

Automatic, multi-grained elasticity-provisioning for the Cloud

CELAR is funded by the European Commission DG-INFSO
Seventh Framework Programmed, Contract no.: 317790

Updated User Requirements and System Architecture

Deliverable no.: D1.2
31/05/2014

D 1.2 – Updated User Requirements and System
Architecture

2 / 62

Table of Contents

1 Introduction ... 6
1.1 Purpose of this Document .. 6
1.2 Document Structure ... 7

2 CELAR System .. 8
2.1 CELAR applications .. 8

2.1.1 Dataplay Application .. 8
2.1.2 Translational Cancer Detection pipeline (SCAN) Application ... 9

2.2 CELAR Use Cases ... 10
2.3 System Requirements .. 11
2.4 System Architecture .. 12

3 Traceability Matrix ... 16
3.1 WP2: Cloud Application Management Framework ... 19
3.2 WP3: Elasticity Provisioning Platform ... 26
3.3 WP4: Real-Time Cloud Information and Performance Monitor 34
3.4 WP5: Decision-Making Module ... 45
3.5 Resource Provisioner ... 51

4 Conclusions ... 53

5 References ... 54

6 APPENDIX: CELAR APIs ... 55
6.1 CELAR Manager ... 55
6.2 SlipStream – cloud provisioner and orchestrator .. 56
6.3 Decision Making Module ... 56

6.3.1 MELA Analysis Service API ... 56
6.3.2 SALSA API .. 57
6.3.3 rSYBL Service API ... 58

6.4 Monitoring System .. 59
6.4.1 JCatascopia API .. 59
6.4.2 MELA-DataService API ... 61
6.4.3 MELA-ComposableCostEvaluationService ... 61

6.5 CELAR Application Orchestrator .. 62

Table of Figures

Figure 1: Resource provisioning strategies .. 6

Figure 2: Overview of the Web-based Policy Game Developed .. 8

Figure 3: SCAN Pipeline Architecture ... 10

Figure 4: Application lifecycle in CELAR ... 10

Figure 5: CELAR System Architecture ... 13

Figure 6: CELAR Deployment Overview ... 15

D 1.2 – Updated User Requirements and System
Architecture

3 / 62

List of Tables

Table 2-1: Listing of CELAR Use Cases per actor type .. 11

Table 2-2: Listing of CELAR system requirements .. 12

Table 3-1: Listing of WP-specific requirements ... 16

Table 3-2: WP2 traceability matrix .. 19

Table 3-3: WP3 traceability matrix .. 26

Table 3-4: WP4 traceability matrix .. 34

Table 3-5: WP5 traceability matrix .. 46

Table 3-6: Resource provisioner traceability matrix (The SlipStream service is used as the
Resource provisioner in CELAR). .. 51

Table 6-1: CELAR Manager API ... 55

Table 6-2:MELA-Analysis Service API .. 57

Table 6-3:SALSA API ... 58

Table 6-4: rSYBL API ... 58

Table 6-5: JCatascopia REST API .. 59

Table 6-6: MELA-DataService REST API .. 61

Table 6-7: MELA-ComposableCostEvaluationService API ... 61

Table 6-8: CELAR Application Orchestrator API ... 62

D 1.2 – Updated User Requirements and System
Architecture

4 / 62

Deliverable Title Updated User Requirements and System
Architecture

Filename CELAR_D1.2_finalrelease_update.pdf
Author(s) Dimitrios Tsoumakos, Nikos Papailiou,

Giannis Giannakopoulos, Christos Mantas,
Georgianna Copil, Daniel Moldovan, Hung
Duc Le, Nicholas Louloudes, Stalo
Sofokleous, Demetris Trihinas, Athanasios
Foudoulis, Konstantin Skaburskas, Wei Xing,
Kam Star, Alexander Robinson

Date 31 May 2014

Start of the project: 01/10/2012
Duration: 36 Months
Project coordinator organization: ATHENA Research and Innovation Center in Information,
Communication and Knowledge Technologies (ATHENA)

Deliverable title: Updated User Requirements and System Architecture
Deliverable no.: D1.2

Due date of deliverable: 31 May 2014
Actual submission date: 30 May 2014
Re-submission date: 12 December 2014

Dissemination Level

X PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

Deliverable status version control

Version Date Author

1.1 11/12/2014 D. Tsoumakos, N. Papailiou,
G. Giannakopoulos, C.
Mantas

1.0 30/05/2014 D. Tsoumakos

0.9 28/05/2014 D. Tsoumakos

0.8 26/05/2014 N. Papailiou, G.
Giannakopoulos

0.7 07/05/2014 D. Tsoumakos

0.6 04/05/2014 N. Papailiou, G.

D 1.2 – Updated User Requirements and System
Architecture

5 / 62

Giannakopoulos, C. Mantas

0.5 27/04/2014 G. Giannakopoulos, G. Copil

0.4 25/04/2014 D. Tsoumakos

0.3 13/04/2014 W. Xing, Kam Star, Alexander
Robinson

0.2 07/04/2014 D. Tsoumakos, N. Papailiou,
G. Giannakopoulos, C.
Mantas, G. Copil, D.
Moldovan, Hung Duc Le, N.
Louloudes, S. Sofokleous, D.
Trihinas, A. Foudoulis,
Konstantin Skaburskas

0.1 01/04/2014 D. Tsoumakos

Abstract

This second WP1 deliverable reports on updates in the overall CELAR use cases, functional
and non-functional requirements and System Architecture, as these were reported in D1.1.
Moreover, system-wide and WP-specific requirements are gathered, mapped onto the
architectural blocks of CELAR and their initial verification plans are described.

Keywords

Cloud Elasticity, System Architecture, System Requirements, Use cases, verification plans

D 1.2 – Updated User Requirements and System
Architecture

6 / 62

1 Introduction

Cloud computing possesses the inherent ability to support elasticity, namely the scaling of
infrastructure or platform resources to meet the exact demand, performance or cost
characteristics at runtime.

Optimal resource allocation is extremely important: users can experience wide variations in
application workload across a year, month, day or even a few minutes. Static under-provisioning
runs the risk of costly service unavailability at peak-hours, while static provisioning for peak-
load incurs increased costs and underutilized resources (Figure 1, left).

Automatic throttling

Elasticity can be applied so that application performance and cost are throttled in a controlled
manner, bringing profits for both parties: service consumers can reduce task execution times
without blowing their budget, and cloud providers maximise their financial gain by increasing
their clientele and keeping their customers satisfied.

While many systems claim to offer elasticity, the throttling is usually performed manually, and
users are required to define the conditions under which resources should be scaled up or down
– a difficult task. Clients’ needs change dynamically, and different optimizations will be required
at different times. Such coarse-grained elastic provisioning – and/or the scaling of a single
resource (e.g., CPUs, storage or networking elements) – leads to suboptimal use and
performance degradation (Figure 1, middle).

For the application to harvest the benefits of elastic provisioning, the latter must be both
automated and fine-grained (Figure 1, right).

Figure 1: Resource provisioning strategies

The CELAR EU-funded project aims at enhancing current cloud functionality to allow elastic
resource provisioning. The project will develop open-source tools for applying and controlling
elasticity in cloud-based applications, and then showcase this technology over two exemplary
applications: an online gaming application (policy-based game), and a scientific computing one
that requires compute- and storage-intensive processing over scientific data.

1.1 Purpose of this Document

The aim of this document is to present the current status of the CELAR use cases, system-wide
requirements (functional and non-functional) and the CELAR System Architecture. The status
will be reported in relation to the previously documented one in D1.1 [D1.1]. Moreover, a
thorough mapping between requirements and the CELAR System Architecture will be provided.
This mapping will match structural and functional components or frameworks of CELAR to the

D 1.2 – Updated User Requirements and System
Architecture

7 / 62

requirements, both over system- and WP-level, ensuring that the resulting architecture and
implementation achieves the defined goals. Finally, a first attempt to define verification plans
per requirement is also provided: For each of the mapped requirements, testing/verification
schemes to evaluate the existence and quality of the proposed solution are described.

1.2 Document Structure

The remainder of this document is structured in the following manner: Section 2 gives an
overview of the updated CELAR use case applications, System Requirements and System
Architecture. In Section 3 we provide a thorough traceability matrix, per WP and per
system/WP requirement. Section 4 concludes this deliverable. In the Appendix (Section 6) we
list the CELAR API for completeness (from CELAR Milestone 15 - MS15).

D 1.2 – Updated User Requirements and System
Architecture

8 / 62

2 CELAR System

2.1 CELAR applications

CELAR applications, their goals and architecture have been updated since the initial use-cases
presented in MS1 and D1.1. A thorough description of the exact processing steps, user
interactions and architectural components has been given in D7.1 [D7.1] and D8.1 [D8.1]
respectively. We now provide a short overview of the current state of the two use cases:

2.1.1 Dataplay Application

Dataplay is a web based policy game, developed by PlayGen utilising the CELAR platform. It
uses publicly available data from the government website http://data.gov.uk, pulling in
historical information in order to provide users better insights into government data in a playful
way. Players are put in the shoes of data explorers and progress through the game by slicing,
analysing and making observations and discoveries over the data. In order to complete game
challenges, they must discover emerging stories within the data sets through visual analysis.
The game encourages players to use its inbuilt data tools to do sentiment analysis and deep
data mining to complete their objectives and progress further. The game will allow multiple
concurrent users to access it ubiquitously.

The game will be deployed over the CELAR platform in order to demonstrate the capability of
CELAR for elastic processing of huge volumes of highly volatile social data produced and
updated during a cloud social game as well as accommodating a large varying number of
concurrent user accesses.

Dataplay’s architecture is shown in Figure 2. The game consists of three separate tiers: Data
Aggregation modules, Data Analysis modules and Data Presentation/Manipulation modules.

