with Apache ServiceMix NMR

Including rich Event, Messaging and Audit API

 Complete WS-BPEL engine with Apache ODE

 OSGi-based server runtime powered by Apache Karaf

3.5.2 SOAP Web Services

SOAP [38], originally defined as Simple Object Access Protocol, is a protocol specification for

exchanging structured information in the implementation of Web Services in computer networks.

SOAP exchanges messages in Extensible Mark-up Language (XML) format. It usually relies on other

Application Layer protocols like Remote Procedure Call (RPC) and Hypertext Transfer Protocol

(HTTP) for message negotiation and transmission.

A SOAP Web Service is formally described through a Web Services Description Language (WSDL)

model, which is also based on XML. All major programming languages offer libraries tools for

creating services and clients either from an existing WSDL definition (contract-first) or by code-first

techniques.

SOAP is considered to be a part of WS-* specifications, which loosely refer to all specifications,

associated with web services, and are maintained or supported by various standards bodies and entities

One big advantage of SOAP over older technologies is that since it can use HTTP as the transfer layer,

it can tunnel easily over existing firewalls and proxies, without modifications to the SOAP protocol,

and over the existing infrastructure. The formal definition, which WSDL model offers, makes the

interoperability between systems built with different technologies easier.

However, because of the verbose XML format, SOAP can be considerably slower than competing

middleware technologies such as CORBA. This may not be an issue when only small messages are

sent.

3.5.3 REST Web Services

Representational State Transfer (REST) [39] is a style of software architecture for distributed

hypermedia systems such as the World Wide Web. The term Representational State Transfer was

introduced and defined in 2000 by Roy Fielding in his doctoral dissertation. Conforming to the REST

constraints is referred to as being ‗RESTful‘.

A RESTful web service (also called a RESTful web API) is a simple web service implemented using

HTTP and the principles of REST. It is a collection of resources, with three defined aspects:

 The base URI for the web service, such as http://example.com/resources/

D5.1: ANIKETOS platform design and platform basis implementation 35

 The Internet media type of the data supported by the web service. This is often JSON, XML or

YAML but can be any other valid Internet media type.

 The set of operations supported by the web service using HTTP methods (e.g., POST, GET, PUT

or DELETE).

Unlike SOAP-based web services, there is no "official" standard for RESTful web services. This is

because REST is an architecture, unlike SOAP, which is a protocol. Even though REST is not a

standard, a RESTful implementation such as the Web can use standards like HTTP, URI, XML, etc.

RESTful web services are a key part of the ―Web 2.0‖ momentum and are used by many applications

and services. Developers prefer them over SOAP web services due to their simplicity and better

performance. SOAP web services are used more often in enterprise application, usually in conjunction

with other WS-* specifications that offer a formal model for security, workflow, notifications and

other concepts.

3.6 Application Server Technologies

3.6.1 OSGi

The OSGi framework [40] is a module system and service platform for the Java programming

language. The OSGi framework tries to overcome Java's inherent modularity limitations and to

implement a complete and dynamic component model.

OSGi can be used in order to:

 Ensure that code dependencies are satisfied before allowing the code to execute and thus avoid

ClassNotFoundExceptions;

 Verify that the code dependencies are consistent with respect to required versions and other

constraints‘

 Easily share classes between modules;

 Package an application as logically indepenedent JAR files and be able to deploy only those pieces

that are actually needed for a given installation;

 Declare which code is accessible from each JAR file and enforce the visibility (what is externally

visible and what is not);

 Implement an extensibility (plug-in) mechanism;

 Start, stop, deploy, un-deploy and replace modules dynamically.

The OSGi Service Platform is composed of two parts: the OSGi framework and OSGi standard

services. The framework is the runtime that implements and provides OSGi functionality. The

standard services define reusable APIs for common tasks, such as Logging and Preferences.

The OSGi specifications for the framework and standard services are managed by the OSGi Alliance.

The current version of the specification is release 4.2. Figure 19 depicts the architecture of the OSGi

framework.

36 D5.1: ANIKETOS platform design and platform basis implementation

Figure 19: The OSGi Architecture (please refer to [40])

The OSGi framework consists of three horizontal layers:

 Modules Layer: The layer that defines encapsulation and declaration of dependencies (how a

bundle can import and export code)

 Life-Cycle Layer: The API for life cycle management for (install, start, stop, update, and

uninstall) bundles.

 Services Layer: The services layer connects bundles in a dynamic way by offering a publish-find-

bind model for plain old Java Interfaces (POJI) or Plain Old Java Objects (POJO).

The Service Registry defines the API for managing services (ServiceRegistration, ServiceTracker and

ServiceReference).

The OSGi framework also defines a Security layer that handles the security aspects by limiting bundle

functionality to pre-defined capabilities.

3.6.1.1 Popular OSGi Containers

A study on the available OSGi Containers implementations in the literature has been performed in

order to come up with the appropriate solution to be adopted in Aniketos. The study has been based on

certain criteria, which are mainly lie on the assumptions that the project should adopt a reliable open

source solution, which is widely used in other commercial and R&D activities and can be directly

integrated into the project, without any major need for specialised customisation.

The available solutions examined are summarised here:

 Apache Felix - an implementation of the OSGi R4 Service Platform and other OSGi-related

technologies

 GlassFish (v3) - application server for Java EE

 JBoss - Red Hat's JBoss Application Server

 JOnAS 5 - open source Java EE 5 application server

 OpenEJB - open source OSGi-enabled EJB 3.0 container that can be run both in standalone or

embedded mode

D5.1: ANIKETOS platform design and platform basis implementation 37

 SpringSource dm Server - open source microkernel-based server constructed of OSGi bundles

and supporting OSGi applications

Given these solutions, the GlassFish Application Server has been selected in Aniketos, mainly due to

the fact that [41]:

 It is Java EE certified;

 It bears high performance, as it is the fastest open source application server available;

 It is easy to be used;

 It integrated clustering support and sophisticated high-availability capabilities;

 It supports Web services;

 It provides multi-IDE support, while a standalone Oracle GlassFish Server plug-in for the Eclipse

IDE is available.

3.6.1.2 Oracle Glassfish Application Server

GlassFish [42] is an open source application server project led by Sun Microsystems (owned by

Oracle corporation) for the Java EE platform. The proprietary version is called Sun GlassFish

Enterprise Server. GlassFish is free software, dual-licensed under two free software licences: the

Common Development and Distribution License (CDDL) and the GNU General Public License (GPL)

with the classpath exception.

The newest version of the server is GlassFish 3.1, which is based on world‘s first implementation of

Java EE 6 with an OSGi based flexible, lightweight, extensible platform. It requires a small memory

footprint. It is fully featured with production-ready features such as clustering and high availability

provides optimized runtime performance and ready for enterprise deployments.

Main features include:

 Modular, Extensible and Innovative

 Provides dynamic invocation of services. Only initializes the required services reducing server

footprint. One can start small with Web Profile and grow with their needs

 Oracle GlassFish Server 3.1 has ~262 modules

 End-to-end extensibility. Both server runtime and management interfaces are extensible

 Improved Developer Productivity

 Supports Java EE 6 standard based development with simplified programming model 29%

 Embedded GlassFish and maven plugin for unit testing

 Sophisticated tools integration with NetBeans and Eclipse

 Production Ready

 Improved clustering and high availability. 34% better high availability performance over

GlassFish 2.1.1

 Integration with SSH for remote node management

 Preferred fail-over by load-balancer plugin

 Metro HA: Reliable messaging sequence failover, secure conversation session failover

 Improved automatic delegated transaction recovery

 Support for clustering of message queue brokers in embedded mode

 Supports wide range of platforms

 Advanced Management

 Centralized administration of clusters

 Improved DAS scalability (100 managed instances)

 RESTful API for management and monitoring

 Application versioning support

 Application scoped resources

38 D5.1: ANIKETOS platform design and platform basis implementation

 Improved JDBC monitoring such as statement leak detection and reclaim, tracing SQL queries,

application based connection pool monitoring, custom validation template for JDBC connection

pool

3.6.1.3 Apache Felix OSGi Container

Apache Felix [43] is a community effort to implement the OSGi R4 Service Platform and other

interesting OSGi-related technologies under the Apache license. Felix and Equinox are considered to

be the reference implementations of OSGi specifications.

The Felix project is organized into subprojects, where each subproject targets a specific OSGi

specification or OSGi-related technology. Some of the more important Felix sub-projects are:

 Config Admin

 Dependency Manager

 Event Admin

 Framework

 Gogo

 HTTP

 iPOJO

 Log

 Maven Bundle Plugin

 Preferences

 Remote Shell

 Service Component Runtime (OSGi Declarative Services implementation)

 Web Console

Many enterprise application servers, like Glassfish, ServiceMix and JOnAs use Felix internally.

3.6.1.4 Conclusion

It is proposed that Glassfish application server will be used for the deployment of Aniketos runtime

components. Felix may be used during development and testing phases.

3.7 Persistency and Information Storage Technologies

3.7.1 MySQL Database Server

MySQL [44] is considered to be the most popular object relational database system. The MySQL

development project has made its source code available under the terms of the GNU General Public

License, as well as under a variety of proprietary agreements. MySQL was owned and sponsored by a

single for-profit firm, the Swedish company MySQL AB, now owned by Oracle Corporation.

Free-software-open source projects that require a full-featured database management system often use

MySQL. MySQL is the M in the LAMP acronym, which stands for Linux-Apache-MySQL-PHP and

refers to the open source technologies used by numerous frameworks and applications.

MySQL works on many different system platforms, including AIX, BSDi, FreeBSD, HP-UX,

eComStation, i5/OS, IRIX, Linux, Mac OS X, Microsoft Windows, NetBSD, Novell NetWare,

OpenBSD, OpenSolaris and others. It is a very mature system, very good documented and with a

wealth of resources available. Many graphical interface applications for the management and

administration of a MySQL database are available, both free and paid.

Although MySQL was the database of choice for almost all open source projects, the acquisition of

Sun by Oracle, which brought MySQL under Oracle's control, made many developers sceptical about

using it in new projects. Although Oracle promised to continue supporting the database system and

keep offering the community edition, it is generally thought that a sudden policy change from Oracle's

http://www2.osgi.org/Specifications/HomePage

D5.1: ANIKETOS platform design and platform basis implementation 39

part is not to be excluded. For this reason PostgreSQL is considered as an alternative for open source

projects.

3.7.2 PostgreSQL Database System

PostgreSQL [45] is a powerful, open source object-relational database system. It has more than 15

years of active development and a proven architecture that has earned it a strong reputation for

reliability, data integrity, and correctness. It runs on all major operating systems, including Linux,

UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows. It is fully ACID

compliant, has full support for foreign keys, joins, views, triggers, and stored procedures (in multiple

languages). It includes most SQL:2008 data types. It also supports storage of binary large objects,

including pictures, sounds, or video. It has native programming interfaces for C/C++, Java, .Net, Perl,

Python, Ruby, Tcl, ODBC, among others, and exceptional documentation.

PostgreSQL SQL implementation strongly conforms to the ANSI-SQL:2008 standard. It has full

support for subqueries (including subselects in the FROM clause), read-committed and serializable

transaction isolation levels. And while PostgreSQL has a fully relational system catalogue, which

itself supports multiple schemas per database, its catalogue is also accessible through the Information

Schema as defined in the SQL standard

It is released under a liberal open source license: the PostgreSQL License (MIT-style license) and is

thus free and open source software. As with many other open-source programs, PostgreSQL is not

controlled by any single company — a global community of developers and companies develops the

system.

3.7.3 MongoDB

MongoDB

[46] is a popular NoSQL database solution. NoSQL refers to a broad class of database

management systems that differ from classic relational database management systems (RDBMSes) in

some significant way. These data stores may not require fixed table schemas, usually avoid join

operations and typically scale horizontally. NoSQL databases provide no SQL interface and usually

rely on much simpler interfaces that use associate arrays or key-value pairs. Besides their simplicity, a

big advantage of many NoSQL technologies is that they use a distributed architecture, which allows

them to easily be deployed in a cloud system. A NoSQL system can be deployed in many servers and

a failure of a server can be tolerated.

MongoDB is a popular open source, high performance, schema-free database written in C++

programming language. The database is document-oriented and manages a collection of JSON-like

documents. MongoDB can run in almost all operating systems and binaries are available for Windows,

Linux, OS X and Solaris.

MongoDB uses JavaScript for making queries. It offers official drivers for all popular programming

languages (C, C++, C#, Haskell, Java, Javascript, Perl, PHP, Python, Ruby, Scala).

Some of the advantages of MongoDB are summarised in the following:

 It is easy to be installed;

 A PHP module is available;

 Replication is very easy, including master-master support

 It supports automated sharding

 It is well documented

3.7.4 Conclusion

It is proposed that the Aniketos Components, bearing a persistent layer need, utilise MySQL database

server to implement it. However, it should be avoided to use features that are specific to MySQL.

Also, the use of an ORM (Object Relational Mapping) tool, like Hibernate [47], is recommended.

40 D5.1: ANIKETOS platform design and platform basis implementation

4 Description of the Aniketos components

This section describes the individual components of the Aniketos architecture splitting them according

to the categorisation of D1.2.

For each component, the following aspects are presented, where this is applicable:

 The general description/specification of the components

 The limitations and restrictions of each component with respect to H/W, S/W and Operating

System specification

 The dependencies and/or required interfaces, as well as a detailed description of the data model for

the envisaged interfaces between the Aniketos components

 Component-specific implementation aspects (which are summarised for the whole set of the

Aniketos platform and Environment Components)

It must be noted that the descriptions provided in the rest of this section follow the presentation of the

Aniketos components are reflected on section 2, but they are aligned with the Aniketos Deliverable

D1.2. They present an initial approach to the interfaces specifications, which have to be implemented

as a first step towards a conceptual prototype. In that respect, these specifications are subject to

continuous changes and updates.

4.1 Aniketos Platform components

4.1.1 Socio-technical Security Modelling Tool

Description

The Socio-technical Security (s-t-s) Modelling Tool allows the service developer to specify the service

security requirements following a two-step process:

 Identify, analyse and model the goals, the actors, the resources, the socio-technical relationships

(i.e. commitments, trust, etc.) and the security needs of the organisation

 Derive and model the needed services and the security and trust requirements on them (create the

Security Specification Model of the composed service)

The tool consists of a graphical modelling environment that supports the socio-technical security

language developed within Aniketos. The Socio-technical Security Modelling Tool receives the

service specifications in the order to model the service from the Service specification/planning

mechanism of the Environment. The tool looks up for threats and countermeasures in the Threat

repository module to describe in the service model both the threats associated to the service and the

possible countermeasures to be implemented in the service.

Limitations and Restrictions

The s-t-s Modelling Tool raises no restrictions.

Interfaces

The s-t-s Modelling Tool exposes the following methods for the IModelling interface:

Method Name modelTrustAndSecurityRequirements

Method

Definition/Description

This method creates the model of the service that includes the socio-

technical aspects and the trust and security requirements.

Method input attributes

D5.1: ANIKETOS platform design and platform basis implementation 41

Name Type Description

ServiceSpecification ServiceSpecification

Specification of a

composed/component service,

or the planning or template

creation for service

composition.

Method output attributes

Name Type Description

SecuritySpecificationM

odel
SecuritySpecificationModel

Specification of the service

including trust and security

requirements.

Dependency with

other components

Socio-technical Security Modelling Tool creates the

SecuritySpecificationModel. The tool starts working when it receives the

invocation from the Service Composition Framework in the Environment.

The Socio-technical Security Modelling Tool is able to retrieve specific

threats and countermeasures from the Threat Repository Module. This

method can be seen as internal to the s-t-s Modelling Tool.

Method Name exportSecuritySpecificationModel

Method

Definition/Description

This method exports the model of a specific service

Method input attributes

Name Type Description

ServiceID ServiceID

The identification of service

specification in the

Marketplace

Method output attributes

Name Type Description

SecuritySpecificationM

odel
SecuritySpecificationModel

Specification of the service

including trust and security

requirements.

Dependency with

other components

Socio-technical Security Modelling Tool exports the

SecuritySpecificationModel, which is the input to the Model

Transformation module.

4.1.2 Model Transformation Module

Description

The Model Transformation Module transforms the service model described through the s-t-s

modelling language (SecuritySpecificationModel) into the different formats needed from the other

components of the platform, as follows:

 It transforms the SecuritySpecificationModel to the AniketosCompliantSpecification (which is a

specialised service specification for deploying services being extended with security and trust

characteristics, containing information about the service composition plan and the security

requirements). The AniketosCompliantSpecification is then used by the Service Composition

Framework component, the Contract Manager module and the service consumers.

42 D5.1: ANIKETOS platform design and platform basis implementation

 It takes the AniketosCompliantSpecification and generates the SecurityDescriptor, which provides

information about security properties for a registered service and is exploited by the Aniketos

Marketplace module.

 It generates the ContractTemplate (a template used to create security contract at design time or at

runtime) from the AniketosCompliantSpecification that is used by the Contract Manager module.

 It binds the service to its threats through the Binding:Threat-Service method that invokes the

bindServiceToThreatMonitoring method of the Service Threat Monitoring module, which in turn

registers a service with the Notification module for alerts.

Limitations and Restrictions

The Model Transformation Module will be based on Java, as it is developed as an OSGI bundle.

Interfaces

The Model Transformation Module exposes the following four methods for the

ModelTransformationModuleService:

Method Name transformModel

Method

Definition/Description

This method transforms the SecuritySpecificationModel of the service into

an AniketosCompliantSpecification

Method input attributes

Name Type Description

SecuritySpecificationM

odel
SecuritySpecificationModel

Service socio-technical model

including security information

ServiceSpecification ServiceSpecification
It contains information about service

composition plan

Method output attributes

Name Type Description

AniketosCompliantSpec

ification
AniketosCompliantSpecification

Specialised service specification

extended with security and trust

characteristics. It contains information

about service composition plan,

security requirements and is the basis

for deploying a service

Dependency with

other components

The Model Transformation Module receives the

SecuritySpecificationModel from Socio-technical Security Modelling tool.

The produced AniketosCompliantSpecification is exploited by the Contract

Manager module and Service Composition Framework.