Figure 2: Overview of the Web-based Policy Game Developed

http://data.gov.uk/

D 1.2 – Updated User Requirements and System
Architecture

9 / 62

Each module of the architecture is responsible for a set of functionalities, provided to the
system. Specifically:

Data agents represent http://data.gov.uk that will provide data. Data receivers are specific
applications responsible for interacting with Data agents and pulling data. The data receiver will
store the data pulled by data agents into the Data Stores, which are implemented using
Cassandra [Cassandra], a NoSQL data store. The Analyser Engine will analyse data according to
defined analytic queries. Data analysis involves reading data from data stores, updating them
and storing them back to the data stores. An interactive User Interface is responsible for
showing queries of analysed data to the user. If the analysed data is not available, then the
Data Receiver will request it from Data Agents.

For the above modules, CELAR must provide the necessary resources so that CPU- and I/O-
intensive applications like Data Analysis can operate adequately and execute queries at the
shortest time possible. CELAR must also monitor the application executed on the CELAR
platform and keep appropriate metrics so that overloading is avoided. Dynamic addition or
removal of resources will help achieving a scalable application performance.

2.1.2 Translational Cancer Detection pipeline (SCAN) Application

The identification of genes that are mutated and hence drive oncogenesis has been a central
aim of cancer research since the advent of recombinant DNA technology. UNIMAN has
developed several pipelines to capture and analyze genomic, proteomic and clinical information
by using several biology tools such as BWA, GATK, The Global Proteome Machine, MaxQuant,
CellProfiler and Cytoscape. The SCAN pipeline comprises four processes: A) NGS data process
with Linux system; B) Mass Spectrometry sample data process with Windows system; C) Cell
Image data process with Linux Web server; D) Integrative network analysis with Linux system.
This is pictorially depicted in Figure 3.

The resources required for the four processes are different in type and quantization, such as
CPU cores, RAM, etc. For example, the NGS data process includes computing intensive
application (i.e., BWA) and memory intensive application (i.e. GATK). According to the size of
genome data, CELAR will automatically orchestrate/assign the required CPU and RAM resources
in the each step of the NGS process pipeline.

CELAR can provision system resources automatically to the heterogeneous applications of the
SCAN analytic pipeline in a “just enough, just on time” manner. It will allow the SCAN pipeline
to terminate smoothly without interruption. In particular, CELAR will be able to monitor the
state of execution of the various SCAN steps, so that it can dynamically allocate the required
resources for each step of the pipeline when needed.

More precisely, CELAR will be able to provision the system resources dynamically and
intelligently by creating and/or deleting the virtual machines of SCAN Analytic Tool Boxes
according to the SCAN input data as well as the stage of the data process. The CELAR monitor

http://data.gov.uk/

D 1.2 – Updated User Requirements and System
Architecture

10 / 62

will provide performance information so that the CELAR cloud manager module can decide
whether more or fewer resources will be needed during the pipeline execution.

Figure 3: SCAN Pipeline Architecture

2.2 CELAR Use Cases

CELAR imposes a general structure into the lifecycle of an application. This is pictorially
described in Figure 4: The application user’s input is required in order to describe, submit and
deploy his application. The application is then profiled and elastically managed by CELAR.
Finally, the user may terminate his application.

Figure 4: Application lifecycle in CELAR

In the same Figure, the actors that communicate with the CELAR System are also designated:
Application users, CELAR experts and Infrastructure/application provider experts.
For completeness, we re-list the CELAR use-cases here, thoroughly described in Figure 6 and
Table 1 of D1.1 [D1.1]:

Analytic Tool Box
(Genome Process)

Next Generation
Sequence Data

Drug Data Clinical DataMolecular Data Image Data

 User Interface (CELAR c-Eclipse)
 User Interface (CELAR c-Eclipse)

Public Databases

 Data Wrappers

Analytic Tool Box
(Image Process)

Analytic Tool Box
(Proteome Process)

Analytic Tool Box
(Integrative Process)

Computing services

Data services
SQL DBs

(mysql, postgres)
No-SQL DBs

(cassandra, hbase)

 SCAN Controller

Describe Submit Deploy
Monitor and

Manage
Profile Terminate

Application User

CELAR Expert

IaaS/Application Platform

Application User

D 1.2 – Updated User Requirements and System
Architecture

11 / 62

Table 2-1: Listing of CELAR Use Cases per actor type

Actor: Application User Actor: CELAR Expert Actor: Infrastructure

Describe Application (uses
“describe structure”,
“describe elasticity” and
“describe data/load”)

Profile Application (uses
“Deploy Application” and
“Monitor Application”)

Provide Infrastructure Data

Submit Application (uses
"Describe Application", “set
optimization policy” and “set
deployment parameters”)

Generate App-specific scripts

Deploy Application (uses
“Submit Application”)

Maintenance

Save/Upload Preferences

Terminate Application

Monitor Application (uses
“Provide Infrastructure
Data”)

Generate App-specific scripts

The difference in relation to [D1.1] is the renaming of use case “Provide monitor statistics”
which formerly related to the IaaS/Application platform providing monitor statistics to CELAR,
used by the monitor application use case. This is now called “Provide Infrastructure Data”,
extending its description to the infrastructure providing monitoring data as well as available
provider resources (image types, VM types, services, etc.) and elasticity actions supported (add
VM, attach disk, etc.). As a consequence, this use case is now also used by “Describe Elasticity”
and “Set Deployment Parameters”.

2.3 System Requirements

System-wide requirements have been categorized along two dimensions: Functional
requirements, which relate to specific functionality the system has to deliver and non-functional
requirements, which relate to the manner/quality that these functionalities will be delivered. As
the use-cases have not been altered, system requirements have remained unchanged. For
completeness, we list all requirements described thoroughly in Section 2.4 and Section 2.5 of
[D1.1] in Table 2-2:

D 1.2 – Updated User Requirements and System
Architecture

12 / 62

Table 2-2: Listing of CELAR system requirements

Functional Requirements Req.
no

Non-functional Requirements Req.
no

Application Submission R1 Scalability R7
Application Deployment R2 Efficiency R8
Application Termination R3 High Availability R9
Real-time application Monitoring R4 Wide Applicability – ease of deployment R10
Real-time, Automated and User-
defined Resource Provisioning

R5 User-friendliness R11

Customization R6

One minor change, in comparison to D1.1, relates to the renaming of the non-functional “Wide
Applicability” requirement to include the ease of deployment term. This comes as a direct
consequence from feedback by both IaaS providers that participate in the consortium and
technical discussions throughout the project’s lifetime that dictate the need for easy CELAR
deployment over an existing infrastructure.

2.4 System Architecture
CELAR enhances the functionality provided by current cloud infrastructures in order to provide
automated, multi-grained, elastic resource provisioning for cloud-based applications.
Our proposed system architecture, which remains valid since its introduction in D1.1 [D1.1], is
depicted in Figure 5. The reader is referred to [D1.1] as well as to the latest WP deliverables
(D2.2 [D2.2], D3.2 [D3.2], D4.1 [D4.1], D5.2 [D5.2]) for a thorough description of the
functionality of the different CELAR modules. We also include the CELAR API (presented in
MS15) into the Appendix (Section 6) for completeness. We can summarize the CELAR-specific
contributions and respective modules along three areas:

Application Management Platform: Modules and methods that enable intelligent, application-
and user-aware description and deployment of applications. Users define meaningful scaling
policies using an intuitive interface, effectively controlling resource provisioning to their
application. This layer also provides easy application deployment, exposes real-time
performance and cost metrics, an overview of the current and past status of the application as
well as the available resources (software and hardware) from the underlying provider. All these
modules are implemented on top of the reliable Eclipse platform following its plug-in based
software architecture and exposed via meaningful, user-friendly UIs to the end-users.
From the Application Management platform’s components, those concerning the application
description and submission are presented in D2.2 [D2.2] and those concerning the Information
System are presented in D4.2 [D4.2], Section 3.

Cloud Information and Performance Monitor: A scalable, distributed, real-time framework
allowing the remote collection and storage of statistics that come from the infrastructure layer,
the platform and the application layers. Special care is given to monitoring multi-layered cloud
applications. The metrics are used in order to evaluate the current status of the application

D 1.2 – Updated User Requirements and System
Architecture

13 / 62

execution. Users will be able to define application metrics of their choice and use existing
“hooks” or define custom-made ones for new metrics to be collected and reported.
In its whole, the CELAR Monitoring System is presented in D4.1 [D4.1] as well as in D4.2 [D4.2]
Section 4.

Description-APIs: The Monitoring functionalities are exposed through the API calls of
JCatascopia and MELA (DataService and ComposableCostEvaluationService). Information about
the overall status of the cloud deployment is provided by the Information System.
The latest API of JCatascopia is presented in Section 6.4.1. JCatascopia is described in [D4.1]
Section 5 and [D4.2] Section 4. The latest APIs of MELA-DataService and MELA-
ComposableCostEvaluation services are presented in Sections 6.4.2 and 6.4.3 respectively. The
description of those modules can be found in D4.2 [D4.2] Section 5.4.
The Information System is described in D4.2 [D4.2] Section 3.

Figure 5: CELAR System Architecture

Elasticity Provisioning Platform: This basic layer consists of all the algorithms and modules that
are necessary in order to provide automatic resource allocation based on the application
characteristics, the user-defined execution policy and the incoming load. The Decision Module
is central to the platform: It considers elasticity as a complex multi-dimensional property, with
three main dimensions: quality, cost and resources. Considering this multi-perspective view on
elasticity, CELAR supports high level requirement specifications over elasticity metrics. The
Decision module decomposes these metrics for mapping high level elasticity requirements to
low level metric restrictions (i.e., cost per application is decomposed into cost resulted from
number of allocated virtual machines, and cost resulted from I/O calls, etc). Moreover, the

D 1.2 – Updated User Requirements and System
Architecture

14 / 62

elasticity platform is responsible for maintaining all necessary information for past and current
application deployments, the orchestration of added or removed resources (of different types
and granularities) as well as methods for ensuring availability of the elastic operations. Finally,
the platform features automated characterization of an application’s behaviour over a number
of representative resource provisioning and load scenarios (profiling).
More information on the CELAR Decision Making Module is available in Section 5 of D5.2.

Description-APIs: The Elasticity Provisioning Platform’s functionalities are exposed through the
API calls of various modules. Namely (from top-to bottom):

 The rSYBL and MELA-Analysis and SALSA services offer high level information about the
application’s performance, deployment status and elastic scaling strategy.

 The CELAR Server and CELAR Orchestrator offer IaaS-Agnostic resource management
functionalities with regards to resource provisioning and data collection.

 SlipStream [SS] is the resource provisioner and handles the IaaS specific actions.

The latest API of rSYBL is presented in Section 6.3.3 and the service is presented in detail in D5.2
[D5.2], Section 5.2.3. The latest API of the MELA-Analysis Service is presented in Section 6.3.1. A
more detailed description can be found in D5.2, Section 5.2.4. The latest API of SALSA is in
Section 6.3.2. A more detailed description can be found in D5.2, Section 5.2.4.
The latest API of the CELAR Server is presented in Section 6.1. A more detailed description of
CELAR Server is available in D3.2 [D3.2], Section 3.2.1. The latest API of CELAR Orchestrator is
presented in Section 6.5. For a more detailed description of the Orchestrator module, the
reader is referred to D3.2 [D3.2], Section 3.2.2. A link to the API of SlipStream can also be found
in Section 6.2

The deployment topology of the CELAR system has been defined in D1.1 [D1.1] and an overview
can be seen in Figure 6:

D 1.2 – Updated User Requirements and System
Architecture

15 / 62

Figure 6: CELAR Deployment Overview

Based on this, Sections 3.4.1 through 3.4.5 of the D1.1 [D1.1] and Sections 3.5.1 through 3.5.4
of the D3.2 [D3.2] documents describe the CELAR system workflows:
The application description and submission workflows are presented at section 3.4.1 of D1.1.
The application deployment workflow is presented at section 3.4.2 of D1.1 and 3.5.1 of D3.2.
The application profiling workflow is presented at section 3.4.3 of D1.1 and 3.5.4 of D3.2.
The application monitoring workflow is presented at section 3.4.4.
 The decision-making workflow is presented at section 3.4.5 of D1.1 and 3.5.2-3.5.3 of D3.2.

Information
Tool UI

CELAR
DataBase

Provisioner
Server

Application VM

Monitoring
Agent

Application VM

Monitoring
Agent

Monitoring Server

Decision Module

CELAR
Orchestrator

Provisioner
Orchestrator

Cloud Provider

Application Profiler

Interceptor

CELAR Manager

CELAR Server CELAR Application Orchestrator (Application A)

Application A

Application VM

Monitoring
Agent

CELAR Client

c-Eclipse Platform

Application
Description Tool

Monitoring
Tool UI

Application Submission Tool

D 1.2 – Updated User Requirements and System
Architecture

16 / 62

3 Traceability Matrix

Having given an overview of the current status of the System Requirements and Architecture
with their minor changes, we proceed to filling in a requirements and contributions
“traceability matrix”: Functional and non-functional requirements will be matched against
CELAR modules, showcasing how the System Architecture strives to achieve the goals set in the
design phase of the project.

In the following and for each CELAR work package, we present a matrix with the following:

1. For each system-wide requirement (see Table 2-2), which (if any) CELAR modules or

methods are used to address it and how can this achievement be evaluated.

2. For each WP-specific requirement (see Table 3-1), which WP-modules or methods are

used to address it and how can it be evaluated.

To assist the reader, Table 3-1 is an index table of the traceability matrix that gives a global
overview of the requirements per work package and introduces a global numbering on the
requirements.

Table 3-1: Listing of WP-specific requirements

TRACEABILITY MATRIX INDEX

Work Package Requirement Name
Requirement
Number

WP2 Application Description Creation R2.1

 Application Description Translation R2.2

 Customizable Application Description R2.3

 Application Description Customization R2.4

 Authentication R2.5

 Elasticity Support R2.6

 Application Deployment R2.7

 Application Termination R2.8

 Enable Application Portability R2.9

 Robustness R2.10

 Wide Applicability R2.11

 User-friendliness R2.12

WP3 Deploy Application R3.1

D 1.2 – Updated User Requirements and System
Architecture

17 / 62

TRACEABILITY MATRIX INDEX

Work Package Requirement Name
Requirement
Number

 Decide elastic operation R3.2

 Perform elastic operation R3.3

 Maintain application status R3.4

 Profile application R3.5

 Abstraction R3.6

 High Availability R3.7

 Scalability R3.8

 Efficient and robust scaling actions R3.9

WP4 (JCatascopia) Collect resource related metrics R4.1

 Collect application level metrics R4.2

 Deploy custom monitoring Probes R4.3

 Add/Remove monitoring instances at runtime R4.4

 Monitoring metric delivery mechanisms R4.5

 Infrastructure Independence R4.6

 Scalability R4.7

 Non-Intrusiveness R4.8

 Elasticity and Adaptability R4.9

 Extensibility R4.10

 Robustness and Fault-Tolerance R4.11

 Near Real-Time R4.12

WP4 (MELA) Perform composable cost-evaluation R4.13

 Convert monitoring data R4.14

 Aggregate monitoring data based upon the application structure
model

R4.15

 Scalability R4.16

D 1.2 – Updated User Requirements and System
Architecture

18 / 62

TRACEABILITY MATRIX INDEX

Work Package Requirement Name
Requirement
Number

 Robustness R4.17

 Reusability R4.18

 Flexibility R4.19

WP4 (Information
System)

Handle elastic Cloud Recourses R4.20

 Allow complex queries R4.21

 Application Deployment History R4.22

 Application Deployment Cost R4.23

 Multi-provider Support and comparisons R4.24

 Resource Usage Analysis / Statistics R4.25

 Information Freshness and Consistency R4.26

 Low Response Time R4.27

 User Friendliness / Usability R4.28

WP5 Structure monitoring information R5.1

 Generate mappings between low level and application-level
metrics

R5.2

 Evaluate application user’s elasticity requirements R5.3

 Generate action plan R5.4

 Learn adaptation action effects and elasticity adaptation action
plans

R5.5

 Using user-defined data-specific elasticity capabilities R5.6

 Consider multi-grained control effects on multiple application
parts

R5.7

 Give higher priority to data-related metrics/ computing-related
metrics depending on component type

R5.8

 Evaluate and consider in the decision process how data specific
application behavior affects computing parts of the application
and vice-versa

R5.9

D 1.2 – Updated User Requirements and System
Architecture

19 / 62

TRACEABILITY MATRIX INDEX

Work Package Requirement Name
Requirement
Number

 Efficiency (time and resource utilization efficiency) R5.10

 Robustness R5.11

 Abstraction R5.12

 Failure Management R5.13

IaaS Provisioner App deployment description R6.1

 IaaS Cloud connectors R6.2

 App deployment submission R6.3

 App deployment orchestration R6.4

 App deployment scaling actions R6.5

 App termination R6.6

 Wide Applicability – ease of deployment R6.7

3.1 WP2: Cloud Application Management Framework

Table 3-2: WP2 traceability matrix

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

 System

R1 Application
Submission

c-Eclipse/app
submission tool

The Application Submission Tool will be used for
submitting application-related information to
the CELAR Manager hosted on the underlying
Cloud provider. Upon submission, the CELAR
Manager will return to the tool a unique ID for
the submitted application. The submitted
information will be used at deployment time, to
deploy the application over the provider’s
infrastructure. We will submit both test
applications (1st year review Cassandra cluster, a
3-tier video streaming application) as well as the

D 1.2 – Updated User Requirements and System
Architecture

20 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

CELAR use-case applications. The verification will
be also demonstrated live at the yearly review
meetings.

R2 Application
Deployment

c-Eclipse/app
submission tool

Same as Application Deployment requirement
(WP2), R2.7.

R3 Application
Termination

c-Eclipse/app
submission tool

Same as Application Termination requirement
(WP2), R2.8.

R4 Real-time
Application
Monitoring

c-
Eclipse/informatio
n tool

The Information Tool will present, via a graphical
UI, real-time monitoring data about the
deployed applications. These data are produced
by the CELAR Monitoring System. In addition, the
Information Tool will provide to the users
information about their past deployments, such
as aggregated statistics of selected metrics
enriched with cost information. Users will be
able to query the Information Tool for such
information via the tool’s user-friendly UI. This
can be demonstrated live at the yearly review
meetings by monitoring the deployments of test
and real applications (i.e. the CELAR use-case
applications) via the Information Tool and
querying the tool for specific metrics regarding
past application deployments.

R5 Real-time,
Automated and
User-defined
Resource
Provisioning

c-Eclipse/app
description and
submission tools

Same as Elasticity Support requirement (WP2),
R2.6.

R6 Customizable
System
Interaction

c-Eclipse/app
description and
submission tools

Same as Customizable Application Description
requirement (WP2), R2.3.

R7 Scalability -

R8 Efficiency -

R9 High Availability -

R10 Wide c-Eclipse/app c-Eclipse will enable users to deploy their

D 1.2 – Updated User Requirements and System
Architecture

21 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

Applicability description and
submission tools

applications on different IaaS providers, in order
to ensure application portability. As a result,
CELAR has the potential of being offered by
different providers which can be accessed by
users via the c-Eclipse tools. To achieve
portability, c-Eclipse adopts open Cloud
standards, such as TOSCA, designed specifically
to promote portability of applications across
providers. This can be verified by creating a
generic description of the CELAR use-case
applications via the Application Description Tool,
and request via the Application Submission Tool
the deployment of the application on both
~okeanos and FCO. Deployment verification will
be demonstrated at the third year review
meeting. Furthermore, c-Eclipse ensures its wide
applicability by being implemented as an Eclipse
plug-in that can be installed on any platform (see
Wide Applicability requirement – WP2 R2.11).

R11 User-friendliness c-Eclipse (all) Same as User-friendliness requirement (WP2)
R2-12.

 WP2

R2.1 Application
Description
Creation

c-Eclipse/app
description tool

The Application Description Tool must allow
users to provide, via a graphical interface,
meaningful information about an application
that is to be deployed on the Cloud. This can be
demonstrated live at the yearly review meetings
by utilizing the Application Description Tool to
describe the structure and provisioning of test
and real applications, such as the CELAR use-case
applications.