Method Name generateSecurityDescriptor

Method

Definition/Description

This method generates the security descriptors for a specific service, based

on the AniketosCompliantSpecification

Method input attributes

Name Type Description

AniketosCompliantSpec

ification
AniketosCompliantSpecification

Specialised service specification

extended with security and trust

D5.1: ANIKETOS platform design and platform basis implementation 43

characteristics. It contains information

about service composition plan,

security requirements and is the basis

for deploying a service

Method output attributes

Name Type Description

SecurityDescriptor SecurityDescriptor
provides information about security

properties for a registered service

Dependency with

other components

Security Descriptor is needed by the Marketplace module and Service

composition framework.

Method Name generateContractTemplate

Method

Definition/Description

This method generates the contract template for a specific service, based on

the AniketosCompliantSpecification

Method input attributes

Name Type Description

AniketosCompliantSpec

ification
AniketosCompliantSpecification

Specialised service specification

extended with security and trust

characteristics. It contains information

about service composition plan,

security requirements and is the basis

for deploying a service

Method output attributes

Name Type Description

ContractTemplate ContracTemplate
A template used to create security

contract at design time or at runtime

Dependency with

other components

ContractTemplate method is to interact with the Contract Manager Module

Method Name bindServiceThreat

Method

Definition/Description

This method links the service with the threats associated to it that are

documented in the AniketosCompliantSpecification.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

AniketosCompliantSpec

ification
AniketosCompliantSpecification

Specialised service specification

extended with security and trust

characteristics. It contains information

about service composition plan,

security requirements and is the basis

for deploying a service

Method output attributes

Name Type Description

44 D5.1: ANIKETOS platform design and platform basis implementation

bindOperationResult boolean

Information about binding operation.

If the binding operation has finished

successfully is true; otherwise it‘s

false.

counterMID String

Optional:

The unique identifier of monitoring

control to which the service subscribes

counterMDesc String

Optional:

Description of the countermeasure,

either in plain text or as a pattern.

Dependency with

other components

The bindServiceThreat() method is used by the Notification Module and

invokes the bindServiceToThreat() method of the Service Threat

Monitoring module (see Section 4.1.9). This method is mainly exploited at

design time to bind relevant threats to the specification. When doing the

transformation, this binding needs to be stored between the threat and the

actual running service instances.

4.1.3 Trustworthiness Component

Description

The Trustworthiness Component is a physical component, which integrates the functionalities of two

logical modules, as presented in D1.2, namely the Trustworthiness Prediction and Trustworthiness

Monitoring modules.

The main functionalities of this component are:

 Provide a trust level to represent service trustworthiness

 Compute the trustworthiness level of a composite service

 Store trust values

 Represent the identity of contractual parties

 Recalculate trustworthiness when relevant events occur

 Respond to changes in trust levels (e.g. lower trustworthiness)

Limitations and Restrictions

The Trustworthiness Component raises no limitations and restrictions

Interfaces

The Trustworthiness Component exposes the following three methods for the TrustworthinessService

interface:

Method Name getTrustworthinessPrediction

Method

Definition/Description

This method returns the trustworthiness of a service (either complex or

atomic)

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

D5.1: ANIKETOS platform design and platform basis implementation 45

Name Type Description

Trustworthiness Real
The trustworthiness value of the

specific service

Dependency with other

components

This method is invoked by the Verification Module, the Contract Manager

Module and the Marketplace in order to receive the trustworthiness value

of the requested (complex or atomic) service.

Method Name receiveNotification

Method

Definition/Description

This method receives notifications about possible changes in trust values.

Method input attributes

Name Type Description

notification String
A string detailing the type of

notification

Method output attributes

Name Type Description

-

Dependency with other

components

This method is triggered by the Notification module

Method Name receiveQoSupdate

Method

Definition/Description

This method receives updates with respect to quality of service metrics for

a specific service

Method input attributes

Name Type Description

metrics collection
The identification of service

specification in the Marketplace

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

qos_update List
The list of updated QoS

parameters

Dependency with other

components

This method is invoked by the Service Runtime Environment

Method Name receiveReputationUpdate

Method

Definition/Description

This method receives receives updated reputation

Method input attributes

Name Type Description

46 D5.1: ANIKETOS platform design and platform basis implementation

reputation double
The value of the received

reputation

Method output attributes

Name Type Description

-

Dependency with other

components

This method is invoked by the Service Runtime Environment

The Trustworthiness Component exposes the following two methods for the MonitoringServiceAccess

interface:

Method Name sendEventToMonitor

Method

Definition/Description

This method is used to send event to be monitored from the

Trustworthiness Component to the monitoring system that will check the

rule.

Method input attributes

Name Type Description

monitorAddress String
Address of the monitoring

system

userName String Credential information

password String Credential information

EventInput String Event to be sent

Method output attributes

Name Type Description

monitorResult Boolean
The result on whether the event

means any violation

Dependency with other

components

This method enables the Trustworthiness Component to communicate

with the external environment Service Monitoring Component

Method Name deriveMonitoringRules

Method

Definition/Description

This method receives security contract (or a part of the contract related to

trust properties) and derives monitoring rules.

Method input attributes

Name Type Description

Security contract String
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

rules List The list of rules

Dependency with other

components

This method is triggered by the Service Monitoring Component and the

Environment components, which provide signed contracts

D5.1: ANIKETOS platform design and platform basis implementation 47

4.1.4 Verification module

The Verification Module can be seen as one physical component, which integrates the functionalities

of two logical modules, namely the Contract Negotiation Module and Security Verification Module.

The Verification Module is split into the following three sub-modules:

 Contract Manager Module (CMM)

 Property Verification Module (PVM)

 Composition Security Validation Module (CSVM)

In the following sections, these sub-modules and their interfaces are described separately.

4.1.4.1 Contract Manager Module

Description

The main functionalities of the CMM are:

 It manages the overall security checking process

 It checks the compliance of agreement template from a service provider with the consumer‘s

security policy

 It supports the runtime usage of security contracts by:

- Deriving the monitoring rules from security contracts

- Updating the status of contracts based on relevant events

- Responding to contract violations identified in the environment monitoring service

The CMM is a physical component, which implements part of the functionalities allocated to the

logical component of the Security Verification Module, which is defined in D1.2.

Limitations and Restrictions

The CMM raises no limitations and restrictions

Interfaces

The CMM exposes the following four methods for the ContractManagerService interface:

Method Name AnalyseSecureComposition

Method

Definition/Description

This method manages all security and trust checks. In fact, only mapping

of service provider agreement template and service consumer security

policies is performed by the module itself. Check of security and trust

properties of provider are performed by Property Verification Module, the

Trustworthiness Component and the Threat response recommendation

module (all are invoked by the CMM)

Method input attributes

Name Type Description

AgreementTemplate String
Agreement template of service

provider

ConsumerPolicies String
Service consumer security

policies

SecureCompositionPlan String
Composition Plan for a complex

service

48 D5.1: ANIKETOS platform design and platform basis implementation

Method output attributes

Name Type Description

CheckResults String Results of all check

Dependency with other

components

This method is invoked by the Secure Composition Planner Module

Method Name getTrustworthiness

Method

Definition/Description

This method serves with the need for getting the trustworthiness

prediction specification for a specific service.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

TrustworthinessPredictio

nResponse
Real

The return value defining the

trustworthiness of the requested

service

Dependency with other

components

Through this method, the CMM acts as a proxy between the Marketplace

and the Trustworthiness component.

Method Name determineSecurityProperties

Method

Definition/Description

This method serves the determination whether the security properties are

compliant with the specifications and the contracts

Method input attributes

Name Type Description

AniketosCompliantSpecifi

cation
AniketosCompliantSpecification

Specialised service specification

extended with security and trust

characteristics. It contains

information about service

composition plan, security

requirements and is the basis for

deploying a service

Method output attributes

Name Type Description

property PropertyID
An identifier that specifies the

required property

Dependency with other

components

Through this method, the CMM acts as a proxy between the Service

Runtime Environment and the SPDM

Method Name checkCountermeasuresImplementation

Method

Definition/Description

This method serves the requirement for checking at runtime the

compliance with the countermeasures of specific threats.

D5.1: ANIKETOS platform design and platform basis implementation 49

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

threatDesc List(String)
List with the description of the

threats in plain text

Method output attributes

Name Type Description

(counterMID,

nonComplianceTwSpecDesc)
List (Integer, String)

A list of non-compliant

countermeasures, i.e.

countermeasures which are not

implemented by the selected

services.

If the list is null, then the

service is compliant to its

specification.

CounterMID is the unique

identifier for the

countermeasure not

implemented.

nonComplianceTwSpecDesc is

the description of the non-

compliance for a given

CounterMID

Dependency with other

components

Through this method, the CMM acts as a proxy between the Service

Runtime Environment and the Threat Response Recommendation

Module

4.1.4.2 Property Verification Module

Description

The Property Verification Module (PVM) analyses a service implementation (e.g., based on its source

code) for compliance with required security properties (e.g., absence of certain vulnerabilities,

enforcement of access control, ensuring data privacy) as expressed in the contract.

Limitations and Restrictions

The PVM raises the following limitations and restrictions:

 The H/W limitations and requirements still have to be discussed and decided, but the formal

analysis may require significant CPU and memory resources

 The S/W limitations and requirements still have to be discussed and decided, but Scala (on the

Java platform) or F# (on mono/.net platform) are considered

 The PVM is planned to be platform independent (i.e., support both Windows and Linux on an x86

or AMD64 architecture), but it still has to be discussed and decided

Interfaces

The PVM exposes the following method for the PropertyVerificationService interface:

50 D5.1: ANIKETOS platform design and platform basis implementation

Method Name verifyTechnicalTrustProperties

Method

Definition/Description

This method checks if a service implementation fulfils a certain

security/trust property

Method input attributes

Name Type Description

AgreementTemplate String
Agreement template of service

provider

ServiceImplementation Class/URL

Archive of the implementation

(alternatively, URL to the

archive)

Method output attributes

Name Type Description

Verification Result Boolean True or false

Explanation Class/String
Explanation of the verification

result

Dependency with other

components

This is triggered by the CMM to provide responses to other components

on the property verification results.

4.1.4.3 Composition Security Validation Module

Description

The Composition Security Validation Module (CSVM) verifies the service compliance to agreement

templates both at design-time and at runtime. During the design-time, this module uses inputs from the

Trustworthiness Component (and more specifically the trustworthiness prediction functionality), the

Security Property Determination Module (SPDM), the Threat response recommendation module and

the Secure Composition Planner Module (through the CMM). Its output is returned to the CMM. At

runtime, the CSVM is triggered through the CMM to verify the result of a secure re-composition.

Limitations and Restrictions

The CSVM raises the following limitations and restrictions:

 The H/W limitations and requirements still have to be discussed and decided, but the formal

analysis may require significant CPU and memory resources

 The S/W limitations and requirements still have to be discussed and decided, but Scala (on the

Java platform) or F# (on mono/.net platform) are considered

 The PVM is planned to be platform independent (i.e., support both Windows and Linux on an x86

or AMD64 architecture), but it still has to be discussed and decided

Interfaces

The CSVM exposes the following method for the CompositionSecurityValidationService interface:

Method Name VerifyCompositionCompliance

Method

Definition/Description

This method checks if the security requirements described in the

agreement template of a service match the secure composition plan

Method input attributes

D5.1: ANIKETOS platform design and platform basis implementation 51

Name Type Description

Composition plan Class

This is the secure composition

plan which composes the

services

Agreement Template Class

These are the specifications for

a composite service the provider

offers

Set of Policies Class
Set of requirements of the user

to a single service

Method output attributes

Name Type Description

Verification Result Boolean True or false

Explanation Class/String
Explanation of the verification

result

Dependency with other

components

This method is triggered by the CMM to provide responses to other

components on the composition verification results.

4.1.5 Security Property Determination Module

Description

The Security Property Determination Module (SPDM) is responsible for managing the security

properties associated with a service (whether the service is atomic or itself a composite of

subservices). It interacts with the Verification Module (and the CMM) and the properties associated

with services in the Marketplace. Security properties can be absolute binary values, or ranges that

represent predicted values.

The dependency direction between security property determination and security verification is also

discussed in this document (i.e. which module serves which), which may result in an exchange of

functionality from one module to another as appropriate.

The primary purpose of the Security Property Determination Module is to provide security state for

WP3 and by implication, to the Aniketos platform. To this end its functions include the following:

 Retrieval of security properties for services from the marketplace;

 Determination of security properties of composed services;

 Retrieval of trust prediction (as an interface to the trust values from the Trustworthiness Prediction

Module in case trust requirements appear in contracts);

 Predicting access control performance for composed services;

 Labelling services with relevant security properties for composition;

 Making determinations as to what the overall security properties for a composed service are;

 Reconciling any differences (a) between a given composed service and its component services and

(b) between claimed values of inferred properties (such as trust and access control performance)

and the corresponding accepted values of these inferred properties;

 Storage and maintenance of individual service security properties (necessary for Composition

Planning).

Note the following exclusions, as they occur elsewhere in WP3 and WP4.

 The module does not perform any monitoring;

 The module does not perform any verification.

52 D5.1: ANIKETOS platform design and platform basis implementation

The initial documentation D1.2 [1] describes an interface that is capable of determining security

properties for both a single service and a service composition; in fact we handle these in the same way,

since a single service may itself simply be a composition of other services.

The module API offers getter and setter methods for security properties. For each of these a single

property is required, specified by a property identifier, which alters the interface accordingly. The

module also offers predictive capabilities of its own, notably with access control performance

prediction.

There are two notable areas of functionality that are described below.

 Property Verification – Aniketos requires that a given service‘s stated security property

(Contract/Template Agreement) can be verified against its actual functionality. It is expected that

this functionality will be handled by the verification module (see below), such that the module can

be asked, ―does service x fulfil property y as stated?‖

The verification module will conduct formal analysis, behaviour observation, or any appropriate

verification technique and return a result, signed and authenticated that is stored alongside the

property in the Marketplace. The property determination module will check to see if the property

has a current, signed certificate, and if so, simply provide the requested property from the

Marketplace. If not, the property determination module will request that the verification module

verifies the property and return the result.

 Composed Property Aggregation / Agreement / Calculation – The property determination module

need only check the Marketplace (as above) for a single service. However, for a composed service,

the property must be calculated based on the properties of the subservices of which it‘s comprised.

It is the responsibility of the Property Determination Module to iterate through the subservices in

order to determine the properties of the overall composition. This process may therefore involve

re-entrant recursive calls to the Property Determination module. Two illustrative examples are as

follows.

- Available Encryption property for a Composition containing two services A and B. A has

[AES-128, AES-256, Twofish], while B has [AES-128, AES-256, RC5]. In this case, the

composed property is simply the intersection of all the composed service‘s property values

[AES-128, AES-256].

- Availability property for a Composition containing two services A and B. A has availability =

90%, whereas B has availability = 75%. The composition property is 75%, as it is in this case

the lowest value / weakest link.

There is a dependency between this module and the security verification module, required so that a

stated security property can be verified as an actual security property. However, it is unclear as to

whether the verification module expects this functionality of the property determination module, or

vice versa. This document assumes that this module obtains this verification functionality from the

verification module, but this requires clarification.

However, there are some areas where properties may be determined directly by the Security Property

Determination Module, as is the case for Access Control Performance Prediction. STACS (please refer

to the Aniketos Deliverable D1.1) predicts access control performance for a given composition and

should be part of the pre-processing in the Security Property Determination Module. Services and

compositions should be tagged with the results of these predictions (along with trust from WP2) as

security properties.

Prediction is done by modelling access request profiles for two or more composed services. The

response times of access control requests depend on the composed request profiles and how the

service components interact with (hence access) each other. These interactions can be defined by the

composition planner, e.g. by means of a dependency graph. Access request profiles can be defined by

analysing the typical use cases. STACS can then analyse, using discrete event simulation, based on the

multiple queues representing the access control mechanisms of interdependent services in the

D5.1: ANIKETOS platform design and platform basis implementation 53

composition. With respect to contracts, access control performance can be modelled as a particular

type of queue and the necessary parameters should be given in the marketplace as part of the contract.

There remains an open question on the naming techniques with respect to how services and their

providers will be referenced. We believe this falls within the scope for Aniketos and should not be left

up to the marketplace or environment as it has immediate impact on how we implement modules and

define APIs. It will also have a strong influence on how WPs interact. UDDI has been mentioned

previously, but agreement has yet to be made.

Limitations and Restrictions

The Security Property Determination Module raises no limitations and restrictions

Interfaces

The Security Property Determination Module exposes the following five methods for the IService

interface:

Method Name getService

Method

Definition/Description

This method receives the specified service from the relevant repository.

Method input attributes

Name Type Description

serviceID ServiceID The ID of the specified service

Method output attributes

Name Type Description

Service IService The specified service

Dependency with other

components

The SPDM uses this method to interact with the Marketplace and get

services

Method Name addService

Method

Definition/Description

This method adds the specified service to the relevant repository.

Method input attributes

Name Type Description

Service IService The specified service

Method output attributes

Name Type Description

ServiceID Service ID
The MarketPlace should return

the ID of the specified service.

Dependency with other

components

The SPDM uses this method to interact with the Marketplace and add

services to it

Method Name addProperty

Method

Definition/Description

This method is used to attach properties to a service specification

54 D5.1: ANIKETOS platform design and platform basis implementation

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

property PropertyID
An identifier that specifies the

required property

Method output attributes

Name Type Description

-

Dependency with other

components

The SPDM interacts with the Marketplace through this method

Method Name getValue

Method

Definition/Description

This method gets the value of a security property

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

property PropertyID
An identifier that specifies the

property

Method output attributes

Name Type Description

value String
The value of the verified

property to be stored.

Dependency with other

components

The Security Property Determination Module interacts with the

Marketplace through this method

Method Name setValue

Method

Definition/Description

This method sets the value of a security property

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

property PropertyID
An identifier that specifies the

property

value String
The value of the verified

property to be stored.