R2.2 Application
Description
Translation

c-Eclipse/app
description and
submission tools

The TOSCA XML generated by the Application
Description and Submission Tools will be
validated (via java methods) against the TOSCA
XML schema. Since the graphical-to-TOSCA
translation is done automatically, without user’s
intervention, the syntactical validity of the

D 1.2 – Updated User Requirements and System
Architecture

22 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

generated XML needs to be proved only once.

R2.3 Customizable
Application
Description

c-Eclipse/app
description and
submission tools

Users must be able to adjust their application
descriptions in various ways; for example, an
Application User should be able to change the
structure of an application by adding/removing
application components and relationships,
update the elasticity policies governing his
application’s behavior or refine the application’s
deployment requirements (via the Application
Description Tool). Furthermore, an Application
User should be able to customize a description
for deployment on different providers by
submitting the same application multiple times
and customizing the description for another
provider each time (via the Application
Submission Tool). This can be demonstrated live
at the yearly review meetings by utilizing the two
tools to customize the descriptions of test and
real applications in both ways.

R2.4 Application
Description
Customization

c-Eclipse/app
submission tool

The c-Eclipse Application Submission Tool will
provide to Application Users access to Cloud
providers’ offerings and capabilities, upon user
authentication. Such provider specific
information can be used to customize a generic
application description for deployment on the
infrastructure of the specific provider. This
functionality will be demonstrated over test
applications: we will create a customized
description of the applications via the
Application Submission Tool and then we will
request the deployment of the described
applications over the corresponding Cloud
infrastructures. Deployment verification will be
demonstrated at the third year review meeting.

R2.5 Authentication

c-Eclipse/app
submission tool,
CELAR Manager

The c-Eclipse Application Submission Tool will
request authentication credentials from the
users at application’s submission time. The user

D 1.2 – Updated User Requirements and System
Architecture

23 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

must have first created an account to the
provider (using the provider’s site directly), so
that he acquires the required credentials to
deploy the application on the provider’s
infrastructure. The Application Submission Tool
will pass the user’s credentials to the CELAR
Manager to complete the authentication, which
will in turn return the authentication results to
the tool. In case a user is successfully
authenticated to a provider, via the Submission
Tool, we can use the provider’s site directly to
ensure that the user (with the given credentials)
is actually subscribed to the provider.
Authentication verification will be demonstrated
at the third year review meeting.

R2.6 Elasticity
Support

c-Eclipse/app
description and
submission tools

Users must be able to describe the elasticity
policies of their application via c-Eclipse. Cloud
provider neutral policies can be specified
through the Application Description Tool, while
Cloud provider specific policies (i.e. policies that
contain resizing actions or metrics supported by
specific providers) can be specified through the
Application Submission Tool. Elasticity policies
will be injected into the TOSCA XML description
of the application and used by the Decision
module to scale the application based on user’s
requirements. We will demonstrate this by
specifying elasticity policies using the Properties
View of the two c-Eclipse tools and verifying that
the policies are included in the generated XML
TOSCA description of the application.

R2.7 Application
Deployment

c-Eclipse/app
submission tool,
CELAR Manager

The Application Submission Tool must be able to
trigger a new deployment for an application on a
Cloud provider. To do so, the Application
Submission Tool must interact with the CELAR
Manager via the “deployment/deploy” API call
by referencing the application’s unique ID given
at submission time. The CELAR Manager must

D 1.2 – Updated User Requirements and System
Architecture

24 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

return the deployment’s status to the
Application Submission Tool with the unique ID
of the deployment in case of a successful
deployment, or a failure message otherwise This
can be demonstrated live at the yearly review
meetings by deploying test and real applications
(i.e. the CELAR use-case applications) via the
Application Submission Tool, on both ~okeanos
and FCO and presenting the deployment status
via the Submission Tool to verify the
deployments.

R2.8 Application
Termination

c-Eclipse/app
submission tool,
CELAR Manager

The Application Submission Tool must be able to
terminate an application’s deployment. To do so,
the Application Submission Tool must interact
with the CELAR Manager via the
“deployment/shutdown” API call by referencing
the deployment’s unique ID. Any report
messages from the CELAR Manager regarding
the deployments’ termination should be sent
back to the Submission Tool. This can be
demonstrated live at the yearly review meetings
by requesting the termination of already
deployed test and real applications (i.e. the
CELAR use-case applications) via the Application
Submission Tool, and presenting the returned
messages via the Submission Tool to verify the
deployments’ termination.

R2.9 Enable
Application
Portability

c-Eclipse/app
description and
submission tools

The c-Eclipse Application Description Tool
enables users to describe their applications in a
very generic way, by hiding any Cloud provider
specific information. Thus, the same application
description can be submitted for deployment on
any Cloud provider offering CELAR. Any
customization of a generic description with
provider specific information can be optionally
achieved via the c-Eclipse Application Submission
Tool. To assess the application portability feature
of c-Eclipse, we can create a generic description

D 1.2 – Updated User Requirements and System
Architecture

25 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

of the CELAR use-case applications via the
Application Description Tool, and send the
description for deployment on both ~okeanos
and FCO. Deployment verification will be
demonstrated at the third year review meeting.

R2.10 Robustness

c-Eclipse/app
description and
submission tools

The c-Eclipse Application Description and
Submission Tools will cope with unexpected
situations by prompting the appropriate error
messages when users give incomplete or
erroneous input data. This can be demonstrated
live at the yearly review meetings by utilizing the
Application Description and Submission Tools to
describe applications and inserting erroneous
input data.

R2.11 Wide
Applicability

c-Eclipse/app
description and
submission tools

The c-Eclipse framework is implemented as an
Eclipse plugin. As a result, it can run on any
platform, which is supported by Eclipse
(Windows, Linux, Sun Solaris, Mac OS X and
others). c-Eclipse will be tested over Windows,
Linux and MAC machines to see whether it can
run on these platforms without arising any errors
or problems.

R2.12 User-friendliness

c-Eclipse/app
description and
submission tools

The Application Description and Submission
Tools will be tested in terms of user friendliness
and ease of use by asking Cloud users of multiple
expertise levels to describe an application to be
submitted to the Cloud for deployment. Partners
from Playgen and UNIMAN will also test the
friendliness of c-Eclipse while deploying the
CELAR use-case applications.

D 1.2 – Updated User Requirements and System
Architecture

26 / 62

3.2 WP3: Elasticity Provisioning Platform

Table 3-3: WP3 traceability matrix

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

 System

R1 Application
submission

c-Eclipse - CELAR
Server

The user is able to submit a new application
description to the platform using the c-Eclipse
tool. Specifically, the user will design the
application to c-Eclipse, and a TOSCA file will be
compiled holding the application structure and
all the necessary details needed by the platform
to launch a new deployment. The TOSCA file is
forwarded to the CELAR Server and it is parsed.
The CELAR database is populated with data and
the application is now ready to be deployed.
Toy applications as well as the CELAR use case
applications are described using c-Eclipse and
submitted to the system, in order to verify the
correctness of the procedure.

R2 Application
deployment

CELAR Server -
CELAR
Orchestrator

Upon the submission of the application, the user
can choose to deploy her application over a
cloud provider. In such cases, a new deployment
loop is initiated, as explained in the "Deploy
Application" functionality of WP3 traceability
matrix.

R3 Application
Termination

c-Eclipse - CELAR
Server - CELAR
Orchestrator

The termination of the application is executed
through the CELAR Server API: the authenticated
user shall issue a new "shutdown" request to the
CELAR Server and the Orchestrator of the
respective application will try to perform a
graceful shutdown process. The procedure will
be triggered by c-Eclipse.

R4 Real-time
application
Monitoring

- -

R5 Real-time,
Automated and
User-defined

CELAR
Orchestrator -
Decision Module

This functionality is primarily achieved through
the Decision Module which fetches and analyzes
the monitoring data of the application in an

D 1.2 – Updated User Requirements and System
Architecture

27 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

Resource
Provisioning

automated manner and issues new requests to
the CELAR Orchestrator to perform elastic
operations. The Orchestrator then fetches the
necessary scripts and enforces them to the
deployed application.
The verification of this functionality is conducted
using both test applications (e.g. Cassandra as
demonstrated in Y1 review) and both CELAR use
cases with variable loads and different user-
defined policies.

R6 Customization CELAR Server -
CELAR
Orchestrator -
Decision Module

The customizability of the platform is achieved
with the cooperation of many CELAR modules.
Specifically, updating the user defined policy for
a single application must be broadcasted to the
Decision Module in order to alter the decision
process. Similarly, changes in the structure or
the deployment level details (VM images, etc.)
should be forwarded to the respective modules
(CELAR Orchestrator, CELAR Server) so that they
are enforced during the deployment of the
application.
The verification of this procedure is conducted
by updating the application details during its
execution. To this end, a versioning mechanism
is inserted to the data stored by the platform in
order to keep details about revisions of the
application structure and policies, as they are
provided by the user.

R7 Scalability CELAR Server -
CELAR
Orchestrator

See "Scalability" functionality of WP3, R3.8.

R8 Efficiency Decision Module See "Efficient and robust scaling actions"
functionality of WP3, R3.9.

R9 High Availability CELAR Server -
CELAR
Orchestrator

See "High Availability" functionality of WP3,
R3.7.

R10 Wide CELAR Server - To ensure the wide applicability of the platform

D 1.2 – Updated User Requirements and System
Architecture

28 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

Applicability –
ease of
deployment

CELAR
Orchestrator

the system must be portable, easy to deploy,
maintain, use and extend. The platform is
written in Java programming language, which is
open source (OpenJDK) and portable between
various operating systems. Furthermore, the
ability to interact with more than one IaaS
providers using the same API enables the
platform to be IaaS agnostic and enhances its
portability.
The deployment of the platform is currently
executed through tar packages and installer
scripts, but the final goal is to provide binary
packages (rpm and deb), enabling the one-click
installation to most Linux systems. The easy
maintenance and extension of the system is
enabled by the modular nature of the platform:
a possible usage of it can entail the substitution
of one or more CELAR modules, without
problems.