Method output attributes

Name Type Description

-

D5.1: ANIKETOS platform design and platform basis implementation 55

Dependency with other

components

The Security Property Determination Module interacts with the

Marketplace through this method

The Security Property Determination Module exposes the following five methods for the IProperty

interface

Method Name getProperty

Method

Definition/Description

This method is used to get properties of a service specification

Method input attributes

Name Type Description

propertyID String
An identifier that specifies the

required property

Method output attributes

Name Type Description

value String
The value of the verified

property to be stored.

freshness Date
The date of the value attached

to the property

Dependency with other

components

The SPDM interacts with the Marketplace and the CMM through this

method

4.1.6 Secure Composition Planner Module

Description

The Secure Composition Planner Module (SCPM) creates one or more suggestions based on a given

composition plan‘s security features. It makes use of the Trustworthiness Component (and

Trustworthiness Prediction functionality routed via Security Property Determination Module) and the

SPDM itself to accomplish this. The following points are assumed:

 The SCPM receives composition plans from the environment (service specification/planning

mechanism) which already comply with the functional aspects of the consumer‘s needs (user

needs). The SCPM then analyses the service compositions based on trustworthiness and security

properties.

 The SCPM uses trustworthiness indirectly from the Trustworthiness Prediction Module and

security properties from the SPDM. The SPDM determines the security properties of the

composed services and selects those that comply with the consumer security policy.

Three usage scenarios are considered that demonstrate the functionality of this module as follows.

1. The first scenario presents a simple situation where the SCPM is required to select only those

composition plans that fulfil the consumer‘s security requirements from a given set of

functionally-correct composition plans. This behaviour is referred to as selectSecureCompositions,

and requires an input set of functionally-correct composition plans, along with the consumer‘s

stated security policy. It returns only those functionally-correct compositions that adhere to the

consumer‘s security policy, checking the consumer‘s policy against each service‘s stated

properties for potential contract fulfilment – using trustworthiness where applicable. This

approach suffers from the problem that the return set may be empty (i.e. no composition, as-is,

may fulfil the security requirements) and does not distinguish between return sets (i.e. they are all

56 D5.1: ANIKETOS platform design and platform basis implementation

either compatible or not, no preference is given to any security heuristic). However, one benefit of

this approach is that it could be implemented simply by passing each composition to the Security

Verification Module (SVM), and returning compositions based purely on the results that this

provides.

2. The second scenario extends the first situation to allow the resulting set to be annotated to describe

a preference or ordering of the successfully return composition set. This behaviour is referred to as

orderSecureCompositions and requires the input data from selectSecureCompositions with the

addition of a statement of ordering/preference. This statement may be as simple as specifying a

type from an enumeration of available orderings that have globally-understood meaning across the

Aniketos platform. Alternatively this may interpret a policy statement as an indication of

preference. The resulting set may simply be ordered by preference, or in the case of multiple

weighted preferences, may return a scoring matrix indicating how each composition is ordered

with respect to each preference.

3. The third scenario extends these scenarios to allow the SCPM to analyse a functionally-complete

composition plan (as above), and if it finds it to be non-compliant with the consumer‘s security

policy, rather than just omit it from the return set, it can suggest alterations that make it compliant.

This behaviour is referred to as suggestSecureCompositions. The level of functionality expected

from the suggestion process is still under discussion, but some possibilities include:

a. Alternative determination via Marketplace – Marketplace is queried for alternative

services/compositions with specified security properties.

b. Use of techniques that propose alterations to services or compositions to include the additional

security properties, for example using evolutionary processes or pre-defined patterns [48].

Regarding the interaction of this module and the relationship with other components, the following

should be noted:

 The SCPM generates (or selects) one or more composition plans based on trustworthiness and the

specified security properties. One or more of the specified properties could be related to each

composition plan and used to order the composition plans in a number of ways. For example, this

could be based on the most secure composition plans or the most trustworthy composition plans.

 The Security Property Determination Module is responsible for providing properties associated

with the composed services.

 The Security Verification Module verifies that a given composition plan is sound according to the

given security properties.

 The Threat Response Recommendation Module (from WP4) could provide input to the SCPM in

terms of risks, vulnerabilities and threat mitigation. The Threat Response Recommendation

Module analyses the composition plans from the SCPM for risks and vulnerabilities. The Threat

Response Recommendation Module queries the Threat Repository to find a good pattern for the

solution. The recommendations from the Threat Response Recommendation Module could be

introduced as additional security properties for the required composition, or as an input to the

ordering. The SCPM considers these additional security properties recommended by the Threat

Response Recommendation Module in its process of generating secure composition plans.

Limitations and Restrictions

The Secure Composition Planner Module raises no limitations and restrictions

Interfaces

The Secure Composition Planner Module exposes the following three methods for the

CompositionPlannerInterface interface:

Method Name selectSecureCompositions

D5.1: ANIKETOS platform design and platform basis implementation 57

Method

Definition/Description

This method selects those compositions from the specified list that adhere

to the specified user policy

Method input attributes

Name Type Description

consumerPolicy Policy
A specification of the

consumer‘s security policy

functionalCompositions List< CompositionPlan >

A set of alternative service

compositions that are

functionally correct

Method output attributes

Name Type Description

ServiceCompositions List< CompositionPlan >

A set containing service

compositions (a subset of

functional Compositions) that

are functionally correct and

consistent with the user‘s

security policy.

Dependency with other

components

-

Method Name orderSecureCompositions

Method

Definition/Description

This method selects those compositions from the specified list that adhere

to the specified user policy, and orders those that do according to the

specified Ranking Criteria

Method input attributes

Name Type Description

consumerPolicy Policy
A specification of the

consumer‘s security policy

secureCompositions List< CompositionPlan >

A set of alternative service

compositions that are

functionally correct

order OrderCriteria
An indication of how the

resulting set should be ordered

Method output attributes

Name Type Description

ServiceCompositions List< CompositionPlan >

An ordered set of service

compositions (a subset of

functional Compositions) that

are functionally correct and

consistent with the user‘s

security policy, and ordered

according to the specified rank

ScoringMatrix Array

A structure describing how each

―secure‖ composition scores

according to the ranking

criteria/criterion.

58 D5.1: ANIKETOS platform design and platform basis implementation

Dependency with other

components

-

Method Name suggestSecureComposition

Method

Definition/Description

This method generates a set of new composition plans as suggestions that

adhere to the specified user policy

Method input attributes

Name Type Description

consumerPolicy Policy
A specification of the

consumer‘s security policy

functionalComposition CompositionPlan
A service composition that is

functionally correct

Method output attributes

Name Type Description

ServiceComposition List< CompositionPlan >

A set (possibly empty)

containing new service

compositions that are consistent

with the user‘s security policy.

This may include service

compositions that differ from

the input composition in terms

of security properties (and

potentially functional properties

too)

Dependency with other

components

This method enables the Secure Composition Planner Module to interact

with the Service Composition Framework, the Service Runtime

Environment, the Security Property Determination Module and the

Trustworthiness Component.

4.1.7 Security Policy Monitoring Module

Description

The Security Policy Monitoring Module facilitates for the following main functionalities:

 It supports runtime usage of security contracts

 It derives monitoring rules from security contracts

 It updates the contracts status based on relevant events

 It responds to contract violations

Limitations and Restrictions

The Security Policy Monitoring Module raises no limitations and restrictions.

Interfaces

The Security Policy Monitoring Module exposes the following two methods for the

ISecurityPolicyMonitoring interface:

Method Name getContract

D5.1: ANIKETOS platform design and platform basis implementation 59

Method

Definition/Description

This method gets agreed Contract and derives monitoring rules from this

contract

Method input attributes

Name Type Description

Contract String Agreed Contract

Method output attributes

Name Type Description

-

Dependency with other

components

This method is invoked by the Aniketos Environment components to get

the contract attributes/rules

Method Name getRealData

Method

Definition/Description

This method gets the real data required for monitoring from the Service

Runtime Environment. The real data are then used for monitoring checks.

Method input attributes

Name Type Description

RealData String
Real data required for

monitoring

Method output attributes

Name Type Description

-

Dependency with other

components

This method is invoked by Service Runtime Environment.

4.1.8 Threat Response Recommendation Module

Description

The Threat Response Recommendation Module works mainly during the validation phase. When it is

invoked by the CMM, it checks for the compliance of a service towards the contract, and recommends

for re-composition or reconfiguration if needed.

At design-time, during service validation, the CMM performs a verification of the secure composition

sent by the Secure Composition Planner Module to the Service Composition Framework of the

Environment. The Threat Response Recommendation Module is invoked by the CMM (which acts as

proxy) at that stage, before the contract negotiation. The only possible checking at that stage is to

verify that the selected services as composed by the Secure Composition Planner Module comply with

the specification.

At run-time, during the service validation, a validateService() is sent by the (re) composition agent to

the Service Runtime Environment, which is forwarded as an analyseSecureComposition() to the CMM

for service validation. Still during run-time, any change or threat triggers an

analyseSecureComposition() sent to the CMM for a service validation. The Threat Response

Recommendation Module is invoked by the CMM.

At run-time, for both service validation and service re-composition, the CMM checks the compliance

of the composed service towards the contract. Regarding the threats, it means that the running service,

as known through the monitoring controls, should comply with the patterns, the policies and the

60 D5.1: ANIKETOS platform design and platform basis implementation

monitoring controls stored in the contract. The Threat Response Recommendation Module gets the

Service ID from the CMM, collects all information corresponding to this ID from the logs, gets the

contracts from the Marketplace, and checks then the compliance of the service to the contract.

There are two main functionalities handled by the Threat Response Recommendation Module:

 Check the countermeasures of selected services towards the secure specification. These

functionalities enable the users of the community to add, update, or delete the threats and

associated countermeasures in the repository.

 Check the actual countermeasures of the running service at run-time towards the contract. These

functionalities enable the users of the community at design-time and the Threat response

recommendation module at run-time to get the threats and associated countermeasures in the

repository.

Limitations and Restrictions

The Threat Response Recommendation Module raises no limitations and restrictions.

Interfaces

The Threat Response Recommendation Module exposes the following two methods for the

IThreatResponseRecomm interface:

Method Name checkCountermeasuresImplemTwSpec

Method

Definition/Description

This method checks the compliance of a service to the

countermeasures specified in the Security specification. At that stage,

only patterns and some of the security policies can be checked, i.e.

countermeasures where counterMType is set to pattern or policy.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

(counterMID,

nonComplianceTwSpecDesc)
List (Integer, String)

A list of non-compliant

countermeasures, i.e.

countermeasures which are not

implemented by the selected

services.

If the list is null, then the

service is compliant to its

specification.

CounterMID is the unique

identifier for the

countermeasure not

implemented.

nonComplianceTwSpecDesc is

the description of the non-

compliance for a given

CounterMID

Dependency with other

components

This method serves the CMM. It needs to send requests to the

Marketplace for service discovery and a request to the Threat

D5.1: ANIKETOS platform design and platform basis implementation 61

Repository Module for getting the countermeasures.

Method Name checkCountermeasuresImplemTwContract

Method

Definition/Description

This method checks the compliance of a service to the

countermeasures specified in the Security specification. At that stage,

all the patterns, security policies and monitoring controls can be

checked

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

(counterMID,

nonComplianceTwSpecDesc)
List (Integer, String)

A list of non-compliant

countermeasures, i.e.

countermeasures which are not

implemented by the selected

services.

If the list is null, then the

service is compliant to its

specification.

CounterMID is the unique

identifier for the

countermeasure not

implemented.

nonComplianceTwSpecDesc is

a description of the non-

compliance for a given

CounterMID.

Dependency with other

components

This method serves the CMM. It needs to send requests to the

Marketplace for service discovery and for getting the service

descriptors. It also needs a request to the Service Threat Monitoring

Module for getting the service logs and a request to the Threat

Repository Module for getting the countermeasures.

4.1.9 Service Threat Monitoring Module

Description

The Service Threat Monitoring Module is invoked at deployment-time when a new service is deployed

and registers to the monitoring service according the specifications reported in the contract.

The Service Threat Monitoring Module acts mostly as a daemon at run-time in charge of gathering

monitoring controls for the deployed services, to store the gathered information in a log, and to send

alerts to the notification module in case:

 The threat level has changed,

 The contract has been violated with respect to the implementation of the requested

countermeasures.

62 D5.1: ANIKETOS platform design and platform basis implementation

Note that only the controls related to the threat countermeasures are monitored by the Service Threat

Monitoring Module. The security properties and trustworthiness have independent monitoring

modules able to send notifications in case of a change in the security properties resp. the trust level,

and in case of a contract violation.

The Service Threat Monitoring Module interacts with the following components:

 The Model Transformation Module,

 The Marketplace, directly or through the Model Transformation Module,

 The Service Monitoring Module of the Environment, and any source of monitoring and events,

 The Notification Module

At deployment-time, the new composed service registers for monitoring. The Service Composition

Framework sends a registerForAlert(Registration) to the Notification Module which sends back a

bindServiceThreat(Service, AniketosCompliantSpecification) to the Model Transformation Module.

The Model Transformation Module in turn extracts the monitoring controls from the

AniketosCompliantSpecification and sends a bindServiceToThreatMonitoring(Service, counterMID,

counterMDesc) to the Service Threat Monitoring Module. A symmetric unBind request shall be sent

when the service is removed from the Aniketos Marketplace, or when it is modified.

At run-time, the Service Threat Monitoring Module receives events from the Service Monitoring

Module of the Environment, based on the monitoring of a composing service. The Service Threat

Monitoring Module then diagnoses for a change in the threat level or for a contract violation of a

Service as registered in the Marketplace, and sends back an alert to the Notification module.

There are four main functionalities handled by the Service Threat Monitoring Module:

 Registering (bind and unbind) the list of the services to be monitored as well as the mapping of the

monitoring control towards the composing services and the monitoring agents.

 Logging events and performing the diagnosis of a change of threat level or of a contract violation

 Sending the requested logs to the Service Threat Recommendation Module

 Sending alerts to the Notification Module

Limitations and Restrictions

The Service Threat Monitoring Module raises no limitations and restrictions.

Interfaces

The Service Threat Monitoring Module exposes the following two methods for the

IThreatMonitoring interface:

Method Name bindServiceToThreatMonitoring

Method

Definition/Description

This method registers to the monitoring module a Service with the

associated monitoring controls for the service

Method input attributes

Name Type Description

counterMID String The unique identifier of

monitoring control to which the

service subscribes.

counterMDesc String

Description of the

countermeasure, either in plain

text or as a pattern.

ServiceID ServiceID
The identification of service

specification in the Marketplace

D5.1: ANIKETOS platform design and platform basis implementation 63

Method output attributes

Name Type Description

eventType eventType The event type

momSource String The monitoring source

composingService List
The list of the composing

services

Dependency with other

components

This method serves the Model Transformation Module, i.e. receives the

command to register a service for it to be monitored. The Model

Transformation Module gets a registerForAlert(Registration) request from

the Notification Module and transforms it into a

bindServiceToThreat(Service, Threat). It needs a call to the Marketplace

or the Model Transformation Module in order to be able to decompose the

request on the Service in elementary monitoring constraints on the

composingServices. It also needs to register towards the monitoring

sources of the events, i.e. the Service Monitoring Module of the

Environment or any other Aniketos monitoring module.

Method Name unBindServiceToThreatMonitoring

Method

Definition/Description

This method removes from the monitoring module a Service with the

associated monitoring controls for the service

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

eventType eventType The event type

momSource String The monitoring source

composingService List
The list of the composing

services

Dependency with other

components

This method serves the Aniketos Marketplace or the Model

Transformation Module, i.e. receives the command to remove the service

from the list of services to be monitored.

Method Name getServiceLog

Method

Definition/Description

This method sends a selection of the event logs related to a given Service,

optionally a given countermeasure and starting from a given past date.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

counterMID String
Optional

The monitoring control ID of

64 D5.1: ANIKETOS platform design and platform basis implementation

the event which should be sent

as defined in the specifications

and the threat repository,

corresponding to the event.

fromDate, fromTime String, String

The Date and time from which

all event regarding the Service

and possibly the

countermeasure should be sent.

Method output attributes

Name Type Description

logfile

(composingService, monSource,

counterMID, eventType, eventDesc,

date, time)

A list of logs where

composingService is the

composingService counterMID

the countermeasure, eventType

the type of event, eventDesc the

description of the event, date

and time the date and time of

the event concerned by the log.

Dependency with other

components

This method serves the Service Threat Recommendation Module

The Service Threat Monitoring Module exposes the following method for the

MonitoringServiceAccess interface:

Method Name threatEvent

Method

Definition/Description

This method receives an event from the Service Monitoring Module of the

Environment and logs it.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

composingService String
The service on which the event

has been detected.

serviceProvider String

The service providers of the

service on which the event has

been detected.

monSource String
Monitoring source element

which sent the Event

couterMID String

Optional

The monitoring control ID as

defined in the specifications and

the threat repository,

corresponding to the event.

eventType String
An ID code reported by the

monitoring source

eventDesc String

More contextual information

reported by the source

(for example, ContextChange,

ServiceChange)

D5.1: ANIKETOS platform design and platform basis implementation 65

date String Date of the event

time String Time of the event

Method output attributes

Name Type Description

-

Dependency with other

components

This method serves the Service monitoring module of the Environment,

i.e. receives the event and treats it. All the events received are logged and

the output of the method might trigger an alert.

The Service Threat Monitoring Module exposes the following method for the IAlert interface:

Method Name alert

Method

Definition/Description

This method sends an alert to the Notification module after diagnosis of a

change or threat.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

composingService String
The service on which the event

has been detected.

serviceProvider String

The service providers of the

service on which the event has

been detected.

monSource String
Monitoring source element

which sent the Event

counterMID String

Optional

The monitoring control ID as

defined in the specifications and

the threat repository,

corresponding to the event.

eventType String
An ID code reported by the

monitoring source

eventDesc String
More contextual information

reported by the source

date String Date of the event

time String Time of the event

Method output attributes

Name Type Description

service Service

the service on which the event

is related as referenced in the

MarketPlace

counterMID String

Optional

The monitoring control ID as

defined in the specifications and

the threat repository,

corresponding to the event.

alertType String Any type of alert to be sent to

66 D5.1: ANIKETOS platform design and platform basis implementation

the Notification module
1
:

 ServiceChange

 ContextChange

 ThreatLevelChange

 ContractViolation

alertvalue String Value of monitored parameter

alertDesc String Description of the Alert

Dependency with other

components

This method serves the Service monitoring module of the Environment,

i.e. receives the event and treats it.

4.1.10 Notification module

Description

As indicated in D1.2, the notification mechanism can be based on publish/subscribe paradigm. In such

case, the Notification Module can forward notifications to relevant subscribers according to the

subscription criteria, such as the alert/notification types and thresholds. The subscribers can be

relevant services or end-users in the environment, or other Aniketos platform components. For

example, change notifications can be sent to the Service Threat Monitoring Module for threat analysis.