R11 User
Friendliness

- -

 WP3 – Elasticity
provisioning
platform

R3.1 Deploy
Application

CELAR Server -
CELAR
Orchestrator -
SlipStream

The CELAR Server accepts requests from the c-
Eclipse Description and Submission Tools and it
then triggers a new application deployment. The
IaaS interaction for the allocation of the
resources will occur through SlipStream. The
CELAR Orchestrator, in cooperation with
SlipStream, injects the necessary scripts into the
newly allocated resources using ssh connections,
and it configures the application, according to
the user defined configuration scripts.
The verification of the deployment loop occurs
by testing the deployment engine over
numerous discrete applications, providing the
necessary deployment scripts. Examples of such
applications are the Y1 review application

D 1.2 – Updated User Requirements and System
Architecture

29 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

(Cassandra cluster stressed by YCSB clients), the
CELAR use case applications (SCAN pipeline,
Dataplay application), etc. In programmatic
level, the system is tested using test cases (JUnit
tests).

R3.2 Decide elastic
operation

Decision Module Refer to WP5 subsection.

R3.3 Perform elastic
operation

CELAR
Orchestrator

When a new elastic operation is decided, the
Decision Module forwards it to the CELAR
Orchestrator. The Orchestrator fetches the
necessary scripts from the CELAR DB in order to
apply them to the application and it contacts the
IaaS in order to allocate/deallocate resources (if
needed). When the elastic operation implies that
the application is scaled out (e.g. addition of a
VM), the Orchestrator waits the IaaS actions to
be completed and it then deploys and configures
the application to the newly allocated resources.
The deployment and application configuration
procedure is achieved using the same
techniques used in the Deployment case (ssh
commands, script injection). On the other hand,
when the resizing action implies resource
deallocation, the application configuration
occurs first in order to ensure that the
application remains functional.
The verification of the Orchestrator is performed
using JUnit test cases and trying different
resizing scripts for different applications.
Verification is a crucial process for the
Orchestrator, since its execution entails the
coordination of all the CELAR modules and the
applied scripts are tested for their validity. At
this point it must be pointed out that the
aforementioned scripts are modular to the
platform, in the sense that each user can define
new scripts in order to scale her application. In
these cases, the Platform cannot ensure that
these scripts will have the desired behavior.

D 1.2 – Updated User Requirements and System
Architecture

30 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

However, a set of predefined scripts for popular
applications, such as NoSQL applications
(Cassandra, HBase), servlet containers and
popular web servers (Apache Tomcat), etc, will
be offered to the user, tested by the Platform's
developers guarantying that their behavior is
consistent. Furthermore, errors during the
enforcement of elastic operations will become
apparent to the platform through the
monitoring system, since the application will not
have the predicted behavior. It is the platform's
responsibility to handle these situations either
by using rollback mechanisms to restore the
application to previous states or inform the user
about the failure of the elastic operation (in case
where a user defined script is used).

R3.4 Maintain
application
status

CELAR
Orchestrator

All CELAR modules comprising the platform are
designed to periodically export the current
status of the application into a repository. This
way, the CELAR Server and the Information
System can receive up to date information
regarding the activity of the Platform for each
separate application. This behavior also enables
the recovery mechanism to restart failed CELAR
modules restoring them to their last state, also
contributing to the robustness of the platform.
Furthermore, the application status is stored
periodically in the same persistent and highly
available repository, enabling the CELAR
Orchestrator to restore failed application
modules, when feasible. These rollback
mechanisms are tested by causing failures in
deployed application and observe the system's
behavior. Specifically, a number of applications
are deployed and elastically scaled when a
failure is caused to some of the application VMs.
This is achieved by powering of a VM or
detaching a network interface. The system has
stored the application's last status and it must
be able to restore the application in the prior

D 1.2 – Updated User Requirements and System
Architecture

31 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

state.

R3.5 Profile
application

Application
Profiler

The Application Profiler is used to automatically
estimate the application's performance for
different deployment setups. This is achieved by
deploying the application for a small number of
different deployment setups and the behavior is
approximated using surrogate models to the rest
of the application's design space. This kind of
knowledge will give hints to the decision module
about the expected behavior of the application
for each specific deployment setup, enabling it
to predict the performance of the application
after the successful termination of the resizing
action.
The results of the profiler are verified by the
approximation model itself during the testing
phase. Since the objective of the profiler is to
achieve the best possible accuracy with the
minimum number of actual deployments, we
test the profiler using different applications with
different behaviors and test its accuracy. Using
applications of different types for testing
purposes, we can ensure that the profiler will be
able to approximate (in acceptable levels) the
performance of an application regardless of its
nature. For example, typical three-tier
applications will be used to model online web
applications (toy applications responding to
dummy calls and well known benchmarks such
as wikibench and rubis) while applications
performing batch operations will also be tested
(such as Hadoop jobs). Since the profiling
process is tightly coupled with the deployment
and reconfiguration processes, we use the same
testing mechanisms as described above to verify
their correct functionality.

R3.6 Abstraction SlipStream -
CELAR Server -
CELAR

The platform must be able to interact with the
IaaS provider in order to allocate/deallocate
resources, retrieve user quotas, etc. Since the

D 1.2 – Updated User Requirements and System
Architecture

32 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

Orchestrator communication API varies between different
IaaS provider, the Platform uses abstract
libraries (Apache JClouds, Apache libcloud) to
treat the different clouds in a unified way. This
leads to abstraction and enables the platform to
be IaaS agnostic. This abstraction also enables
the platform to exist outside the IaaS provider
and trigger deployments to different cloud
providers just by pointing to them.
Programmatically, the components that utilize
the aforementioned libraries are SlipStream, the
CELAR Server and the CELAR Orchestrator.
In the application level, the Platform provides
abstraction by handling and deploying any kind
of application that the user has described. This is
achieved by using open specification protocols
(TOSCA) during the application description. The
application description is then translated to
SlipStream commands and the application is
deployed. Regarding the abstraction, various
popular applications are deployed to different
cloud providers in order to verify the correctness
of this methodology: the platform must be both
able to handle one application in the same
manner to different IaaS providers (without
altering the application description) and, dually,
be able to handle different applications in the
same cloud provider.

R3.7 High Availability CELAR Server -
CELAR
Orchestrator -
HAComponent

High availability is primarily achieved through a
health check mechanism, monitoring the health
of the Virtual Machines which host the CELAR
modules and each module separately. In cases
where an error is identified in VM or module
level, a recovery mechanism is triggered in order
to restore the functionality of the platform.
Secondarily, to avoid the downtime in the
centralized modules of the Platform (e.g. CELAR
Server), we utilize load balancing software and
we replicate the crucial modules. We utilize
HAProxy, a fast and scalable load balancing tool,

D 1.2 – Updated User Requirements and System
Architecture

33 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

offering high availability to the platform by
redirecting the outer connections to more than
one (replicated) CELAR Servers.
The verification of this health check mechanism
is achieved by provoking failures in one or more
VMs hosting the CELAR modules (e.g., disabling a
network interface, forcefully halting a Virtual
Machine, etc). The system should be able to
restore the failed CELAR modules without
degrading the application's performance.
Similarly, the same tests are repeated to verify
HAProxy's contribution to the platform for the
CELAR Server.

R3.8 Scalability CELAR
Orchestrator -
CELAR Server

The CELAR platform is designed in a
decentralized manner, allowing many
concurrently running applications without
compromising its performance. Each application
is monitored, orchestrated and elastically scaled
from a dedicated VM, thus the platform is not
overloaded when many applications are
deployed. The centralized part of the platform
(CELAR Server) acts more like an endpoint
between the platform and the end users rather
than a compute engine. The main repository
used to store historic application information,
application scripts, etc. is distributed (NoSQL
cluster), allowing the system to allocate more
resources when necessary.

R3.9 Efficient and
robust scaling
actions

Decision Module The robustness in the decided scaling actions is
primarily achieved through the Decision module:
the Decision module evaluates the application
performance in an event driven way (e.g. when
spikes on load are identified) and in a periodic
manner. In the later case, the period is kept
short in order to quickly adapt to the load of the
application. On the other hand, the Decision
Module uses average results to evaluate the
application metrics in order to avoid oscillations.

D 1.2 – Updated User Requirements and System
Architecture

34 / 62

3.3 WP4: Real-Time Cloud Information and Performance Monitor

Table 3-4: WP4 traceability matrix

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

 System

R1 Application
submission

- -

R2 Application
Deployment

CELAR Monitoring
System

The CELAR Monitoring System must be both
configurable to the application’s needs (i.e.
metrics required to be collected) and
deployable in a fully automated manner via the
CELAR Provisioner (Slipstream). The verification
of this requirement will be assessed in CELAR
demonstrations where various applications
from different domains are successfully
deployed to different Cloud platforms.

R3 Application
termination

CELAR Monitoring
System

Upon application termination, the termination
of the respected monitoring service must not
affect the monitoring service of other
applications running over the CELAR System.
Based on the CELAR workflow documented in
D1.1, the monitoring service of each application
is completely independent from each other and
therefore no problems will arise upon
application termination.

R4 Real-time
Application
Monitoring

CELAR Monitoring
System / Multi-
Level Metrics
Evaluation
Module / CELAR
Information
System

The CELAR Monitoring System will collect
metrics from multiple levels of the underlying
infrastructure and performance metrics from
deployed Cloud applications. In collaboration
with the Multi-Level Metrics Evaluation Module,
monitoring metrics will be aggregated,
structured and enriched with cost information.
In turn, metrics will be accessible by interested
entities (i.e. Application Users, Decision Module)
via a public API or through a user-friendly UI.
Application Users will have access to aggregated
statistics on cost and performance of their
application(s) based on metrics of their choice

D 1.2 – Updated User Requirements and System
Architecture

35 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

which can be combined and evaluated against
cost and benefits before being presented by the
CELAR Information System. See WP4
requirements (CELAR Monitoring System, Multi-
Level Metrics Module, CELAR Information
System) for a description on the assessment of
this requirement.

R5 Real-time,
automated
User-defined
Resource
Provisioning

- -

R6 Customization - -

R7 Scalability CELAR Monitoring
System

The CELAR Monitoring System must be scalable
in order to facilitate a large number of
application deployments which may be
comprised of a large number of virtual instances
which, in turn, may produce a large number of
metrics in very small time intervals. See CELAR
Monitoring System requirement R7 for a
description of the assessment of this
requirement.

R8 Efficiency - -

R9 High Availability CELAR Monitoring
System

In order for the decision making process to
produce accurate elasticity decisions, real-time
monitoring information is required. For this
reason it is important for the Monitoring Server
of each application to follow the proposed High-
Availability schema documented in D3.2. See
CELAR Monitoring System requirement R11 for
a description of the assessment of this
requirement.

R10 Wide
Applicability –
ease of
deployment

- -

D 1.2 – Updated User Requirements and System
Architecture

36 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

R11 User-
friendliness

- -

WP4: Real-Time Cloud Information and Performance Monitor

CELAR Monitoring System (JCatascopia)

R4.1 Collect resource
related metrics

CELAR Monitoring
System

JCatascopia Monitoring Probes will be utilized to
collect resource-related utilization metrics (i.e.
CPU usage, allocated memory and network
traffic) from the underlying virtual
infrastructure. In turn, JCatascopia Monitoring
Agents will be responsible for managing the
metric collection process and configuring
Monitoring Probes on each virtual instance. The
verification of this requirement will be assessed
by providing a number of resource-related
Monitoring Probes (CPU, Memory, Network and
Disk Probe). The functionality of the
aforementioned Monitoring Probes will be
showcased in the yearly review meeting
demonstrations (and other CELAR
demonstrations) by exposing a rich set of
resource-related metrics to both Application
Users and the Decision Module.

R4.2 Collect
application level
metrics

CELAR Monitoring
System

In a similar manner to R1, the Monitoring
System will be able to gather monitoring
information (i.e. throughput, latency, response
time, etc.) related to the performance of user
running application(s). The verification of this
requirement will be assessed by providing a
number of Monitoring Probes for: (i) well-
known applications (i.e. Apache Cassandra DB,
Apache Tomcat) and (ii) the CELAR pilot
applications. A number of application-level
Monitoring Probes will be used to expose
metrics to both Application Users and the
Decision Module while showcasing CELAR at
demonstrations such as the yearly review
meeting demonstrations.

D 1.2 – Updated User Requirements and System
Architecture

37 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

R4.3 Deploy custom
monitoring
Probes

c-Eclipse / CELAR
Manager / CELAR
Monitoring
System

The Monitoring System will provide a
mechanism that allows Application Developers
to deploy their own custom JCatascopia
Monitoring Probes to Monitoring Agents even
at runtime. Monitoring Probes can be
developed in an intuitive interface provided by
c-Eclipse and then deployed seamlessly, via the
CELAR Manager, to JCatascopia Monitoring
Agents. To assess the functionality of this
requirement, Monitoring Probes will be
implemented by the developers of the CELAR
pilot applications to facilitate their monitoring
needs. Furthermore, when showcasing the pilot
applications at the yearly review meeting
demonstrations, the aforementioned
Monitoring Probes will be used to monitor their
performance.

R4.4 Add/Remove
monitoring
instances at
runtime

CELAR Monitoring
System

The Monitoring System will provide the
appropriate mechanism and communication
protocol to add/remove JCatascopia Monitoring
Agents dynamically at runtime. Specifically,
when a new VM is added to an application
topology, a new Monitoring Agent must be
automatically configured and added to this VM.
In turn, the Monitoring System must be notified
for this addition. Similarly, the Monitoring
System must also be aware when a Monitoring
Agent has been removed due to the removal of
a previously allocated VM. The verification of
this requirement will be assessed, when
demonstrating CELAR, by enforcing elasticity
actions to an application topology which causes
the addition/removal of virtual instances, where
the Monitoring System must be able to identify
changes in the application’s topology.

R4.5 Monitoring
metric delivery
mechanisms

CELAR Monitoring
System

The Monitoring System will provide entities (i.e.
Application Users, Decision Module) interested
in monitoring metrics with two metric delivery
mechanisms: (i) a pull delivery mechanism,

D 1.2 – Updated User Requirements and System
Architecture

38 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

where entities query the Monitoring System for
fresh metrics; and (ii) a push delivery
mechanism, where entities request to be
notified for metrics upon availability or if a
threshold has been violated. To assess the
functionality of both metric delivery
mechanisms, in CELAR demonstrations, entities
interested in metrics will select freely which
mechanism better suits their needs. For
example, the Multi-Level Metric Evaluation
Module which enriches metrics periodically with
cost information will most probably use a pull
delivery mechanism, whereas the Decision
Module may only be interested in being notified
when thresholds have been violated.

R4.6 Infrastructure
Independence

CELAR Monitoring
System

The Monitoring System will be deployable and
functional on any underlying Cloud platform
since the CELAR System will be utilized by a
number of different Cloud platforms (i.e. GRNET
okeanos, Flexiant FCO). To cope with this,
JCatascopia Monitoring Agents will be
deployable on different Cloud platforms and at
different levels of the Cloud infrastructure. In
turn, the metric collecting mechanisms provided
by JCatascopia Monitoring Probes, as well, will
not depend on the infrastructure where the
Monitoring System, and CELAR, is installed on.
To assess this requirement, the Monitoring
System will be deployed and tested on: (i) both
of the consortium Cloud platforms (GRNET
okeanos and Flexiant FCO); (ii) well known
public Cloud platforms outside of the project
(e.g. Amazon EC2); and (iii) private Cloud
infrastructures (e.g. Openstack private Clouds).

R4.7 Scalability CELAR Monitoring
System

The Monitoring System must be scalable in
order to handle a large number of metric
producers on different Cloud levels while
simultaneously being able to handle a large
number of metric consumers. Specifically, the

D 1.2 – Updated User Requirements and System
Architecture

39 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

Monitoring System should not be fragmented
by the number of running Monitoring Agents in
an application’s topology or the number of
Monitoring Probes utilized on each Monitoring
Agent. To cope with an increasing number of
Monitoring Agents in an application’s topology
monitoring metric traffic can be redirected
through more than one Monitoring Servers,
allowing the monitoring system to scale. To
assess this requirement, a scalability test will be
conducted and the results will be presented in
deliverable D4.2.

R4.8 Non-
Intrusiveness

CELAR Monitoring
System

JCatascopia Monitoring Agents will have a
minimal run-time impact (in terms of CPU,
memory and network traffic consumption) in
order to not affect the performance of the
application running on user-paid virtual
instances. To assess this requirement, a runtime
impact test will be conducted and the results
will be presented in deliverable D4.2. In this
test, we will not just evaluate the runtime
impact of JCatascopia Monitoring Agents but
also compare JCatascopia to other existing
monitoring tools (e.g. Ganglia).

R4.9 Elasticity and
Adaptability

CELAR Monitoring
System

The Monitoring System will be elastic in terms
of adjusting dynamically to changes in the
application topology (see R4.4) and also to
resource changes of a virtual instance due to
elasticity actions (e.g. a new disk is attached to
VM). The Monitoring System will also be
adaptable in terms of computation, network
and storage load it imposes on user-paid
resources in order to remain non-intrusive (see
R4.8) when elasticity actions are enforced. To
facilitate this requirement, two mechanisms will
be available at Monitoring Probe level: (i)
adaptive filtering, which adjusts the metric
value filtering window based on the imposed
workload; and (ii) adaptive sampling, which,

D 1.2 – Updated User Requirements and System
Architecture

40 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

similarly, adjusts the sampling intensity based
on the imposed workload. Elasticity will be
assessed as documented in R4.4. Adaptability
tests will be presented in deliverable D4.2.

R4.10 Extensibility CELAR Monitoring
System

The Monitoring System will be both extensible
and modular by allowing users to: (i) utilize their
own database backend for metric storage,
instead of the default one, by implementing the
JCatascopia Database Interface; and (ii) develop
and deploy their own custom Monitoring Probes
to collect metrics not currently available by the
Monitoring System (see R4.3). This requirement
will be assessed by utilizing at CELAR
demonstrations different monitoring database
backends (i.e. MySQL, Apache Cassandra).
Custom Monitoring Probe deployment will be
assessed as documented in R4.3.

R4.11 Robustness and
Fault-Tolerance

CELAR Monitoring
System

The Monitoring System must be able to cope
with unexpected errors and failures that are
bound to present in distributed systems such as
CELAR. For this reason, the Monitoring System
must assure that: (i) if a Monitoring Agent is
assumed dead or unavailable due to unexpected
events (e.g. VM failure or network
unavailability) then the functionality of the rest
of the system is not affected; (ii) the metric
collection process of a Monitoring Probe should
not fail or be affected by stalls or errors
introduced by the metric source of other
Probes; (iii) Due to the importance of the
Monitoring Server, it is required to follow the
proposed High-Availability schema documented
in D3.2. For this reason, if a Monitoring Server
fails for an unexpected reason (e.g. Application
Orchestration VM failure) then when re-
deploying another Monitoring Server, the new
Monitoring Server should be able to re-connect
with every Monitoring Agent it is responsible for
and re-construct its state without requiring for

D 1.2 – Updated User Requirements and System
Architecture

41 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

Monitoring Agents to be re-deployed or
restarted. A detailed description of this
requirement will be provided in D4.2. The
verification of the functionality of this
requirement will be assessed by extensively
testing the Monitoring System under various
faulty scenarios that may occur to the
monitoring process. Tests will also be conducted
while testing the functionality of the CELAR
High-Availability Module.

R4.12 Near Real-Time CELAR Monitoring
System

The Monitoring System will collect (near) real-
time monitoring metrics from various levels of
the Cloud infrastructure and deliver them to
interested metric consumers (e.g. Decision
Module). The verification of this requirement
will be assessed while performing scalability
tests (see R4.7) to see if real-time metrics can
be provided to metric consumers when the
Monitoring Database holds a significant number
of metric values.

Multi-Level Metrics Evaluation Module (MELA)

R4.13 Perform
composable
cost-evaluation

Multi-Level
Metrics Evaluation
Module

Using “metric composition rules”, cost for the
entire application or individual components can
be obtained by combining cloud pricing
schemes with virtual infrastructure usage
information collected by CELAR Monitoring
System.