The Notification Module interacts with the following components:

 The Service Monitoring Module of the Environment, the Service Threat Monitoring Module, the

Security Policy Monitoring Module, the Trustworthiness Component, and any source of

monitoring and events,

 The CMM,

 The Model Transformation Module,

 Any component or service which has registered for alerts.

At run-time, each time a monitoring module from the Aniketos environment (i.e. the Service Threat

Monitoring Module, the Security Policy Monitoring Module or the Trustworthiness Component)

diagnoses a change or a contract violation, it sends an alert to the Notification Module. The

Notification Module sends then:

 Either the alert in a publish/subscribe mode to the components or services which have subscribe to

it according a given threshold. This goes along with a registration interface to the

publish/subscribe mechanism. This is the IAlert interface.

 Or an analyseSecureComposition(SecurityVerificationRequest) to the CMM. This is the

ISecurityVerification interface.

After a service is re-adapted by means of the Model Transformation Module, which generates a

generateSecurityDescriptor(AniketosCompliantSpecification): SecurityDescriptor, the Notification

Module will notify the runtime environment about changes related to trust and security properties as

well as threat situation. This is the INotification interface.

There are three main functionalities handled by the Notification Module:

 Receive alerts, send alerts in a publish/subscribe mode, and register/unregister the services or

module to that service,

 Notify the Service run-time environment for a reconfiguration or a re-composition

1
 Note that the Service Threat Monitoring module will only send these types of alerts. The other types are taken

in charge by other Aniketos platform components

D5.1: ANIKETOS platform design and platform basis implementation 67

 Send verification requests to the CMM and/or SPDM when alerts are received.

Limitations and Restrictions

The Notification Module raises no limitations and restrictions.

Interfaces

The Notification Module exposes the two interfaces.

For the IAlert interface the following four methods are exposed:

Method Name receivedAlert

Method

Definition/Description

This method receives an alert from the Service Threat Monitoring Module

(and possibly the Trustworthiness Module and the Security Policy

Monitoring Module) in a Request/Reply mode. As a response it publishes

an alert in a Publish/Subscribe mode

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

counterMID String

The monitoring control ID as

defined in the specifications and the

threat repository, corresponding to

the event.

alertType String

Any type of alert to be sent to the

Notification module:

 ServiceChange

 ContextChange

 ThreatLevelChange

 SecurityPropertyChange

 TrustLevelChange

 ContractChange

 ContractViolation

AlertValue String A value of monitored parameter

AlertDesc String A description of the Alert

Method output attributes

Name Type Description

-

Dependency with other

components

Receives alerts from Service threat monitoring module (and possibly the

Trustworthiness Component and the Security policy monitoring module)

Method Name publishedAlert

Method

Definition/Description

This method publishes an alert in a Publish/Subscribe mode

Method input attributes

Name Type Description

-

Method output attributes

68 D5.1: ANIKETOS platform design and platform basis implementation

Name Type Description

alertChannelID String

Instead of sending the list of the

subscribers in the head of the

message, the publisher and the

subscriber will share a channel ID

for the type of alert

(alertChannelID) of the same type

of priorities. If there are two

alertThresholds for the same

alertType, two alertChannelIDs are

needed.

ServiceID ServiceID
The identification of service

specification in the Marketplace

counterMID String

The monitoring control ID as

defined in the specifications and the

threat repository, corresponding to

the event.

alertType String

Any type of alert to be sent to the

Notification module:

 ServiceChange

 ContextChange

 ThreatLevelChange

 SecurityPropertyChange

 TrustLevelChange

 ContractChange

 ContractViolation

AlertValue String A value of monitored parameter

AlertDesc String A description of the Alert

Dependency with other

components

Publishes alerts to any module or service which has subscribed to the alert

with a given threshold

Method Name registerForAlert

Method

Definition/Description

This method registers a service to receive alerts in a publish/subscribe

mode

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

alertType

ServiceChange

ContextChange

TrustLevelChange

ThreatLevelChange

SecurityPropertyChange

ContractChange

ContractViolation

Any type of alert to be sent to

the Notification module

alertThreshold String
The threshold above which the

alert should be sent.

Method output attributes

D5.1: ANIKETOS platform design and platform basis implementation 69

Name Type Description

alertChannelID alertChannelID

Instead of sending the list of the

subscribers in the head of the

message, the publisher and the

subscriber will share a channel

ID for the type of alert

(alertChannelID) of the same

type of priorities. If there are

two alertThresholds for the

same alertType, two

alertChannelIDs are needed.

Dependency with other

components

When the Service Composition Framework or the Model Transformation

Module sends a registerForAlert request, the Notification Module should

also send a bindServiceToThreat to the Service Threat Monitoring

Module.

Method Name unRegisterForAlert

Method

Definition/Description

This method unregisters a service from the publish/subscribe service for

the alerts

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

alertType

ServiceChange

ContextChange

TrustLevelChange

ThreatLevelChange

SecurityPropertyChange

ContractChange

ContractViolation

Any type of alert to be sent to

the Notification module

alertThreshold String
The threshold above which the

alert should be sent.

Method output attributes

Name Type Description

alertChannelID alertChannelID

Instead of sending the list of the

subscribers in the head of the

message, the publisher and the

subscriber will share a channel

ID for the type of alert

(alertChannelID) of the same

type of priorities. If there are

two alertThresholds for the

same alertType, two

alertChannelIDs are needed.

Dependency with other

components

This method depends on the Aniketos Marketplace directly or through the

Model Transformation Module for it to warn for Service unsubscription.

70 D5.1: ANIKETOS platform design and platform basis implementation

For the INotification interface the following method is exposed:

Method Name notify

Method

Definition/Description

When a new composition or configuration has been prepared by the

Model transformation module, the notification module passes the

information to the Run-time Environment

Method input attributes

Name Type Description

-

Method output attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

SecurityDescriptor String

The security descriptor of the

service as computed by the

Model transformation module.

Dependency with other

components

This method sends a request to the Service Runtime Environment

For the ISecurityVerification interface the following method is exposed:

Method Name analyseSecureComposition

Method

Definition/Description

This method sends a request to the Verification Module for it to verify

the compliance of the Service at run-time

Method input attributes

Name Type Description

SecurityVerificationRequest String

Includes the reference to the

service.

Triggers a verification by the

Security verification module

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables interaction with the CMM

4.1.11 Community Support Module

Description

The Community Support Module is a content repository giving support to all Aniketos stakeholders,

such as service developers, service composers and end users, with material, including patterns and

guidelines for developing trust and security properties in composite service engineering and

establishing trust among end users, as well as demonstration material to enable them realising the use

of the Aniketos platform into their service engineering practices.

D5.1: ANIKETOS platform design and platform basis implementation 71

Limitations and Restrictions

The Community Support Module raises the following limitations and restrictions:

 H/W limitations and requirements: None

 S/W limitations and requirements: PHP, MySQL, Drupal

 Operating System: any operating system capable of running PHP, MySQL and Drupal.

Interfaces

The Community Support Module exposes the following three methods for the

CommunitySupportService interface:

Method Name integrateTool

Method

Definition/Description

This method integrates a software tool into to Community Support

Module. Tools will be used by developers.

Method input attributes

Name Type Description

tool Tool

Software and reference material

for a tool to be used by

developers

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Community Support Module through the Marketplace

Method Name maintainSoftwareAndService

Method

Definition/Description

This method updates the software or reference information for a tool in the

Community Support Module.

Method input attributes

Name Type Description

tool Tool

Software and reference material

for a tool to be used by

developers

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Community Support Module through the Marketplace

Method Name provideTrustworthiness

72 D5.1: ANIKETOS platform design and platform basis implementation

Method

Definition/Description

This method provides trustworthiness attributes to a service.

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

trustworthiness Trustworthiness Trustworthiness attributes

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Community Support Module through the Marketplace

4.1.12 Threat Repository Module

Description

The Threat Repository Module is a database containing a list of threats and their associated

countermeasures. According to the precisions on countermeasures proposed above, the

countermeasures stored in the Threat Repository can be either security policies, or security patterns or

monitoring controls.

The Threat Repository Module interacts with three other components:

 The Community Support Module

 The Socio-technical Security Modelling Tool

 The Threat Response Recommendation Module

The Threat Repository Module is used by the community to dynamically update the repository of

threats and countermeasures.

It is involved in the specification of a composed service, where the Socio-technical Security Modelling

Tool sends a getCountermeasures(ServiceSpecification, null, null): (ThreatIDs, counterMID,

counterMType, counterMDesc) request for a given service specification. The Threat Repository

Module gets the request and sends back adapted answers to the Socio-technical Security Modelling

Tool for it to build an Aniketos compliant specification.

The Threat Repository Module is also called at run-time by the Threat Response Recommendation

Module in order to provide the responses to the threats, that is to say to find the countermeasures to the

threats.

There are two main functionalities handled by the Threat Repository Module:

 Set the information stored in the repository. These functionalities enable the users of the

community to add, update, or delete the threats and associated countermeasures in the repository.

 Get the information stored in the repository. These functionalities enable the users of the

community at design-time and the Threat Response Recommendation Module at run-time to get

the threats and associated countermeasures in the repository.

Limitations and Restrictions

The Threat Repository Module raises no limitations and restrictions, but reserves dependencies to the

external tool used to provide to envisaged functionalities.

D5.1: ANIKETOS platform design and platform basis implementation 73

Interfaces

The Threat Repository Module exposes the ThreatRepositoryService interface through the following

seven methods:

Method Name addThreat

Method

Definition/Description

This method is used to add the threats in the Threat Repository

Method input attributes

Name Type Description

ServiceSpecifications ServiceSpecification
Optional: ServiceSpecifications

to which the threat applies

SecuritySpecifications SecuritySpecification

Optional:

SecuritySpecifications to which

the threat applies

threatDesc String
Description of the threat in plain

text

counterMIDs counterMID
Optional: Countermeasures that

can apply to the threat

Method output attributes

Name Type Description

threatID String A unique identifier for the threat

Dependency with other

components

It serves the Community Support Module to enable Aniketos stakeholders

to add threats to the Repository

Method Name updateThreat

Method

Definition/Description

This method is used to update the threats in the Threat Repository

Method input attributes

Name Type Description

threatID String A unique identifier for the threat

ServiceSpecifications ServiceSpecification
Optional: ServiceSpecifications

to which the threat applies

SecuritySpecifications SecuritySpecification
Optional: SecuritySpecifications

to which the threat applies

threatDesc String
Description of the threat in plain

text

Method output attributes

Name Type Description

-

Dependency with other

components

It serves the Community Support Module to enable Aniketos stakeholders

to update threats on the Repository

Method Name deleteThreat

74 D5.1: ANIKETOS platform design and platform basis implementation

Method

Definition/Description

This method is used to delete the threats in the repository

Method input attributes

Name Type Description

ThreatID String A unique identifier for the threat

Method output attributes

Name Type Description

-

Dependency with other

components

It serves the Community Support Module to enable Aniketos stakeholders

to delete threats from the Repository

Method Name getThreats

Method

Definition/Description

This method gets the threats in the repository

Method input attributes

Name Type Description

ServiceSpecifications ServiceSpecification
Optional: ServiceSpecifications

to which the threat applies

SecuritySpecifications SecuritySpecification

Optional:

SecuritySpecifications to which

the threat applies

Method output attributes

Name Type Description

threatID threatID
The unique identifier for the

threat

threatDesc String
A description of the threat in

plain text

counterMIDs String
Optionally the countermeasures

that can apply to the threat

Dependency with other

components

It serves the Community Support Module to enable Aniketos stakeholders

to get threats to the Repository. It also enables the Socio-technical security

modelling tool to look-up threats on the Repository

Method Name addCountermeasure

Method

Definition/Description

This method is used to add a countermeasure in the Threat Repository

Method input attributes

Name Type Description

relatedThreats threatID
Threats to which the

countermeasure applies

counterMType Policy, pattern, monitoring control The type of the countermeasure

counterMDesc string
Description of the

countermeasure, either in plain

D5.1: ANIKETOS platform design and platform basis implementation 75

text or as a pattern

Method output attributes

Name Type Description

counterMID String
A unique identifier for the

countermeasure

Dependency with other

components

It serves the Community Support Module

Method Name updateCountermeasure

Method

Definition/Description

This method is used to update a countermeasure in the Threat Repository

Method input attributes

Name Type Description

counterMID String
A unique identifier for the

countermeasure

relatedThreats ThreatID
Threats to which the

countermeasure applies

counterMType Policy, pattern, monitoring control

The type of the countermeasure

according to the proposed

classification in section 5.2.

counterMDesc String

Description of the

countermeasure, either in plain

text or as a pattern

Method output attributes

Name Type Description

-

Dependency with other

components

It serves the Community Support Module

Method Name deleteCountermeasure

Method

Definition/Description

This method is used to delete a countermeasure from the Threat

Repository

Method input attributes

Name Type Description

counterMID String
A unique identifier for the

countermeasure

Method output attributes

Name Type Description

-

Dependency with other

components

This method serves the interaction with the Community Support Module

Method Name getCountermeasures

76 D5.1: ANIKETOS platform design and platform basis implementation

Method

Definition/Description

This method is used to get from the Threat Repository the list of the

countermeasures and their attributes which harden a given

ServiceSpecification, a given SecuritySpecification or a given Threat

Method input attributes

Name Type Description

ServiceSpecification ServiceSpecification
Optional: a ServiceSpecification

to be hardened

SecuritySpecification SecuritySpecification

Optional: a

SecuritySpecification to be

hardened

ThreatID String
Optional: a Threat to be

hardened

Method output attributes

Name Type Description

countermeasures (ThreatIDs, counterMID,

counterMType, counterMDesc)

The countermeasures which

correspond to a

ServiceSpecification, or a

SecuritySpecification, or a

ThreatID, as well as the full

attributes of the

countermeasures and the

ThreatIDs they counter.

Dependency with other

components

This method serves the interaction with the:

 Community Support Module

 Threat Response Recommendation Module

 Socio-technical Security Modelling Tool

 Service Threat Monitoring Module

4.1.13 Marketplace

Description

This module includes a set of services supporting Aniketos marketplace. The marketplace

complements existing service registry technology, such as UDDI, with specific information on trust

and security properties. It acts as a service broker for service consumer giving specific requirements

on trustworthiness and security properties. Service providers must be able to upload their offered

specifications as service descriptors so that their services are made available for discovery.

The Marketplace includes the logical Environment component (Service Registry) and mechanism

(Service Discovery Mechanism) that have been specified in D1.2.

The Marketplace will consist of two sub-modules:

 A web service that will allow remote clients to register and discover services

 A web platform, based on Drupal CMS, which will present a friendly User Interface for accessing

Marketplace services. This web platform will also be the container of other Aniketos components,

such as Community Support Module and Training Material Module

Limitations and Restrictions

The Web Service sub-module of the Marketplace raises the following limitations and restrictions:

D5.1: ANIKETOS platform design and platform basis implementation 77

 H/W limitations and requirements: None

 S/W limitations and requirements: OSGi bundles component

 Operating System: any operating system capable of running JVM and an OSGi container

The Web Platform sub-module of the Marketplace raises the following limitations and restrictions:

 H/W limitations and requirements: None

 S/W limitations and requirements: PHP, MySQL, Drupal

 Operating System: any operating system capable of running PHP, MySQL and Drupal

Interfaces

The Marketplace exposes the following three methods for the IMarketplace interface:

Method Name announceService

Method

Definition/Description
This method registers a service in the Marketplace

Method input attributes

Name Type Description

marketPlaceAnnounceme

nt
MarketPlaceAnnouncement

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the service providers to publish their services into

the Marketplace

Method Name discoverService

Method

Definition/Description

This method discovers services that match specific criteria

Method input attributes

Name Type Description

discoveryRequest DiscoveryRequest
A class containing the request

for service discovery

Method output attributes

Name Type Description

Service List
List of services that match the

criteria

Dependency with other

components

This method enables the Marketplace to offer service discovery

functionality to all the other Aniketos Platform and Environment

components

Method Name getSecurityDescriptor

Method This method gets the security descriptor for a specific service

78 D5.1: ANIKETOS platform design and platform basis implementation

Definition/Description

Method input attributes

Name Type Description

ServiceID String

The identification number of a

specific service in the

Markeyplace

Method output attributes

Name Type Description

SecurityDescriptor SecurityDescriptor The service security descriptors

Dependency with other

components

This method enables the Marketplace to provide the security descriptors of

a specific service to all the other Aniketos Platform components

4.1.14 Training Material Module

Description

The Training Material Module contains training and individual learning materials that enable the

uptake of Aniketos practices and results and the development and delivery of secure and trustworthy

services.

Limitations and Restrictions

The Training Material Module raises the following limitations and restrictions:

 H/W limitations and requirements: None

 S/W limitations and requirements: PHP, MySQL, Drupal

 Operating System: any operating system capable of running PHP, MySQL and Drupal

Interfaces

The Training Material Module exposes the following three methods for the TrainingMaterialService

interface:

Method Name addReferenceMaterial

Method

Definition/Description

This method is used to add a reference material item to the Training

Material Module

Method input attributes

Name Type Description

referenceMaterial ReferenceMaterial

It contains the reference

material to be added to the

Training Material Module

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Training Material Module

D5.1: ANIKETOS platform design and platform basis implementation 79

Method Name getReferenceMaterial

Method

Definition/Description
This method is used to get a reference material item from the Training

Material Module

Method input attributes

Name Type Description

name String Name of reference material item

Method output attributes

Name Type Description

referenceMaterial ReferenceMaterial

It contains the reference

material to be added to the

Training Material Module

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Training Material Module

Method Name removeReferenceMaterial

Method

Definition/Description
This method is used to remove reference material item from the Training

Material Module

Method input attributes

Name Type Description

name String Name of reference material item

Method output attributes

Name Type Description

-

Dependency with other

components

This method enables the Aniketos stakeholders to interact with the

Training Material Module

4.2 Environment components

This section describes the Aniketos Environment components, which, although they do not constitute

part of the Aniketos research work, they are necessary to realise the Aniketos platform components‘

functionalities.

4.2.1 Service Composition Framework

Description

The Service Composition Framework enables service composition, which entails functionalities like

service specification, service validation, service discovery, assembly and deployment of services. In

order to offer these functionalities, this component mainly uses the interfaces provided by three logical

components belonging to the Environment as depicted in D1.2: Service specification/planning

mechanism, Service validation mechanism and Service discovery mechanism (in cooperation with the

Marketplace).

80 D5.1: ANIKETOS platform design and platform basis implementation

Limitations and Restrictions

The Service Composition Framework raises limitations and restrictions, which are implied by the

external technologies adopted to provide the envisaged functionalities.

Interfaces

The Service Composition Framework exposes the following four methods for the

ServiceCompositionFrameworkInterface interface:

Method Name specifyService

Method

Definition/Description

This method creates the service specification of a composite service

Method input attributes

Name Type Description

Method output attributes

Name Type Description

ServiceSpecification ServiceSpecification

Specification of a

composed/component service,

or the planning or template

creation for service

composition.

Dependency with other

components

In order to obtain the ServiceSpecification, the Service Composition

Framework invokes Service specification/planning mechanism.

Method Name discoverAndSelectService

Method

Definition/Description

This method is used to discover services based on the trustworthiness and

security properties and select the set of service components that makes up

the composite service. This method returns a composition plan.

Method input attributes

Name Type Description

serviceQuery ServiceQuery

A query specifying

trustworthiness and security

properties to make the selection

of service components

Method output attributes

Name Type Description

compositionPlan Composition Plan

Dependency with other

components

This method enables the Aniketos developers to interact with the Service

Composition Framework

Method Name validateService

D5.1: ANIKETOS platform design and platform basis implementation 81

Method

Definition/Description
The method is used to validate the functional properties of the composed

service in terms of what it is supposed to do

Method input attributes

Name Type Description

populatedCompositionPl

an PopulatedCompositionPlan It is a composition plan

Method output attributes

Name Type Description

SecurityVerificationResul

t

String

Dependency with other

components

This method enables the Aniketos developers to interact with the Service

Composition Framework

Method Name AssembleAndDeployService

Method

Definition/Description

This method creates a runnable composite service instance based on the

service specification, and deploys the service to make it available

Method input attributes

Name Type Description

ServiceSpecification ServiceSpecification

Specification of a

composed/component service,

or the planning or template

creation for service

composition.

Method output attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Dependency with other

components

This method enables the Aniketos developers to interact with the Service

Composition Framework

4.2.2 Service Runtime Environment

This component is a runtime environment for the execution of services. It will be composed by the

following mechanisms:

 The Service Discovery Mechanism, which is used for service discovery, both for service

components with and without Aniketos support

 The Service Execution Mechanism, which is a mechanism for loading and executing a service

(part of the runtime environment)

 The Service Recomposition Mechanism, which is a mechanism to recompose services at runtime

(part of the runtime environment)

 The Service Adaptation Mechanism, which is a mechanism to adapt a service at runtime (part of

the runtime environment), such as changing security properties like the length of an encryption

key

82 D5.1: ANIKETOS platform design and platform basis implementation

 The Service Monitoring Module: functionality or service typically found in a runtime environment

that can be used to detect attacks, failure or other things that can trigger Aniketos activities

(notifications, recompositions, etc)

 The Context sensor: functionality or service that at runtime can be used to detect context changes

that can trigger Aniketos activities (e.g. change of user location)

This component is not the main part of the Aniketos development, but it is necessary to demonstrate

how existing techniques and tools in those areas, such as Music (provided by SINTEF) and PRRS

(provided by ATOS), can be integrated with the Aniketos platform with respect to the following

aspects:

 Security and trust in recomposition/adaptation of composite services.

 Monitoring and evaluation of trustworthiness and security violations of service contracts, also

considering contextual information such as change in operation conditions and users‘ behaviour.

 Runtime validation of secure service behaviour.

The Service Runtime Environment (SRE) is involved in:

 The Aniketos runtime service provision process: a Service Provider wants to deploy a service with

a specific service specification

 The Aniketos runtime service validation process: a Service Provider or a recomposition agent will

use this component to validate a service. The SRE will send an analyseSecureComposition request

to the Aniketos Verification Module

 The Aniketos runtime recomposition process: a recomposition agent will use this component to

discover and select a Service as well as negotiate a contract and assemble a new compose service.

The SRE will communicate with the Marketplace for the discovery mechanism. It will also send a

suggestSecureComposition request to the Secure Composition Planner Module and a request for

contract negotiation to the Verification Module and specifically the Contract Manager Module.

 The Aniketos runtime reconfiguration process: in this case, a recomposition agent will send a

request to adapt a service and the SRE will perform the adaptation and send an

analyseSecureComposition request to the Verification Module. Optionally, the SRE will send a

contract negotiation or update request to the Verification Module and specifically the Contract

Manager Module.

 The Aniketos runtime monitoring process: the SRE will invoke the Service Monitoring Module to

include a service in the monitoring process. The Service Monitoring Module will send notification

of threat events to the Service Threat Monitoring Module and will send alerts of context changes

to the Notification Module.

As said, two existing solutions can contribute to the above mentioned functionalities of SRE, which

are presented in the following sections.

4.2.2.1 PRRS

Description

The platform for runtime re-configurability of security (PRRS) provides run-time management of

Security and Dependability (S&D) solutions and monitoring of the system context. The objective of

the Aniketos Marketplace will be to provide service consumers with S&DServices (Security and

Dependability Services), i.e. services that assure a specific requirements on trust and security

properties. Consequently, Service Providers should include in the marketplace only S&DServices with

their offered specifications as service descriptors.

D5.1: ANIKETOS platform design and platform basis implementation 83

The security and dependability in services is what can be assured through the PRRS or SRF (Serenity

Runtime Framework)
2
. With that goal, service developers will have to deploy their services as SRF-

aware applications. In other words, they will design services whose security requirements will be

implemented (in a context-aware way) thanks to the S&DServices that PRRS can provide during run-

time. It is up to the SRF-aware service to initiate a request to the PRRS to obtain a S&DService to

satisfy its own security requirements. Once the S&DService has been deployed and is in use by the

SRF-aware service, the S&DService can be monitored at runtime by the PRRS platform.

At design-time:

 When a developer wants to create an S&DService, it will have to identify the security

requirements that this S&DService will satisfy. This step will be performed with the help of the

Socio-technical security modeling tool from the security needs.

 The PRRS stores S&DServices in a database called S&DLibrary. In essence, it is a repository

with a collection of S&DServices and S&Dsolutions that satisfy different possible security

requirements. Each solution will have associated
3

- The security properties that it provides (e.g. ―userAuthentication‖)

- The interfaces provided with that solution (e.g. an interface with a simple way to authenticate

users through a function called ―authentication‖ that results in a boolean value indicating if it

was successfully or not).

- The event capturer and event format that the S&DService needs to generate events in order

that security requirement can be monitored.

- The monitoring rules for that type of events.

- The context conditions (field ―preconditions‖) under which a S&DService or S&DSolution is

applicable or not.

It should be noted that MUSIC also takes into account the changes in properties and context at

runtime to select a service or another and the way of interaction is under study in Aniketos to

improve the reconfiguration mechanism.

The Service Composition Framework and/or Service Runtime Environment could provide an

interface to developers to show the different security requirements or properties, which

S&DSolution can be provided by the PRRS. This will be evaluated in a later phase.

It should also be noted that the PRRS provides a support library API and documentation needed to

help developers to build SRF-aware applications to deal with all the SRF and Executable

Component communication issues. It only needs to be imported by the client application and used

as needed.

 Once a new S&DService is ready, a S&D Service Provider will be able to include it in the

Aniketos Marketplace indicating the Aniketos security attributes that this S&DService can offer.

2
 We are going to use both terms indistinctly. SRF (Serenity Runtime Framework) is the name of the PRRS

(Platform for Run-time re-configurability of security) from the latest version.
3
 These S&DSolutions have to be implemented by S&D experts and stored in the S&DLibrary before being

accessible to developers

84 D5.1: ANIKETOS platform design and platform basis implementation

Figure 20: The logical architecture of PRRS

At run-time:

The PRRS is implemented as a service running in a device, on top of the operating system, and

listening to requests from SRF-aware applications.

 When a S&DService, that has been selected through the discovery mechanism provided by the

Service runtime environment, is activated (e.g. the service is instantiate and starts working), it will

create a connection with the SRF by means of the SRF_AP_AccessPoint class provided in the

support API and through the interface ECaccessPoint will send requests to the PRRS in order to

fulfill their security requirements.

NOTE: According to figure 45 in D1.2, a method serviceMonitor() would be required and used to

register from the Service Runtime Environment new composed services in the Monitoring Service.

By the moment PRRS only register services (SRF-aware applications) at runtime when they

request a pattern. A possible improvement for Aniketos could be to add an interface to register

S&DServices in the Service Monitoring.

 These requests are processed by the SRF Manager that will check the S&DLibrary and

ContextManager databases to automatically select the S&DService or S&DSolution that better

complies with the security properties requested taking into account the current context. The SRF

answers with an instance of the Executable Component handler (ECHandler) associated to the

selected solution and ready to be used by the application.

This ECHandler (it may be a web-service reference to the S&DService or it can be an

implemented JAR file4) will be the responsible:

- To provide the methods or operations that are called by the SRF-aware application (the

interfaces known at design-time and included in the application)

- To provide an event capturer for the SRF-aware application that will be used for the

generation of events to be sent to the PRRS to ensure the security property.

4
 The implementation of these S&DSolutions should be provided by Security Experts with their tests performed

and certifications to assure they provide Security and Dependability. This has been done prior to storing those

S&DServices and S&DSolutions in the S&DLibrary of the PRRS.

D5.1: ANIKETOS platform design and platform basis implementation 85

- To provide a reaction listener method in order the SRF-aware application can receive

notifications from the PRRS (e.g. in case of a violation in the security property)

 Once the ECHandler is created the process of the Service Monitoring provided by the PRRS will

start:

- The executable component will be registered in the ContextManager with the active pattern

(security solutions selected by the PRRS). This register could be used in Aniketos Notification

module or Threat repository module for the register of active services with their associated

security solutions (countermeasures) but this is still under evaluation.

- The executable component will generate/collect events in the Event Capturer and will send

them to the PRRS to be monitored. PRRS offers the possibility of receiving events by socket

or through a web service. These Event Capturers could be any S&DService (SRF-aware

application) running on any external component (e.g. any component from Aniketos

architecture) which triggers an Event to the interface provided by the PRRS.

- The PRRS will send the events received and the monitoring rule associated (defined in the

S&Dsolution) to the monitoring systems that will check it as also defined in the S&DSolution.

All the Aniketos platform components dealing with threat monitoring, trust monitoring and

security properties monitoring need to have access to the MonitoringServiceAccess interface

of PRRS in this context.

- The PRRS will check periodically the different monitoring services in order to detect rule

violations by the events. In that case, the event will be stored in the ContextManager database

and a notification will be sent to the S&DService that was registered and is the source of that

event. So, that application will be able to react and e.g. to invoke again the security solution

because other implementation could be more suitable. A possible improvement for Aniketos

would be to send this notification from PRRS to the Notification module or even include in

PRRS a mechanism to register components that have to be notified. This will be evaluated in a

later phase.

 The PRRS provides a Console of monitoring for the Service runtime environment. This console

will show:

- The monitoring services available

- The patterns that are active

- The events that have violated some rule

It is a matter of future discussions on whether this Console should be integrated in the Service

Runtime Environment with the GUI provided by MUSIC.

Limitations/Requirements:

The PRRS raises the following limitations and restrictions:

 H/W limitations and requirements: None

 S/W limitations and requirements for the Service Monitoring Module:

- Developed in Java, making use of client-server architecture

- MySQL

 Operating System for the Service Monitoring Module: Windows

Interfaces

The PRRS for the Service Monitoring Module implements the following interfaces

86 D5.1: ANIKETOS platform design and platform basis implementation

Figure 21: The interfaces of the Service Monitoring Module

For the IMonitoring interface, the following method is exposed:

Method Name sendEvent

Method

Definition/Description

This method is used by applications to send events to be monitored

Method input attributes

Name Type Description

Event String
String form of the XML

representation of an Event

Method output attributes

Name Type Description

-

Dependency with other

components

S&DServices and external components that trigger events to be

monitored.

For the IServiceRegister interface, the following method is exposed:

Method Name serviceMonitor

Method

Definition/Description

This method is used by the Service Runtime Environment to register new

Services in the monitoring service

NOTE: Individual services developed like SRF-aware applications are

automatically registered in the PRRS monitoring service when they

request some S&Dsolution at runtime

Method input attributes

Name Type Description

ServiceID ServiceID
The identification of service

specification in the Marketplace

Method output attributes

Name Type Description

-

Dependency with other -

D5.1: ANIKETOS platform design and platform basis implementation 87

components

For the ECAccessPoint
5
 interface, the following three methods are exposed:

Method Name requestSolution

Method

Definition/Description

This method is used by applications to request an S&Dsolution to the

PRRS. An executable component handler will be returned

Method input attributes

Name Type Description

solution String
String with a pattern to search

for the solution

Method output attributes

Name Type Description

EC handler

Dependency with other

components

S&DServices

Method Name callOperation

Method

Definition/Description

This method is used to call an operation provided by an executable

component. It returns a String of bytes

Method input attributes

Name Type Description

operation String
Operation provided in the

S&Dsolution that is invoked.

arguments Map
List of arguments for the

operation

Method output attributes

Name Type Description

 Bytes[]

Dependency with other

components

S&DServices

Method Name callOperationObjec

Method

Definition/Description

This method is used to call an operation provided by an executable

component. It returns a serializable object

Method input attributes

Name Type Description

operation String Operation provided in the

5
 To be used by SRF-aware applications by means of the SRF_AP_AccessPoint and

SerenityExecutableComponent_AP classes provided by the PRRS API.

88 D5.1: ANIKETOS platform design and platform basis implementation

S&Dsolution that is invoked.

arguments Map
List of arguments for the

operation

Method output attributes

Name Type Description

 Object

Dependency with other

components

S&DServices

For the MonitoringServiceAccess interface, the following four methods are exposed:

Method Name sendMonitoringRules

Method

Definition/Description

This method is used to send monitoring rules and events from the PRRS to

the monitoring system that will check the rule

Method input attributes

Name Type Description

monitorAddress String
Address of the monitoring

system

userName String Credentials

password String Credentials

ruleInput String Monitoring rule to be sent

Method output attributes

Name Type Description

resultMonitoring Boolean
The result of sending the

monitoring rules

Dependency with other

components

-

Method Name sendEventToMonitor

Method

Definition/Description

This method is used to send event to be monitored from the PRRS to the

monitoring system that will check the rule.

Method input attributes

Name Type Description

monitorAddress String
Address of the monitoring

system

userName String Credentials

password String Credentials

eventInput String Event to be sent

Method output attributes

Name Type Description

resultMonitoring Boolean The result of sending the event

D5.1: ANIKETOS platform design and platform basis implementation 89

for monitoring

Dependency with other

components

-

Method Name checkMonitoringRule

Method

Definition/Description

This method is used to check if a rule has been violated in the monitoring

system. In that case a message is returned to the PRRS with the

information related.

Method input attributes

Name Type Description

monitorAddress String
Address of the monitoring

system

userName String Credentials

password String Credentials

ruleInput String Rule to be checked

Method output attributes

Name Type Description

resultCheck String
The result after checking the

rule

Dependency with other

components

-

Method Name unsubscribeMonitoringRules

Method

Definition/Description

This method is used to unsubscribe a monitoring rule in a monitoring

system

Method input attributes

Name Type Description

endPointUrl String
End point with the monitoring

system

userName String Credentials

password String Credentials

input String Rule to be unsubscribed

Method output attributes

Name Type Description

resultUnsubscribe Boolean
The result from unsubscribing

from monitoring rules

Dependency with other

components

-

90 D5.1: ANIKETOS platform design and platform basis implementation

4.2.2.2 MUSIC

Description

MUSIC framework can play two roles within Aniketos:

 It can be primarily used as an example of the service runtime environment, with functionalities

like service re-composition mechanism, service execution mechanism, service adaptation

mechanism and context sensors.

 It can also be used at design time as service composition framework and service planning

mechanism.

Limitations/Requirements:

MUSIC raises the following limitations and restrictions:

 H/W limitations and requirements: None

 S/W limitations and requirements: Java 1.4 or Java ME CDC, OSGi

 Operating System: MUSIC can run over Windows, Linux, Windows Mobile and Android devices

Interfaces

MUSIC framework consists of the MUSIC studio for developing applications and the MUSIC

middleware for running applications. It is possible for the MUSIC studio to interact with Aniketos at

design time by looking up the threat response recommendations and incorporating them into the

MUSIC UML-based models. However, this is not the focus of the current stage and will not be

considered at this stage.

Figure 22: The runtime interfaces of MUSIC towards Aniketos

Focusing on the use of MUSIC middleware as the runtime environment for Aniketos the interfaces

projected in Figure 22 can be considered. Thus, MUSIC uses the following interfaces provided by

Aniketos platform:

 IAlert: this interface is used to register a service with the Notification Module when a service is

deployed. The method used is registerForAlert(Registration):void.

 IMarketplace: this interface is used to publish a service in Aniketos Marketplace (method:

announceService(MarketplaceAnnouncement):void) and to discover a service from the

Marketplace (method: discoverService(DiscoveryRequest):DiscoveryResponse).

MUSIC offers the following interfaces:

 INotification: this interface is used to receive Aniketos notification at runtime. The method is

publishedAlert(): alertChannelID, Service, counterMID, alertType, alertValue, alertDesc.

For the INotification interface, the following method is exposed:

Method Name alert

Method

Definition/Description

MUSIC runtime receives alert about changes of trust level, threat level

and security properties of the registered services

cmp MUSIC interfaces for runtime env ironment

IAlert

IMarketplace

MUSIC framework as

runtime env ironment
INotification

IAlert

IMarketplace

D5.1: ANIKETOS platform design and platform basis implementation 91

Method input attributes

Name Type Description

alert Alert

Contains information about the

alert type (valid types: Trust

level change, Threat level

change and Security property

change), notifier and receiver of

the message as well as the

description.

Method output attributes

Name Type Description

-

Dependency with other

components

Basically, it is the Aniketos Notification module that invokes this method

to pass notifications to MUSIC middleware

4.2.3 Identity Management Service

The Identity Management Service is a specific mechanism that is exploited to allocate trust to

identifiable entities. It runs in the environment, but accessed by the Aniketos platform. The

implementation of Identity Management (IdM) will be based either on internal method(s) or by

exploitation of external Identity Provider (IdP) services.