This is demonstrated by computing overall
application cost from individual cost elements,
such as VM running cost, data storage cost, and
network data transfer cost, for the alpha
versions of the CELAR pilot applications
(upcoming [D8.2] and [D7.2]), and the CELAR
cloud providers’ cost schemes. The results will
be presented in deliverable D4.2.

R4.14 Convert Multi-Level Using “metric composition rules”, collected

D 1.2 – Updated User Requirements and System
Architecture

42 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

monitoring data

Metrics Evaluation
Module

metrics can be converted to desired
measurement units.

This is demonstrated by converting different
metrics to the desired units, such as
clients/second to clients/hour, enabling the
computation of estimated hourly cost per
served client as VM Cost/hour divided by
clients/hour.

R4.15 Aggregate
monitoring data
based upon the
application
structure model

Multi-Level
Metrics Evaluation
Module

The monitoring information collected by the
CELAR Monitoring System is logically organized
after the application structure.

This is demonstrated for each CELAR pilot
application (upcoming [D8.2] and [D7.2]), by
submitting the application structure, and using
metric composition rules, associating different
metrics with different application components
and complex components. The results will be
presented in deliverable D4.2

R4.16 Scalability

Multi-Level
Metrics Evaluation
Module

As elastic applications can scale out “infinitely”,
the module must be able to handle various
amounts of incoming data.

This is demonstrated by running for extensive
periods the CELAR pilot applications, with
control strategies which generate multiple
scaling actions.

R4.17 Robustness

Multi-Level
Metrics Evaluation
Module

During enforcement of scaling actions, incoming
monitoring data might not be accurate, or data
sources might be missing.

This is demonstrated by selectively deactivating
the CELAR pilot applications’ monitoring system,
deactivating and activating the whole CELAR
Monitoring System, and ensuring the module
continues to work even with incomplete data.

D 1.2 – Updated User Requirements and System
Architecture

43 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

R4.18 Reusability

Multi-Level
Metrics Evaluation
Module

The module must support any cloud pricing
scheme format and any cloud application
structure format.

This is demonstrated by submitting multiple
application structures to be applied both over
the same virtual infrastructure topology (e.g.
VMs), and different virtual infrastructure
topologies, and ensuring the module aggregates
and shows the data correctly.

R4.19 Flexibility

Multi-Level
Metrics Evaluation
Module

The module must be configurable and usable
outside CELAR, as to maximize exposure of
CELAR modules.

This is demonstrated by running the module
standalone, separate from the CELAR
Monitoring System, configured for other
monitoring data sources (e.g. Ganglia).

CELAR Information System

R4.20 Handle elastic
Cloud Recourses

CELAR
Information
System

To make full use of the provided services (i.e.
provided resources, resource cost, available
actions), our aim is to build an information
system allows efficient access to the resources
and monitoring data from end users and CELAR
modules. An engine to search for resources
needs to be designed and implemented in the
system. An analytics engine, able to intelligently
display running and monitoring information to
the user, is also needed.

R4.21 Allow complex
queries

CELAR
Information
System

It is essential for the information system to
provide, to its clients, the ability to format
complex queries in order to achieve accurate
information. These queries may combine
multiple data sources and many variables to
parameterize the result. A query constructor /
translator engine that will provide filtering and
aggregation mechanisms to the requested data

D 1.2 – Updated User Requirements and System
Architecture

44 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

will be implemented.

R4.22 Application
Deployment
History

CELAR
Information
System

The Information System will expose to the user
information about past deployments. Such
information may be the resizing actions
(decisions) that have been executed and the
metrics collected during application execution.
Also the ability to compare information from
versions of the same application, with slightly
different configurations, can provide useful
insights. Additionally, comparing and analyzing
data from the profiler and the smart
deployment module is also a desirable feature.

R4.23 Application
Deployment
Cost

CELAR
Information
System

Using cost evaluation service IS can provide
comprehensive information about an
application’s cost driving developers to revise
their application structure and elasticity
constraints in order to reduce the overall
expenses.

R4.24 Multi-provider
Support and
comparisons

CELAR
Information
System / c-Eclipse
Infotool

The CELAR Information System client side as a
part of c-Eclipse will have the ability to connect
and obtain data from multiple providers.
Providing a user interface to contrast this data
can help the user understand which provider
facilitates better his application requirements in
the aspects of suitable resources, resizing
actions support, monitoring metrics support and
cost. This information can help the user select
the provider she will deploy her application.

R4.25 Resource Usage
Analysis /
Statistics

CELAR
Information
System

Using the information stored in CELAR DB about
each application deployment, the Information
System can expose aggregated, anonymous
data about resources usage and elasticity
decisions on specific resources or
configurations. This information can help
developers in the designing phase selecting the
most appropriate resources combination for
their application. Also the IaaS Provider itself

D 1.2 – Updated User Requirements and System
Architecture

45 / 62

TRACEABILITY MATRIX

Req.
no

Requirements

matching method -
matching module

in CELAR
Architecture

means of assessment/verification plans

can find this information useful driving him to
offer additional resources configurations (i.e.
VM flavors) to its clients.

R4.26 Information
Freshness and
Consistency

CELAR
Information
System

The Information System should not keep
duplicate data or data that is not consistent
with the system’s current state. Also, the IS
needs to ensure that updates in the underlying
layer are propagated to its data source in a
timely manner.

R4.27 Low Response
Time

CELAR
Information
System

Time is a significant aspect of an information
system. The Information System should return
accurate information in its requesters in a short
period of time.

R4.28 User
Friendliness /
Usability

CELAR
Information
System

The CELAR Information System client side, as a
part of c-Eclipse, should provide usable and
friendly interface. The user interface must be
built in terms of simplicity and hide complex
procedures that request additional effort from
the user. Also the information that is going to be
presented through user interface should be
described in an ‘easy to read’ manner.

3.4 WP5: Decision-Making Module

D 1.2 – Updated User Requirements and System
Architecture

46 / 62

Table 3-5: WP5 traceability matrix

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

 System

R1 Application
Submission

- -

R2 Application
Deployment

- -

R3 Application
Termination

- -

R4 Real-time
application
Monitoring

- -

R5 Real-time,
Automated and
User-defined
Resource
Provisioning

CELAR Platform/
Decision Module

The Decision Module, as a core part of the
Elasticity Provisioning Platform, will take
automated control measures, based on
application behavior and the user-defined
requirements. We plan to test its deterministic
behavior through unit tests and its performance
by running experiments/demonstrations with
CELAR use-case applications.

R6 Customization - -

R7 Scalability CELAR Platform/
Decision Module

The scalability of the Decision Module is
reflected by its ability to take decisions
regardless of the number of requirements or the
complexity of the application (e.g., the number
of components, their groupings, and the relation
among them). We aim to evaluate this by
measuring the decision time for applications
with various degrees of complexity (e.g., from
single-component application, to multiple
component application with multiple composite
components and a multitude of relationships
among them), and various number of multi-level
elasticity requirements (e.g., from single
requirement like, for instance, minimize cost, to
a multitude of requirements for each

D 1.2 – Updated User Requirements and System
Architecture

47 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

component, composite component or the entire
cloud service). We aim to prove that the
decision module takes decisions in a timely
manner both for the simple cases, and for the
more complex ones.

R8 Efficiency - -

R9 High Availability CELAR Platform/
Decision Module

The Decision Module is deployed on the CELAR
Server, which is a dedicated machine on the IaaS
provider. The errors/exceptions which might
come of abnormal behavior of different CELAR
modules, or of the IaaS provider, are treated
such that they would be gracefully bypassed,
without the failure of the Decision Module.
Moreover, in case such failure happens and the
Decision Module cannot avoid it (e.g., crash of
the CELAR Server VM or of the network), the
Decision Module can easily recover to the
previous state using a checkpointing mechanism.
This will be tested by provoking a failure of the
Orchestration VM, thus shutting down the
Decision Module unexpectedly. At startup, the
Decision Module will be aware of the already
deployed application, historic data as well as
elasticity requirements that the CELAR user has
for current application.

R10 Wide
Applicability –
ease of
deployment

CELAR Platform/
Decision Module

To support this non-functional requirement of
the CELAR Platform, the Decision Module will be
able to control a wide variety of applications,
from scientific applications to web applications.
Based on the model used by the CELAR Platform
which structures the application into composite
components and components, and models the
relation among them, the decision module can
control a variety of applications.

R11 User-
friendliness

- -

 WP5-specific

D 1.2 – Updated User Requirements and System
Architecture

48 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

R5.1 Structure
monitoring
information

Decision Module/
MELA Analysis
Service

Responsibility moved to WP4. The requirement
will be evaluated by investigating if the output of
the MELA-DataService displays monitored
information associated with application
components, information linked with data
collected by JCatascopia from individual virtual
machines.

R5.2 Generate
mappings
between low
level and
application-level
metrics

Decision Module/
MELA Analysis
Service

The decision module can determine
dependencies between application level metrics
(such as response time, throughout), and low
level metrics (such as CPU usage). This is
demonstrated by running different resource
usage oriented workloads (i.e., CPU bound,
memory bound, I/O bound)on benchmarking
applications in order to be able to control the
workload type (e.g., YCSB with Cassandra) and
determine if the correct dependencies are
discovered.

R5.3 Evaluate
application
user’s elasticity
requirements

Decision Module The decision module evaluates elasticity
requirements for being able to take decisions.
This information related to how often the
requirements are violated, and how the violation
is addressed, is saved in the CELAR DataBase to
be displayed by the Information System as part
of the application runtime statistical
information.
This is demonstrated by verifying in the stored
statistical information if the decision module
evaluates all user-specified requirements, and
what is the evaluation result. We evaluate this
over both artificial workload (e.g., YCSB and
Cassandra application, where we can manipulate
the type of the load), and on CELAR applications
(upcoming [D8.2] and [D7.2]), and with different
types of requirements, analyzing the quality of
Decision Module decisions.

R5.4 Generate action
plan

Decision Module The action plan generated by the decision
module is saved in the CELAR DataBase and
displayed in the c-Eclipse information system.

D 1.2 – Updated User Requirements and System
Architecture

49 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

R5.5 Learn
adaptation
action effects
and elasticity
adaptation
action plans

Decision Module For being able to take decisions, regarding the
optimal elasticity action plans, the decision
module will use algorithms for learning action
effects in order to be able to decide on the best
elasticity action plans. These effects can also be
displayed to the CELAR user, to help him/her
understand the effects of elasticity actions upon
various parts of the application at different
moments of the application lifecycle.