In order to better focus on this service and the relevant mechanisms that are necessary for identity

management, one should consider the structure of the target solution. The Aniketos platform is

composed by three main support blocks: design-time, run-time and community. Design-time support is

locally installed in Integrated Development Environments (IDE) of Service Developers. Run-time

support is installed locally in the runtime environment of Service Providers. Community support is the

unique centralized platform entity which will be used by all the actors involved, including Service

Developers, Service Providers and End Users.

Limitations/Requirements:

The IdM raises limitations and restrictions, which are implied by the external components adopted to

support the envisaged functionalities.

Interfaces

Through the IdM interface, the following methods are exposed:

Method Name verifyEntity

Method

Definition/Description

This method is used to identify entities in Aniketos. Here entities are

considered the service providers and consumers and the platform users.

This method returns the result of the identification process.

Method input attributes

Name Type Description

entityID EntityID
The identifier of the entity to be

authenticated

verificationToken VerificationToken
The proof of the identity

claimed

92 D5.1: ANIKETOS platform design and platform basis implementation

Method output attributes

Name Type Description

identityVerificationResult IdentityVerificationResult
The result of the identification

process

Dependency with other

components

This method makes it possible for the Aniketos platform components to

interact with the Aniketos environment components in a trusted manner.

In particular, interactions have been envisaged with the Contract Manager

Module, the Marketplace and the Community Support Module.

Method Name registerEntity

Method

Definition/Description

This method is used to register entities in Aniketos. The method returns

the result of the registration process.

Method input attributes

Name Type Description

entityID EntityID
The identifier of the entity to be

authenticated

verificationToken VerificationToken
The proof of the identity

claimed

Method output attributes

Name Type Description

identityRegistrationResult IdentityRegistrationResult
The result of the registration

process.

Dependency with other

components

This method makes it possible to register an entity as a trusted entity into

the system.

Method Name unregisterEntity

Method

Definition/Description

This method is used to unregister entities in Aniketos. The method

returns the result of the registration process.

Method input attributes

Name Type Description

entityID EntityID
The identifier of the entity to

be authenticated

verificationToken VerificationToken
The proof of the identity

claimed

Method output attributes

Name Type Description

identityUnRegistrationResult IdentityUnRegistrationResult
The result of the

unregistration process.

Dependency with other

components

This method makes it possible to unregister an entity previously

registered into the system

D5.1: ANIKETOS platform design and platform basis implementation 93

4.3 Summary of interfaces

This section makes a summary of the presented interface specifications of Sections 4.1 and 4.2. The

scope is to provide the readers with a coherent and comprehensive roadmap to the dependencies

between the components, while it serves as the connection point with the Aniketos Deliverable D1.2

[1] and the sequence (collaboration model view) diagrams (Figures 23-46) presented there.

Table 6 presents the relation of the Aniketos baseline implementation, performed in the context of

D5.1, with respect to the design and the specification document D1.2. As it can be seen, D5.1 provides

a superset of the defined methods and interfaces in D1.2, which shows the progress being performed

with respect to the design phase. For the sake of the implementation, it is obvious that the

specifications are subject to changes, which are planned for the forthcoming deliverable D1.5, which

is due M33.

94 D5.1: ANIKETOS platform design and platform basis implementation

Table 6: Relation of D5.1 implementations to D1.2 specifications

Component Interface Method Consumed by Relation to D1.2
6

Socio-technical

Security

Modelling Tool

IModelling

modelTrustAndSecurityReq

uirements

Service Composition

Framework

 It corresponds to Figure 23 for the interface

definition

 Figure 38 shows the interaction of the Socio-

technical modelling tool with the Service

Composition Framework at the design time

service specification process

exportSecuritySpecification

Model

Model Transformation

Module

Model

Transformation

Module

ModelTransformation

ModuleService

transformModel

 Contract Manager

module

 Service Composition

Framework

 It corresponds to Figure 23 for the interface

definition

 Figure 38 shows the interaction of the Model

Transformation Module with the Service

Composition Framework at the design time

service specification process

 Figure 41 shows the interaction of the Model

Transformation Module with the Service

Composition Framework and the Notification

Module at the design time service assembly and

deployment process

 Figure 42 shows the interaction of the Model

Transformation Module with the Marketplace at

the runtime service provision process

generateSecurityDescriptor

 Service Composition

Framework

 Marketplace

generateContractTemplate Contract Manager Module

bindServiceThreat Notification Module

6
 Contains references to the figures of D1.2

D5.1: ANIKETOS platform design and platform basis implementation 95

Component Interface Method Consumed by Relation to D1.2
6

Trustworthiness

Component

TrustworthinessServic

e

getTrustworthiness

 Marketplace

 Contract Manager

Module (CMM)

 It corresponds to Figure 25 (ITrustworthiness

Prediction interface) for the interface definition

 Figure 39 shows the interaction of the

Trustworthiness Component (Trustworthiness

Prediction Module) with the Marketplace at the

design time service discovery and selection

process

 Figure 43 shows the interaction of the

Trustworthiness Component (Trustworthiness

Prediction Module) with the CMM (Security

Verification Module) at the runtime service

validation process

 Figure 44 shows the interaction of the

Trustworthiness Component (Trustworthiness

Prediction Module) with the Marketplace at the

runtime re-composition

 Figure 45 shows the interaction of the

Trustworthiness Component (Trustworthiness

Prediction Module) with the CMM (Security

Verification Module) at the runtime

reconfiguration

 Figure 46 shows the interaction of the

Trustworthiness Component (Trustworthiness

Prediction Module) with the Notification

Module (through the alert method) at the

runtime monitoring

receiveAlert Notification Module

receiveQoSupdate -

MonitoringServiceAcc

ess

sendEventToMonitor
Service Monitoring

Component

deriveMonitoringRules
Service Monitoring

Component

96 D5.1: ANIKETOS platform design and platform basis implementation

Component Interface Method Consumed by Relation to D1.2
6

Contract

Manager Module

ContractManagerServi

ce

AnalyseSecureComposition

 Secure Composition

Planner Module

 Service Runtime

Environment

 Service Composition

Framework

 Notification Module

 It corresponds to Figure 27

(ISecurityVerification interface) for the interface

definition

 Figure 40 shows the interaction of the Contract

Manager Module with the Service Composition

Framework at the design time service validation

and contract establishment

 Figure 43 shows the interaction of the Contract

Manager Module with the Service Runtime

Environment at the runtime service validation

process

 Figure 45 shows the interaction of the Contract

Manager Module with the Service Runtime

Environment at the runtime reconfiguration

 Figure 46 shows the interaction of the Contract

Manager Module with the Notification Module

at the runtime monitoring

checkCountermeasuresImpl

ementation

Service Runtime

Environment

getTrustworthiness
Trustworthiness

Component

determineSecurityPropertie

s

Service Runtime

Environment

Property

Verification

Module

PropertyVerificationSe

rvice

verifyTechnicalTrustProper

ties
Contract Manager Module No association

Composition

Security

Validation

Module

CompositionSecurityV

alidationService

VerifyCompositionComplia

nce
Contract Manager Module No association

Security Property

Determination

Module

IService

getService
 Marketplace

 Contract Manager

Module (CMM)

 It corresponds to Figure 26 (ISecurityProperty

interface) for the interface definition

addService

addProperty

getValue

D5.1: ANIKETOS platform design and platform basis implementation 97

Component Interface Method Consumed by Relation to D1.2
6

setValue

IProperty getProperty

Secure

Composition

Planner Module

CompositionPlannerIn

terface

selectSecureCompositions

 Service Composition

Framework

 Security Property

Determination Module

 Trustworthiness

Component

 Service Runtime

Environment

 It corresponds to Figure 35

(ICompositionPlanner interface) for the

interface definition

 Figure 39 shows the interaction of the Secure

Composition Planner Module with the Service

Composition Framework at the design time

service discovery and selection process

 Figure 44 shows the interaction of the Secure

Composition Planner Module with the Service

Runtime Environment at the runtime re-

composition

orderSecureCompositions

suggestSecureComposition

Security Policy

Monitoring

Module

ISecurityPolicyMonito

ring

getContract
 Aniketos Environment

components

 Service Runtime

Environment

No association

getRealData

Threat Response

Recommendation

Module

IThreatResponseReco

mm

checkCountermeasuresImpl

emTwSpec
Contract Manager Module

 It corresponds to Figure 34 for the interface

definition checkCountermeasuresImpl

emTwContract

Service Threat

Monitoring

Module

IThreatMonitoring

bindServiceToThreatMonit

oring

 Model Transformation

Module

 Aniketos Marketplace

 Service Threat

Recommendation

Module

 It corresponds to Figure 29 for the interface

definition (the MonitoringServiceAccess

interface corresponds to the ITheatEvent)

 Figure 41 shows the interaction of the Service

Threat Monitoring Module with the Model

Transformation Module at the design time

unBindServiceToThreatMo

nitoring

getServiceLog

98 D5.1: ANIKETOS platform design and platform basis implementation

Component Interface Method Consumed by Relation to D1.2
6

MonitoringServiceAcc

ess
threatEvent

Service Monitoring

Component

service assembly and deployment process

 Figure 46 shows the interaction of the Service

Threat Monitoring Module with the Service

Monitoring Component and the Notification

Module at the runtime monitoring

IAlert alert Notification Module

Notification

module

IAlert

receivedAlert

 Service Threat

Monitoring Module

 Service Monitoring

Module

 Security Policy

Monitoring Module

 Trustworthiness

Component

 It corresponds to Figure 31 for the interface

definition

 Figure 41 shows the interaction of the

Notification module with the Service

Composition Framework at the design time

service assembly and deployment process

 Figure 46 shows the interaction of the

Notification module with the Service Monitoring

Module, the Service Threat Monitoring Module

and the Security Policy Monitoring Module at

the runtime monitoring (alert method

corresponds to the receivedAlert here)

 Figure 47 shows the interaction of the

Notification module with the Trustworthiness

Component (Monitor Trustworthiness Module)

and the Security Policy Monitoring Module at

the end user processes

publishedAlert -

registerForAlert

 Model Transformation

Module

 Service Composition

Framework

unRegisterForAlert

 Model Transformation

Module

 Marketplace

INotification notify
Service Runtime

Environment

D5.1: ANIKETOS platform design and platform basis implementation 99

Component Interface Method Consumed by Relation to D1.2
6

ISecurityVerification analyseSecureComposition

 Contract Manager

Module (CMM)

 Property Verification

Module

 Composition Security

Validation Module

Community

Support Module

CommunitySupportSer

vice

integrateTool Marketplace  It corresponds to Figure 37 (ICommunitySupport

interface) for the interface definition

 Figure 48 shows the interaction of the

Community Support Module with the Aniketos

stakeholders at the processes for enriching the

Aniketos platform at runtime

maintainSoftwareAndServic

e
Marketplace

provideTrustworthiness Marketplace

Threat

Repository

Module

ThreatRepositoryServi

ce

addThreat
Community Support

Module

 It corresponds to Figure 32 (IThreatRepository

interface) for the interface definition

 Figure 38 shows the interaction of the Threat

Repository Module with the Socio-technical

Security Modelling Tool (the lookupThreat

method corresponds to the getThreats method

here) at the design time service specification

process

 Figure 48 shows the interaction of the Threat

Repository Module with the Aniketos

contributors at the processes for enriching the

Aniketos platform at runtime

updateThreat
Community Support

Module

deleteThreat
Community Support

Module

getThreats

 Community Support

Module

 Socio-technical

Security Modelling

Tool

addCountermeasure
Community Support

Module

updateCountermeasure
Community Support

Module

deleteCountermeasure
Community Support

Module

100 D5.1: ANIKETOS platform design and platform basis implementation

Component Interface Method Consumed by Relation to D1.2
6

getCountermeasures

 Community Support

Module

 Threat Response

Recommendation

Module

 Socio-technical

Security Modelling

Tool

 Service Threat

Monitoring Module

Marketplace IMarketplace

announceService All components

 It corresponds to Figure 33 for the interface

definition

 Figure 39 shows the interaction of the

Marketplace with the Service Providers and the

Service Composition Framework at the design

time service discovery and selection process

 Figure 41 shows the interaction of the

Marketplace with the Service Providers at the

design time service assembly and deployment

process

 Figure 42 shows the interaction of the

Marketplace with the Service Providers at the

runtime service provision process

 Figure 44 shows the interaction of the

Marketplace with the Service Runtime

Environment at the runtime re-composition

 Figure 46 shows the interaction of the

Marketplace with the Security Policy

discoverService All components

D5.1: ANIKETOS platform design and platform basis implementation 101

Component Interface Method Consumed by Relation to D1.2
6

getSecurityDescriptor All components

Monitoring Module at the runtime monitoring

 Figure 48 shows the interaction of the

Marketplace with the Security Providers at the

processes for enriching the Aniketos platform at

runtime

Training Material

Module

TrainingMaterialServi

ce

addReferenceMaterial Aniketos stakeholders
 It corresponds to Figure 36 (ITraining interface)

for the interface definition

 Figure 48 shows the interaction of the Training

Material Module with the Aniketos contributors

at the processes for enriching the Aniketos

platform at runtime

getReferenceMaterial Aniketos stakeholders

removeReferenceMaterial Aniketos stakeholders

Service

Composition

Framework

ServiceCompositionFr

ameworkInterface

specifyService -

 Figure 39 shows the interaction of the Service

Composition Framework with the Service

Developers at the design time service discovery

and selection process

 Figure 40 shows the interaction of the Service

Composition Framework with the Service

Developers at the design time service validation

and contract establishment

 Figure 41 shows the interaction of the Service

Composition Framework with the Service

Developers at the design time service assembly

and deployment process

discoverAndSelectService -

validateService -

AssembleAndDeployService -

Service

Monitoring

Component

(PRRS)

IMonitoring sendEvent -

No association

IServiceRegister serviceMonitor -

ECAccessPoint

requestSolution -

callOperation -

callOperationObjec -

MonitoringServiceAcc sendMonitoringRules -

102 D5.1: ANIKETOS platform design and platform basis implementation

Component Interface Method Consumed by Relation to D1.2
6

ess sendEventToMonitor -

checkMonitoringRule -

unsubscribeMonitoringRule

s
-

Service Runtime

Environment

(MUSIC)

INotification alert Notification module

 Figure 42 shows the interaction of the Service

Runtime Environment with the Notification

Module at the runtime service provision process

Identity

Management

Service

IdM

verifyEntity -

No association registerEntity -

unregisterEntity -

D5.1: ANIKETOS platform design and platform basis implementation 103

5 Design of the Aniketos Marketplace

The Aniketos Marketplace complements existing service registry technology, such as UDDI, with

specific information on trust and security properties. It acts as a service broker for service consumer,

giving specific requirements on trustworthiness and security properties. Through the Aniketos

Marketplace, service providers will be able to upload their offered specifications as service

descriptors, so that their services are made available for discovery.

The architecture of the Aniketos Marketplace, including the appropriate Service Registry is depicted in

Figure 23.

Figure 23: The Architecture of the Aniketos Marketplace

The Service Registry is designed on a three-layered architecture approach. The first layer (Service

Repository) comprises the persistence layer, which maintains information about all deployed services.

The intermediate layer is a thin business logic layer (Service Registry Business Logic) that enforces all

the rules required by the service registry. The component can interface with the external world through

a third layer (Service Registry Web Services).

The capability of the Marketplace to interact with external service registries will make the integration

of existing systems into Aniketos Platform easier. In legacy systems, it may be difficult or impossible

to move services from one repository to another. This won‘t be a problem for Aniketos adoption as the

current repository could still be used and the registration to Aniketos Marketplace will store the

security attributes needed by Aniketos Platform. Also the benefits of Aniketos Platform could be

exploited, without affecting the current operation of a SOA system.

All services will be registered in the Aniketos internal service repository. This repository maintains

information regarding the security attributes that are needed for a service to be part of the Aniketos

execution system.

The internal repository, in its final form, will be a full implementation of a service repository system,

providing every piece of information needed for publishing and discovering a service. However, it will

Service Registry Business Logic

Aniketos Marketplace Front-end (Drupal)

Service Registry Web Services

Service Repository

External

repository

External

repository

104 D5.1: ANIKETOS platform design and platform basis implementation

be also able to communicate with external service repositories to retrieve this information. Therefore

for an existing service, a provider may choose to keep the repository that is already in use and publish

in Aniketos repository only the Aniketos specific information.

A major client of the Service Registry Component is the Aniketos Marketplace front-end. This front-

end offers the following functionalities:

 Users and roles management in a centralized way

 Graphical implementation of the Aniketos marketplace interface (announceService,

discoverService, getSecurityDescriptor)

 Tight interaction with the Community Support Module

The Aniketos Marketplace front-end is being developed on top of the Drupal CMS system [49].

The Service Registry Web Services will be also consumed by many runtime and design components,

as their service discovery interface is a main feature of the Aniketos Platform.

The Aniketos Marketplace offers interfaces for registering and discovering services. The following

Figure 24 depicts an initial sketch of the service registration user interface.

Figure 24: Register Service User Interface

Upon service registration, the users of the Marketplace can search for the specific service and any

other service, which has been registered as an Aniketos compliant service in the Marketplace. Figure

25 visualises how the user can provide search criteria and view the results in a tabular form. It should

be clarified that this is the graphical interface for accessing the contents of the Marketplace, but the

respective software interface for accessing the Marketplace has also been designed and is available in

stub mode, enabling other Aniketos platform and environment components to interact with the

Marketplace services.

D5.1: ANIKETOS platform design and platform basis implementation 105

Figure 25: Searching for Services

106 D5.1: ANIKETOS platform design and platform basis implementation

6 Aniketos Baseline Implementation

6.1 Aniketos Platform at design-time

As per Section 2, at design-time, the Aniketos Platform is used from the service developer in the

service creation and specification phase. The Platform facilitates the required functionalities for

discovering existing services, selecting service components, validating services, establishing contracts,

assembling service compositions and deploying services (please refer to Figure 26).

Figure 26: Typical processes related to design-time service composition (please refer to D1.2 [1])

As mentioned in Section 3.2, the Aniketos design-time Platform is based on the Eclipse IDE. Eclipse

will integrate all existing and new components that are part of the Aniketos design-time Platform. The

service developer will have access to all Aniketos design functionalities through a single IDE

environment.

6.1.1 Design-time related Aniketos Components

Figure 27 depicts the design-time related components and their interactions with the runtime system.

Inside the ―Eclipse IDE‖ box, the components (as per Figure 5) that will be fully or partially

implemented as Eclipse plug-ins are presented. The blue components offer rich design capabilities,

while the orange ones only act as mediators to their corresponding runtime components. The green

components are part of the runtime system and provide services to the design time components.

Each design time component is implemented as one or more Eclipse plug-ins. For existing Eclipse

plug-ins, a surrounding wrapper plug-in may need to be implemented, so that the original plug-in can

be integrated into the Aniketos platform.

 analysis Design-time processes

Generic design-time composition

Establish

contracts

Discov er

serv ice

component

candidates

Deploy

serv ice

Assemble

serv ice

Select

serv ice

components

Validate

serv ice

Specify

serv ice

Serv ice dev eloper

D5.1: ANIKETOS platform design and platform basis implementation 107

Figure 27: The design-time related Components

6.1.2 Template Eclipse Plug-in

For the platform basis implementation a template Eclipse plug-in has been developed. This template

plug-in demonstrates how the features that are expected to be common in all design time components

should be implemented. More specifically, it provides guidelines on the:

 Integration within Eclipse‘s graphical user interface

 Exchange of data between two Eclipse plug-ins

 Communication with runtime components through SOAP and REST web services

The Aniketos Eclipse plugin uses Eclipse plugin development environment (PDE) and OSGI

technology. It is distributed as a set of Eclipse plugin and OSGI bundles. This dummy plugin

demonstrates:

 The basics for creating an Eclipse plugin that contributes to the UI

 Packaging a plugin for installation within the Eclipse workbench

 Creating and registering an Eclipse View object

 Creating an OSGI-compatible Eclipse plugin that can locate and communicate with other OSGI

bundles running in the same Equinox instance, comprising:

- Using the Bundle‘s Activator to initialise OSGI services being made available to others

- Using the Bundle‘s context to get a reference to OSGI services to be used

 Starting an Eclipse runtime environment that includes these plugins and bundles

Service

Composition

Framework

Socio-technical

security modeling

tool

Aniketos

Marketplace

Service Runtime

Environment

Aniketos

Marketplace

Eclipse IDE

Threat

Repository

Module

Notification

Module

Verification

Module

Service Runtime

Environment

Model

Transformation

Module

Secure

Composition

Planner Module

Contact

Negotiation

Module

108 D5.1: ANIKETOS platform design and platform basis implementation

The client plugin uses OSGI methods to locate and invoke a method on a separate bundle. Currently, it

uses a default context (Equinox), and relies on the platform being correctly configured in order to

locate, install, and start the relevant bundles. Full configuration details for a suitable Eclipse platform

are included.

The Template Eclipse Plug-in is described in detail in Annex 8.2.

6.2 Runtime Platform

As per Section 2, the Aniketos Platform at runtime is mainly used from the service providers to

manage and monitor security and trustworthiness in the execution of composite services. The Runtime

Platform facilitates the required functionalities for monitoring service execution, validating services,

reacting to changes in service provisioning, services re-composition and contracts‘ reconfiguration

(please refer to Figure 28).

D5.1: ANIKETOS platform design and platform basis implementation 109

Figure 28: General processes related to runtime reaction to changes and monitoring (please

refer to D1.2 [1])

The Runtime Aniketos Platform is based on a simplified architecture, which is depicted in Figure 29

 analysis Prov ider runtime processes

Reconfiguration

Monitoring the service and the environment

Reacting to changes

Recomposition

Assemble

serv ice

Discov er serv ice

component

candidates

Establish

contracts

Select serv ice

components

Validate serv ice

Adapt serv ice

Prov ide serv ice

Alert

Monitor

Alert

OK?

Serv ice prov ider

Update contracts

yes

no, need adaptation

no, need recompostion

110 D5.1: ANIKETOS platform design and platform basis implementation

Figure 29: The Runtime Platform

One or more OSGi containers for hosting a number of OSGi bundles can be used. Within the same

container the bundles can interact with each other through the services API defined in the services

layer of the OSGi specification. Bundles in different containers will interact with each other through

the ESB.

6.2.1 Template OSGi Bundle

For the platform basis implementation a template OSGi bundle has been developed. This bundle

features all the functionalities required by the Aniketos platform components. More specifically, it

supports:

 Interaction with other bundles in the same container

 REST and SOAP interface points

 Lifecycle management

The Aniketos Runtime Template Component is based on OSGi technology and is distributed as a set

of OSGi bundles. It uses the Apache CXF implementation of Distributed OSGi to expose Web

Services. It demonstrates how one can use Eclipse to create, run and debug components. Also the use

of Declarative Services is demonstrated. Currently a SOAP Web Service is provided, but in future

versions REST interfaces will be added.

Based on this template bundle dummy implementations of the runtime components have been created.

These dummy implementations expose the interface points that are described in Section 4 and the

Interface Specification Model in D1.2 [1].

The Runtime Template Component, which is based on OSGi bundles, is described in more details in

Annex 8.1.

OSGi container

JMS SOAPREST

OSGi Bundle

OSGi Bundle

OSGi Bundle

OSGi container

OSGi Bundle

OSGi Bundle

Enterprise Service Bus

D5.1: ANIKETOS platform design and platform basis implementation 111

6.3 Implementation of the Aniketos Platform and Environment

Components

Following the interface specifications in D1.2 [1] and on Section 4 of this document, an initial

implementation of the internal functionalities and their interfaces is already available in the project

SVN space at https://hestia.atc.gr/svn-aniketos/trunk. The implementation is in an early phase, thus the

components are currently stubs that are used to ensure operability and integration between them. Such

implementation is necessary at an early stage to provide a realisation on how all these components can

be wrapped under the same conditions to provide an integrated view of the Aniketos platform early in

advance in the project life cycle.

Table 7: Status overview of the Aniketos platform and environment components implementation

Component Name Status of implementation

Socio-technical Security Modelling

Tool

 Basic skeleton on supporting the definition and

analysis of goals, resources, socio-technical

relationships and security needs

 Limited business logic on the internal functionalities

 Stub implementation of the interface methods

Model Transformation Module

 Stub implementation of a contract template generation

 Stub implementation of a security descriptor

generation

 Stub implementation of the model transformation

interfaces

Trustworthiness Component

 Stub implementation of the prediction value

calculation

 Stub implementation of the interface methods

Contract Manager Module
 Stub implementation of the method for analysing

secure compositions

Property Verification Module

 Stub implementation of the method for checking if a

service implementation fulfils a certain security/trust

property

Composition Security Validation

Module

 Stub implementation of the methods for validating the

service compliance to agreement templates both at

design-time and at runtime

Security Property Determination

Module

 Stub implementation for providing the value of a

security property

 Sample implementation of a user interface to view and

access to defined services

 Stub implementation of the interfaces

Secure Composition Planner

Module

 Stub implementation of the method top wrap a BPMN

composition to an XML

 Stub implementation of the interface methods and for

ordering the compositions

 Draft implementation of the method for comparing two

compositions

Security Policy Monitoring Module
 Stub implementation for getting a security contract and

deriving rules

https://hestia.atc.gr/svn-aniketos/trunk

112 D5.1: ANIKETOS platform design and platform basis implementation

Component Name Status of implementation

Threat Response Recommendation

Module

 Stub implementation for managing the check of

countermeasures of selected services towards secure

specifications and at runtime

Service Threat Monitoring Module

 Stub implementation of the binding and unbinding

services for threat monitoring

 Stub implementation for receiving events for the

environment monitoring services

 Stub implementation of the respective interfaces

Notification module  Stub implementation of the notification interfaces

Community Support Module

 Stub implementation of the internal methods for

supporting community-based functionalities

 Stub implementation of the respective interfaces

Threat Repository Module

 Stub implementation of the internal methods for

providing threats information

 Stub implementation of the respective interfaces

Marketplace

 Stub implementation of the internal methods for

announcing and discovering services in the

Marketplace and retrieving relevant security

descriptors and the respective interfaces

 Draft implementation of the front-end interface

Training Material Module

 Stub implementation of the internal methods for

managing training material

 Stub implementation of the respective interfaces

Service Composition Framework

 Stub implementation of the specified service

composition functionalities and loading BPMN based

service compositions

Service Monitoring Component

(PRRS)

 Initial adaptation of the PRRS tool to serve the

Aniketos requirements for monitoring service status on

an event-based way

Service Runtime Environment

(MUSIC)

 Stub implementation of the component for linking the

MUSIC runtime environment with Aniketos security

monitoring and notification mechanisms

 Initial adaptation of the PRRS tool to serve the

Aniketos requirements for service reconfiguration

Identity Management Service

 Stub implementation of the internal methods for entity

registration and verification

 Stub implementation of the respective interfaces

It must be noted that the interfaces specifications in this document for the Aniketos components may

differ with the descriptions provided in D1.2 [1]. The reason for doing so is the fact that, as the

relevant work performed in the other technical WPs (WP1-WP4) progresses, the data models and the

respective interface definitions may change. All the updates on these interfaces will be included in the

updated version of D1.2, which is Deliverable D1.5 and it is expected on M33.

Thus, the description in D1.2 [1] can be understood as an abstract view of the interface specifications,

while the interfaces described in the Aniketos Deliverables D2.1 [9], D2.2, D3.1[10], D3.2 and D4.1

D5.1: ANIKETOS platform design and platform basis implementation 113

[11] provide the more concrete/technical view‖ and they have guided the implementation in the

context of this deliverable. As D1.2 [1] is a live document, all the architectural aspects will be revised

during the course of the project and updated to reflect the actual implementation.

In order to keep track of any inconsistencies raised between the specifications document D1.2 (which

will be updated in D1.5 due to M33) and the current document D5.1, as well as the actual

implementation steps adopted by all partners, a concrete plan has been specified and will be followed

until the final specifications documentation in the forthcoming Aniketos Deliverable D1.5, which is

due M33. According to this plan, the interfaces descriptions (as reflected on Section 4) will be

maintained as an internal living document, which will be an evolution of Section 4.3 and will be

continuously updated as per the requirements of the development phase. The structure of this

component will be as follows:

 The name of the component

 The name of the implemented interface

 The name and the description for all the methods of the interface

 For each method, the data model for the input parameters and the return call (or dash ―-‖, in case

that the method is marked as ―void‖)

 A column describing the dependencies with other Aniketos components

 A reference to D1.2 sequence diagrams, describing the proposed changes to these diagrams

In order to handle and maintain the document, the following processes have been defined:

 When an interface specification changes, the responsible partner makes the necessary

modifications to the document

 All the involved partners are notified on the proposed changes in order to assess the impact on

their components and the need for additional methods and/or interfaces

 As long as, such changes do not affect other components, the changes to the document are agreed

 In case of conflicts, a task force process should be initialised with the participation of the involved

partners, the WP5 leader and the Technical Manager. Based on a majority vote system, the

conflicts should be resolved and the document is updated to reflect the outcome of the task force

This process will be active up to M33 when the final specification of the Aniketos architecture should

be documented.

114 D5.1: ANIKETOS platform design and platform basis implementation

7 Conclusions

This deliverable presented the activities for the delivery of a baseline implementation of the Aniketos

platform, which acts as the reference point for the actual development of this platform and offers a

shared and common background for the Consortium participants on the envisaged technologies that

are necessary to build such a platform.

The Aniketos target work constitutes a difficult task, as the integration of various parts has to be

efficiently accomplished. As shown in this document, the Aniketos platform is based on many

components, many of which act on top of existing environment components, offering the appropriate

mechanisms for ensuring that security and trustworthiness is maintained in service composition and

execution. As the project is progressing, the specification of the interfaces and their respective

methods is subject to changes, which will enable the refinement of the data models exchanged

between the Aniketos platform and environment components to conform to the findings and the

progress of the work in WP1-WP4.

Through a comprehensive roadmap of internal and external releases of the Aniketos platform, it will

be used to build real life scenarios and assessed by the target stakeholders on whether it can effectively

support secure service composition at design-time and runtime. Thus, a close interaction with the non-

technical WPs is planned in the next months of the projects, which will enable the actual involvement

of business partners in the delivery of a high-end solution for addressing security and trustworthiness

in service provisioning.

In a nutshell, this document acts as a baseline for further implementation towards the production of the

Aniketos components and their smooth integration for facilitating the target functionalities. As

described on Section 6.3, future work involves resolving of inconsistencies with the design document

D1.2.

D5.1: ANIKETOS platform design and platform basis implementation 115

References

[1] Aniketos Consortium, Deliverable D1.2: First Aniketos architecture and requirements

specifications, July 2011

[2] FP7 257930 Aniketos Contract: ―Secure and Trustworthy Composite Services‖, July 2010

[3] OASIS, ―Reference Model for Service Oriented Architecture 1.0‖, August 2006

[4] Waseem Roshen, ―SOA-Based Enterprise Integration: A Step-by-Step Guide to Services-Based

Application Integration‖, Mc Graw Hill, ISBN: 978-0-07-160553-3, May 2009

[5] The Open Group, ―SOA Reference Architecture‖, http://www.opengroup.org/projects/soa-ref-

arch/, April 2009

[6] http://www.w3.org/TR/ws-gloss/, last accessed 2011-07-20

[7] ―Software development methodology‖,

http://en.wikipedia.org/wiki/Software_development_methodology, last accessed 2011-07-20

[8] Wikipedia, ―Rapid Application Prototyping‖,

http://en.wikipedia.org/wiki/Rapid_application_development, last accessed 2011-07-20

[9] Aniketos Consortium, Deliverable ―D2.1: Models and methodologies for embedding and

monitoring trust in services‖, July 2011

[10] Aniketos Consortium, Deliverable ―D3.1: Design-time support techniques for secure composition

and adaptation‖, July 2011

[11] Aniketos Consortium, Deliverable ―D4.1: Methods and design for the response to changes and

threats‖, July 2011

[12] http://en.wikipedia.org/wiki/Eclipse_%28software%29, last accessed 2011-07-20

[13] http://en.wikipedia.org/wiki/Equinox_OSGi, last accessed 2011-07-20

[14] http://eclipsepluginsite.com/, last accessed 2011-07-20

[15] Abdaladhem Albreshne, Patrick Fuhrer, Jacques Pasquier, ―Web Services Orchestration and

Composition‖, September 2009

[16] Martin Owen, et al., ―BPMN and Business Process Management‖, Popkin Software white paper,

September 2003

[17] Business Process Model And Notation (BPMN) Specification, Version 2.0, January 2011,

http://www.omg.org/spec/BPMN/2.0/

[18] Stephen A. White, ―Using BPMN to Model a BPEL Process‖, IBM white paper, February 2005.

[19] OASIS, ―Web Services Business Process Execution Language Version 2.0‖, April 2007,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[20] Poornachandra Sarang, Matjaz Juric, Benny Mathew, ―Business Process Execution Language for

Web Services‖, Packt Publishing, ISBN: 978-1-904811-81-7, January 2006

[21] What is SOA? An introduction to Service-Oriented Computing, last accessed 2011-07-20

[22] http://uddi.xml.org/, last accessed 2011-07-20

[23] SOA Systems Inc., http://www.soasystems.com/, last accessed 2011-07-20

[24] http://www.whatissoa.com/soaspecs/ws.php, last accessed 2011-07-20

[25] http://www.whatissoa.com/soaspecs/ws-security.php, last accessed 2011-07-20

http://www.opengroup.org/projects/soa-ref-arch/
http://www.opengroup.org/projects/soa-ref-arch/
http://www.w3.org/TR/ws-gloss/
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/Equinox_OSGi
http://eclipsepluginsite.com/
http://www.omg.org/spec/BPMN/2.0/
http://www.whatissoa.com/p25.php
http://uddi.xml.org/
http://www.soasystems.com/
http://www.whatissoa.com/soaspecs/ws.php
http://www.whatissoa.com/soaspecs/ws-security.php

116 D5.1: ANIKETOS platform design and platform basis implementation

[26] Claudio Ardagna , Sabrina De , Capitani Vimercati, ―Comparison of modelling strategies in

defining XML-based access control languages‖, Computer Systems Science and Engineering, v

19, n 3 (2004)

[27] http://www.oasis-open.org/committees/security/, last accessed 2011-07-20

[28] http://openid.net/, last accessed 2011-07-20

[29] http://oauth.net/, last accessed 2011-07-20

[30] http://www.xyzws.com/scdjws/SGS41/3, last accessed 2011-07-20

[31] http://fireeagle.yahoo.net/developer/documentation/web_auth, last accessed 2011-07-20

[32] http://www.googlecodesamples.com/oauth_playground/, last accessed 2011-07-20

[33] David Chappell, "Enterprise Service Bus", O‘Reilly: June 2004, ISBN 0-596-00675-6

[34] Wikipedia link, Enterprise service bus, http://en.wikipedia.org/wiki/Enterprise_service_bus, last

accesses 2011-07-20

[35] Fiorano Enterprise Service Bus, http://www.fiorano.com/products/ESB-enterprise-service-

bus/ESB-enterprise-service-bus-architecture.php, last accessed 2011-07-20

[36] http://www.mulesoft.org/, last accesses 2011-07-20

[37] http://servicemix.apache.org/home.html, last accesses 2011-07-20

[38] James McGovern, Oliver Sims, Ashish Jain, Mark Little (Author), Enterprise Service Oriented

Architectures: Concepts, Challenges, Recommendations, Springer; April 28, 2006, ISBN-10:

140203704X

[39] Leonard Richardson, Sam Ruby, ―RESTful Web Services: Web services for the real world‖,

O'Reilly Media, May 2007, ISBN: 978-0-596-52926-0, ISBN 10: 0-596-52926-0

[40] http://www.osgi.org/Main/HomePage, last accessed 2011-07-20

[41] An Oracle White Paper, ―The Oracle GlassFish Server Advantage for Small Businesses‖, June

2010

[42] Oracle GlassFish Server, http://www.oracle.com/us/products/middleware/application-

server/oracle-glassfish-server/index.html, last accessed 2011-07-20

[43] http://felix.apache.org/site/index.html, last accessed 2011-07-20

[44] http://www.mysql.com/, last accessed 2011-07-20

[45] http://www.postgresql.org/, last accessed 2011-07-20

[46] http://www.mongodb.org/, last accessed 2011-07-20

[47] http://www.hibernate.org/, last accessed 2011-07-20

[48] D. Fotakis and S. Gritzalis, ―Efficient heuristic algorithms for correcting the Cascade

Vulnerability Problem for interconnected networks,‖ Computer Communications, vol. 29, 2006

[49] http://drupal.org/, last accessed 2011-07-20

http://www.oasis-open.org/committees/security/
http://oauth.net/
http://www.xyzws.com/scdjws/SGS41/3
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://www.fiorano.com/products/ESB-enterprise-service-bus/ESB-enterprise-service-bus-architecture.php
http://www.fiorano.com/products/ESB-enterprise-service-bus/ESB-enterprise-service-bus-architecture.php
http://www.mulesoft.org/
http://servicemix.apache.org/home.html
http://www.osgi.org/Main/HomePage
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-server/index.html
http://felix.apache.org/site/index.html
http://www.mysql.com/
http://www.postgresql.org/
http://www.mongodb.org/
http://www.hibernate.org/
http://drupal.org/

D5.1: ANIKETOS platform design and platform basis implementation 117

8 Annexes

8.1 Runtime Template Component

The Aniketos Runtime Template Component is based on OSGi technology and is distributed as a set

of OSGi bundles. It uses the Apache CXF implementation of Distributed OSGi to expose Web

Services. It demonstrates how one can use Eclipse to create, run and debug components. Also the use

of Declarative Services is demonstrated. Currently a SOAP Web Service is provided, but in future

versions REST interfaces will be added.

The following instructions are based on the following two sources:

 OSGi with Eclipse Equinox - Tutorial

 Apache CXF - DOSGi DS Demo page

8.1.1 Pre-requisites

In order to install and test the Aniketos Runtime Template Component the following software

components are needed:

Component Description

Eclipse 3.6 IDE Eclipse IDE will be used for development as well

as the OSGi framework (Equinox) for testing

Apache CXF DOSGi Instructions for installing CXF DOSGi will be

provided

8.1.2 Downloading

The Aniketos Runtime Template Component is available at the SVN (https://hestia.atc.gr/svn-

aniketos/trunk/WP5/). You can check out the whole WP5 folder and build it using Maven. However, it

will be easier to use Eclipse IDE. From the file menu select ―New‖ and then ―Other‖.

http://www.vogella.de/articles/OSGi/article.html
http://cxf.apache.org/dosgi-ds-demo-page.html
http://www.eclipse.org/downloads/
http://cxf.apache.org/dosgi-releases.html
https://hestia.atc.gr/svn-aniketos/trunk/WP5/
https://hestia.atc.gr/svn-aniketos/trunk/WP5/

118 D5.1: ANIKETOS platform design and platform basis implementation

Then select ―Checkout Maven Projects from SCM‖. In the next dialog enter the address of Aniketos

SVN.

You can now click finish and the required projects will be downloaded imported into Eclipse.

D5.1: ANIKETOS platform design and platform basis implementation 119

The Aniketos Runtime Template Component presents a dummy implementation of the Threat

Repository Module. The Threat Repository Module consists of two bundles:

 wp5-components-threatrepository-interface

 wp5-components-threatrepository-impl

A third bundle that demonstrates a client is also provided. To build all three bundles right click at the

wp5-components-threatrepository project and select ―Run as‖ and then ―Maven install‖. The

corresponding jar files will be created in the Maven local repository ($UserDirectory/.m2/repository).

8.1.3 Running

The component consists of three OSGi bundes:

 Service Interface

 Service Implementation

 Service Client

All of them are created using Eclipse. To create the service interface bundle select New, Project, Plug-

in Project in Eclipse. Name the project: eu.aniketos.wp5.components.threatrepository and

select Standard as OSGi Framework.

In the following steps choose not to generate an activator and don‘t use a template.

120 D5.1: ANIKETOS platform design and platform basis implementation

D5.1: ANIKETOS platform design and platform basis implementation 121

Then add to the project the following classes:

 eu.aniketos.wp5.components.threatrepository.Threat

 eu.aniketos.wp5.components.threatrepository.ThreatRepositoryService

Then double click the MANIFEST.MF file and add

eu.aniketos.wp5.components.threatrepository as an exported package.

8.1.4 Service Implementation

Create a new plug-in as before. Name it

eu.aniketos.wp5.components.threatrepository.impl and do not use an Activator or a

122 D5.1: ANIKETOS platform design and platform basis implementation

template. Then double click the MANIFEST.MF file and add

eu.aniketos.wp5.components.threatrepository as an imported package.

Add the ThreatRepositoryServiceImpl class in the project (the same class as in the previous

version of the tutorial). Then create an OSGI-INF folder, right click on it and add a component

definition.

In the class field enter:
eu.aniketos.wp5.components.threatrepository.impl.ThreatRepositoryServiceImpl

D5.1: ANIKETOS platform design and platform basis implementation 123

At the services tab add the ThreatRepositoryService as a provided service.

124 D5.1: ANIKETOS platform design and platform basis implementation

Then go at the overview tab and add the following properties:

 service.exported.interfaces = *

 service.exported.configs = org.apache.cxf.ws

 org.apache.cxf.ws.address = http://localhost:9090/threats

The source of the component.xml file should look like this:

D5.1: ANIKETOS platform design and platform basis implementation 125

<?xml version="1.0" encoding="UTF-8"?>

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"

name="eu.aniketos.wp5.components.threatrepository.impl">

 <implementation

class="eu.aniketos.wp5.components.threatrepository.impl.ThreatRepositorySer

viceImpl"/>

 <service>

 <provide

interface="eu.aniketos.wp5.components.threatrepository.ThreatRepositoryServ

ice"/>

 </service>

 <property name="service.exported.interfaces" type="String" value="*"/>

 <property name="service.exported.configs" type="String"

value="org.apache.cxf.ws"/>

 <property name="org.apache.cxf.ws.address" type="String"

value="http://localhost:9090/threats"/>

</scr:component>

In order to test the service, we need first to import the CXF DOSGI single bundle distribution into the

workspace. You can do that by downloading the file and then choosing Import, plug-ins and fragments

from Eclipse. We can then create a run configuration in order to run the two modules in Equinox.

From the Target Platform, the following bundles are needed:

 org.eclipse.equinox.ds

 org.eclipse.equinox.util

All other bundles can be unselected. From the Workspace select all bundles. Then click "Add

Required Bundles" and then "Run" to launch Equinox framework.

126 D5.1: ANIKETOS platform design and platform basis implementation

You can use the Console to control the framework. Type ss eu to see all bundles, which have eu in

their name. Locate the two Aniketos bundles and start them. Some logging messages will appear. If

everything went smoothly, then you should be able to see the WSDL file at

http://localhost:9090/threats?wsdl.

8.2 Template Eclipse Plugin and OSGI Component(s)

The Aniketos Eclipse plugin uses Eclipse plugin development environment (PDE) and OSGI

technology. It is distributed as a set of Eclipse plugin and OSGI bundles. This dummy plugin is

intended to demonstrate:

 The basics of creating an Eclipse plugin that contributes to the UI

 Packaging a plugin for installation within the Eclipse workbench

 Creating and registering an Eclipse View object

 Creating an OSGI-compatible Eclipse plugin that can locate and communicate with other OSGI

bundles running in the same Equinox instance, comprising:

- Using the Bundle‘s Activator to initialise OSGI services that you‘re making available to

others

- Using the Bundle‘s context to get a reference to OSGI services you want to use

 Starting an Eclipse runtime environment that includes these plugins and bundles

The client plugin uses OSGI methods to locate and invoke a method on a separate bundle. Currently, it

uses a default context (Equinox), and relies on the platform being correctly configured in order to

locate, install, and start the relevant bundles. Full configuration details for a suitable Eclipse platform

are included. A future version of this plugin will aim to incorporate some of the WP5 work on D-

OSGI.

Some other web-based references that you might find helpful are:

http://www.vogella.de/articles/EclipsePlugIn/article.html - vogella.de plugin tutorial

http://www.vogella.de/articles/EclipseExtensionPoint/article.html - vogella.de plugin extension point

tutorial

http://www.vogella.de/articles/OSGi/article.html - vogella.de OSGI in Equinox tutorial

http://www.vogella.de/articles/EGit/article.html - vogella.de EGIT (Eclipse GIT client) tutorial

MDT BPMN2:

http://wiki.eclipse.org/MDT-BPMN2 - the Eclipse wiki for MDT-BPMN2 (the BPMN library used for

one of the OSGI bundles).

This wiki entry references several useful tutorials from SAP for MDT-BPMN2, which are very useful

to the newcomer to EGIT or BPMN2 and worth a read. A link to the first of these is shown below:-

http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/c04f0691-0a76-2d10-1098-ec518f7bdf68

http://localhost:9090/threats?wsdl
http://www.vogella.de/articles/EclipsePlugIn/article.html
http://www.vogella.de/articles/EclipseExtensionPoint/article.html
http://www.vogella.de/articles/OSGi/article.html
http://www.vogella.de/articles/EGit/article.html
http://wiki.eclipse.org/MDT-BPMN2
http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/c04f0691-0a76-2d10-1098-ec518f7bdf68

D5.1: ANIKETOS platform design and platform basis implementation 127

Note: We plan to revisit this plugin collection to add enhanced UI functionality, alternative OSGI

service registration and location, and D-OSGI service registration and location. If you have any

problems installing or running it, please do not hesitate to contact the LJMU team.

8.2.1 Pre-requisites

In order to install and test the dummy plugin and components the following software is required:

Component Description

Eclipse 3.6 IDE The latest version of Eclipse IDE

A suitable SVN / Eclipse plugin You can choose either of the following…

Either: subclipse A plug-in that provides SVN functionality within

Eclipse

Or: Subversive A plug-in that provides SVN functionality to

Eclipse (author‘s choice!)

http://www.eclipse.org/egit/

EGIT - A plug-in that provides GIT functionality

for eclipse

http://git.eclipse.org/c/bpmn2/ The org.eclipse.bpmn2 libraries (obtain with GIT

client)

Please note, you only require ONE of the SVN plugins – they both have popular followings and

integrate SVN functionality with Eclipse. If you already have a suitable SVN plugin, do not feel that

you have to replace it with one of those above.

You require GIT in order to download the BPMN2 project from Eclipse.org. However, if you want to

obtain the libraries and simply include a bpmn2 JAR, you are welcome to. The following instructions

assume that you‘ve downloaded the BPMN2 source and have it installed as projects in your

workspace.

Some other Aniketos tutorials/descriptions use GIT for source control, so it may be worthwhile to

install a client now.

8.2.2 Getting started

The overall process you should follow to get everything running is best described as:-

1. Installing Eclipse

2. Installing required utility Eclipse plugins (SVN, EGIT, etc)

3. Installing dependencies (BPMN2)

4. Checking out the dummy projects (eu.aniketos.wp3.dummy.scp.*)

5. Creating a new ―Eclipse Application‖ Launch configuration

Installing Eclipse is straightforward, and the distribution pages for the required plugins detail the

installation process, so this will not be duplicated here. As such, this document will give a brief

overview of installing the dependencies, but will primarily focus on getting our dummy code

(eu.aniketos.wp3.dummy.scp.*) checked out, and getting it running.

8.2.3 Installing BPMN2

The author makes the assumption that at this point, you have:

 A working JDK and Eclipse installation

http://www.eclipse.org/downloads/
http://subclipse.tigris.org/download.html
http://www.eclipse.org/subversive/downloads.php
http://www.eclipse.org/egit/
http://git.eclipse.org/c/bpmn2/

128 D5.1: ANIKETOS platform design and platform basis implementation

 Chosen and installed a suitable SVN Eclipse plugin and any native/Java drives

 Installed a GIT client and the required integrator/connector to your chosen SVN plugin

The SAP guide at http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/c04f0691-0a76-

2d10-1098-ec518f7bdf68?QuickLink=index&overridelayout=true gives a really good overview of

how to install BPMN2, along with installing a GIT client, so we will not reproduce too much of this

information here. You should follow SAP‘s tutorial as far as step 8 (page 5) (i.e. you do not need to

run it)

If you are familiar with EGIT and do not need the walkthrough provided by SAP, the key details from

the SAP tutorial are:

 http://git.eclipse.org/c/bpmn2/ - GIT location URI

 You should import all org.eclipse.bpmn2 projects (excluding org.eclipse.bpmn2.ecore, which has

likely been deleted by now)

Either way, the full checkout is likely to take some time. Please be patient!

8.2.4 Obtaining our (eu.aniketos.wp3.dummy.*) plugins and bundles

The source code for our plugins and bundles is located on the Aniketos SVN server. The repository

contains four projects, but the current version of this tutorial only deals with three of them. We plan to

integrate the fourth project in a future version of this tutorial. The projects are:

 eu.aniketos.wp3.dummy.scp - is the secure planner interface bundle. It‘s a placeholder for the

WP5 interfaces for the secure composition planner. At present, it's not strictly WP5 compliant and

is more for demonstration purposes! (in fact, it's just one method)

 eu.aniketos.wp3.dummy.scp.mdtimplementation – This is our simplified BPMN comparison

bundle. It uses org.eclipse.bpmn2 libraries as described in the SAP tutorial and simply returns the

BPMN string with the greatest number of tasks. The activator registers a new instance of the

comparison utility, and makes it available as a service on the OSGI context.

 eu.aniketos.wp3.dummy.scp.client – This is the client plugin. It provides a simple Eclipse View,

which finds a suitable OSGI service for BPMN comparison

 eu.aniketos.wp3.dummy.scp.activitiengine – This is an alternative comparison tool to

mdtimplementation. It uses the activitiengine BPMN libraries. It is still in development, and may

be added in the future as an alternative service provider.

To get these projects, you‘ll need to check them out from the SVN server. The location on the SVN

server is:

https://hestia.atc.gr/svn-aniketos/trunk/WP3/dummy

You should check out each of the eu.aniketos.wp3.dummy.* folders as an Eclipse project. To check

out an SVN project, right click in the project explorer Window, and select Import. The following

dialogue box will open, as shown below. Expand the SVN folder and select Project from SVN.

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/c04f0691-0a76-2d10-1098-ec518f7bdf68?QuickLink=index&overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/c04f0691-0a76-2d10-1098-ec518f7bdf68?QuickLink=index&overridelayout=true
http://git.eclipse.org/c/bpmn2/
https://hestia.atc.gr/svn-aniketos/trunk/WP3/dummy

D5.1: ANIKETOS platform design and platform basis implementation 129

Figure 30: Import project dialogue box

Click Next, and you will be prompted for the SVN information. Enter the Aniketos SVN server

information (https://hestia.atc.gr/svn-aniketos/trunk/WP3/dummy) along with your Aniketos SVN

username and password, as shown in

Figure 31.

Figure 31: SVN Repository Information

Click Next, then Finish. After a short time, the Eclipse ―Check Out As…‖ wizard will appear. Select

―Find Projects in the children of the selected resource‖, and click Finish

https://hestia.atc.gr/svn-aniketos/trunk/WP3/dummy

130 D5.1: ANIKETOS platform design and platform basis implementation

Figure 32: Eclipse "Check out as" project wizard

Eclipse will now contact the SVN server again and determine which children projects exist in the

folder. After a short time, a dialogue box will appear showing it has found four projects (Figure 33). If

on a slow connection, please uncheck the eu.aniketos.wp3.dummy.scp.activitiengine project (we don‘t

use this in the present version of this document). Click Finish, and the projects will be checked out.

Figure 33: Check out project selection

The projects should now check out to your Eclipse workspace and build successfully. If they do not,

please double check you have the BPMN2 project installed (from GIT), or a suitable BPMN2 JAR on

your classpath. If you do have the BPMN2 project installed, and it still doesn‘t build successfully, then

try cleaning and rebuilding the workspace (Project Menu  Click Clean…)

8.2.5 Executing the plugin and bundles

Once you‘ve checked out all of the code into your Eclipse workbench, you‘re ready to start the

bundles. We‘ll use a new Eclipse runtime configuration for this. Click Run -> Run Configurations…

Select Eclipse Application, and click the New Launch Configuration and then give the new launch

configuration an appropriate name. Click the plugins tab (see Figure 34)

D5.1: ANIKETOS platform design and platform basis implementation 131

Figure 34: New Launch Configuration and Plugin tab

Then, select the ―Launch With…‖ drop down, and ―select plug-ins selected below only‖. Check all the

eu.aniketos.wp3.dummy.* plugins. Check the org.eclipse.bpmn2 plugin too, as our service bundle

requires it. Select the eu.aniketos.wp3.dummy.scp.mdtimplementation plugin, and change its Auto-

start setting to ―true‖.

You can ignore the eu.aniketos.wp3.dummy.scp.activitiengine plugin‘s auto-start setting for now, as

we won‘t use it in this walkthrough.

Figure 35: Eclipse Runtime: Plugin configuration tab

You can now click the Run button, which will start up a new Eclipse instance, with the select plugins

running in Eclipse‘s OSGI container, Equinox. We‘re using Eclipse rather than any old OSGI

container as our client plugin requires Eclipse‘s Workbench.

132 D5.1: ANIKETOS platform design and platform basis implementation

Note: A future version of this tutorial will look at exporting the plugins as OSGI bundles, deploying

the ―server‖ bundles on a separate OSGI container, and using D-OSGI in the client to communicate

with the ―server‖ bundle.

When the new Eclipse instance loads, select the Window menu, and then click ‗Show View-

>Other…‘. Expand the ‗Other‘ folder, and select SCP View. This will show our client plugin‘s view.

Figure 36: Show the View panel created by scp.client

You can then click the buttons to choose plans 1 and 2 (it is expecting BPMN2 in XML format). There

are two very simple test files included in the client project‘s testBPMN directory.

Once you‘ve selected the files, you can then click ―Compare them for me‖. It will produce some

feedback through the UI, though the bundle location and invocation is tracked by calls to

System.out.println(), and will appear in the console window of the original, development Eclipse. As

with any other Eclipse application, the Eclipse Application launch can be run in debug mode, allowing

you to step line-by-line through the execution. The following figures show the sort of screen output

you can expect.

D5.1: ANIKETOS platform design and platform basis implementation 133

Figure 37: The user interface of the template in runtime Eclipse

Figure 38: Output of the template shown in console of development Eclipse