R5.6 Using user-
defined data-
specific
elasticity
capabilities

Decision Module As data related control can be highly dependent
on the data content and structure, the decision
module can use user-defined elasticity
capabilities for enforcing data elasticity. This will
be evaluated through running different
experiments on the CELAR users’ applications
and enforcing data-specific controls.

R5.7 Consider multi-
grained control
effects on
multiple
application parts

Decision Module The decision module offers control of various
types (e.g., VM control, storage control,
configuration control). These types of controls
will be showcased on the CELAR use-case
applications.

R5.8 Give higher
priority to data-
related metrics/
computing-
related metrics
depending on
component type

Decision Module When the component is data-related, the
decision module needs to consider the data-
related metrics with higher priority than the
computing related metrics for deciding and
enforcing decisions. For instance, we cannot
decrease the cost for a data component if that
would affect the data quality in a manner which
makes it unsatisfactory to the CELAR user.
This requirement will be validated by inspecting
the Decision Module requirements evaluation
and actions enforcement history stored in the
CELAR DataBase.

R5.9 Evaluate and
consider in the
decision process
how data
specific

Decision Module In taking and enforcing the decisions, the
decision module needs to consider how actions
enforced on a part of the application affects the
rest of the application (e.g., how actions
enforced on a NoSQL cluster affect a business

D 1.2 – Updated User Requirements and System
Architecture

50 / 62

 TRACEABILITY MATRIX

Req.
no Requirements

matching method -
matching module in
CELAR Architecture

means of assessment/verification plans

application
behavior affects
computing parts
of the
application and
vice-versa

related composite component). To evaluate this,
we compare this approach, with one considering
solely the component upon which we enforce
the control action.

R5.10 Efficiency (time
and resource
utilization
efficiency)

CELAR Platform/
Decision Module

The decision module needs to take and enforce
the decisions in a timely manner. For measuring
and verifying the timeliness of the decisions, and
the efficiency, we will measure the time needed
for taking and for enforcing a decision, and the
resources used, for both of the CELAR use case
applications (upcoming [D8.2] and [D7.2]).

R5.11 Robustness Decision Module Unexpected situations (unexpected variations of
load, rapid load oscillations) should not interfere
with the normal behavior of the decision
module, or cause failure. For testing this, we aim
to produce these kinds of extreme loads for the
use-case applications in order to test and adjust
the behavior of the decision module

R5.12 Abstraction Decision Module The decision module needs to be able to control
different application types, regardless of their
representation or of the control mechanisms
they expose. For enforcing this, the decision
module represents the application in an abstract
manner, and takes the decision based on the
graph resulted from that representation (see
D5.1 [D5.1] and D5.2 [D5.2] for more details).
We can test this by controlling multiple types of
applications (e.g., Dataplay [D7.1] and SCAN
[D8.1]), without performing any changes in the
manner of interpreting and understanding the
application.

R5.13 Failure
Management

Decision Module The decision module needs to be able to manage
the failure of enforcing control actions, and take
corrective actions for fixing a failed action plan.
This can be tested by providing actions at
applications level that may not succeed.

D 1.2 – Updated User Requirements and System
Architecture

51 / 62

3.5 Resource Provisioner

While the Resource Provisioner is part of the Elasticity Platform (WP3) modules, for
completeness, we present in this Section a traceability matrix for SlipStream (SS), a complex
software system utilized as the Resource Provisioner in the CELAR System. This information
provides extra insight towards this choice as well as how SS achieves specific requirements.

Table 3-6: Resource provisioner traceability matrix (The SlipStream service is used as the
Resource provisioner in CELAR).

 TRACEABILITY MATRIX

Req.
no

Requirements

matching method
- matching
module in CELAR
Architecture

means of assessment/verification plans

 Resource
Provisioner

R6.1 App deployment
description

SlipStream image
and deployment
modules

Image and deployment modules can be created via SS
REST API. Application deployment and scaling scripts
and cloud image parameters are properly set on the
image module. Any inter-node parameter mappings are
set on the Deployment module.

R6.2 IaaS Cloud
connectors

SlipStream
connectors

FCO and Okeanos cloud connectors are implemented
and tested. Connectors can be deployed on SS server,
added to and instantiated in the SS service, and
configured per SS user.

R6.3 App deployment
submission

SlipStream Run Deployment can be started. SS Orchestrator and Node
executors on VMs report back to SS Run on their
respective state. The Run progresses through a
predefined state machine.

R6.4 App deployment
orchestration

SlipStream Node
Executors

SS Node executors on VMs invoke user-defined
application provisioning scripts. The scripts are able to
get and set runtime inter-node parameters on SS server,
i.e. are able to use the SS messaging API to coordinate
the deployment process.

R6.5 App deployment SlipStream Run During the elastic deployment runtime, IaaS requests

D 1.2 – Updated User Requirements and System
Architecture

52 / 62

 TRACEABILITY MATRIX

Req.
no

Requirements

matching method
- matching
module in CELAR
Architecture

means of assessment/verification plans

scaling actions and Orchestrator related to scaling application’s IaaS resources up and
down are accepted by SS Run and fulfilled by the
Orchestrator. Assert that the respective IaaS resources
are allocated or de-allocated. Assert that Node
executors on VMs invoked application pre/post
scalability scripts and brought the application in a
consistent state after the requested scalability action.

R6.6 App termination Terminate
SlipStream Run

SS Run can be terminated and all IaaS resources
allocated during the run are released.

R6.7 Wide
Applicability –
ease of
deployment

SlipStream and
Cloudification
framework

SS supports a variety of different cloud providers
through a set of cloud connectors. SS already obtains
connectors to the most popular cloud providers,
including OpenStack, Amazon EC2, VMWare vCloud,
StratusLab, etc. Moreover, by providing a single image or
package that bundles both application and CELAR
platform for installation, we greatly minimize installation
hustle, easing both CELAR and application deployment at
the same time. The SS connector diversity will be
showcased throughout the project’s lifetime as two new
sets of connectors to ~okeanos and FCO (proprietary
API) will be developed. The cloudification framework will
be showcased at the final review with the two use-case
applications.

D 1.2 – Updated User Requirements and System
Architecture

53 / 62

4 Conclusions

In this deliverable, we first briefly summarized the current status of the system use cases,
requirements and architecture. While there have been only minor modifications compared to
D1.1 [D1.1] in the requirements and design phase of CELAR, most modules and methods have
started their development phases and mature versions are incrementally integrated in the
overall system. Individual WP deliverables describe in detail the requirements, design and
implementation phases of different modules. We presented a thorough mapping between
system/WP-specific requirements and CELAR functionalities (as they are realized though system
modules or methods). Moreover, where applicable, we also described testing/evaluation
strategies, in order to demonstrate (in yearly reviews, scientific / dissemination event demos,
etc.) or showcase (in research papers, deliverables, project website, etc.) how these mappings
will be verified in action.

D 1.2 – Updated User Requirements and System
Architecture

54 / 62

5 References

[Cassandra] http://cassandra.apache.org/

[D1.1] D1.1: User Requirements and System Architecture V1. CELAR project, FP7-317790

[D2.2] D2.2: Application Description Tool and Application Submission Tool V1. CELAR project,
FP7-317790

[D3.2] D3.2: Elasticity Provisioning Platform V1. CELAR project, FP7-317790

[D4.1] D4.1: Cloud Monitoring Tool V1. CELAR project, FP7-317790

[D4.2] D4.2: Cloud Monitoring Tool and Cloud Information System V1. CELAR project, FP7-
317790

[D5.2] D5.2: Decision-Making Module V1.CELAR project, FP7-317790

[D7.1] D7.1: Cloud Policy Game Design Document. CELAR project, FP7-317790

[D8.1] D8.1: Translational Cancer Detection Pipeline Design. CELAR project, FP7-317790

 [SS] http://sixsq.com/products/slipstream.html

D 1.2 – Updated User Requirements and System
Architecture

55 / 62

6 APPENDIX: CELAR APIs

The CELAR service APIs are presented in the appendix Sections 6.1 - 6.5

6.1 CELAR Manager

CELAR Manger exports a number of services to any interested party. Some of them are
used by the c-Eclipse platform, in order to describe and deploy new applications and some
are used by other modules of the platform. A brief description of each currently supported
web service is exported in Table 6-1.

Table 6-1: CELAR Manager API

Nr. RESTful API: /celar-server-api/ Description
 Type Resource URL Consumes Produces
1 GET /iaas/resources application/j

son
application/j
son

Depending on the type of
resources requested, it
returns an JSON document
containing all the different
resources provided by the
IaaS

2 GET /iass/quotas - application/j
son

Returns the user's
remaining quotas in an
JSON structure

3 GET /iaas/actions - application/j
son

Returns a list of available
resizing actions provided
by the IaaS(if any)

4 GET /iaas/probes - application/j
son

Returns a list of
monitoring probes
provided by the IaaS (if
any)

5 GET /metrics/insert application/j
son

- Inserts a set of metrics
into the database.

6 GET /metrics/get application/j
son

application/j
son

Returns performance
metrics about the
specified deployment in
the given time-frame

7 GET /deployment/ad
dUser

application/j
son

application/j
son

Adds a user with the
specified name and
returns the user's unique
ID

8 GET /deployment/
describe

application/j
son

application/j
son

Inserts into the database
the description of the
structure of an application.
(Modules, Components,
Required Resources etc)
and returns the

D 1.2 – Updated User Requirements and System
Architecture

56 / 62

application's unique ID
9 GET /deployment/

deploy
- application/j

son
Deploys the requested
application using the
provided configuration
(allocation of resources to
components) and returns
the deployment's unique
ID

10 GET /deployment/
smartDeploymen
t

- application/j
son

Deploys the requested
application using a smart
deployment. Consults the
decision module to get a
smart deployment
configuration.

11 GET /deployment/
shutdown

- application/j
son

Shuts down the
application and
deallocates all its
resources

12 GET /action/
getActionHistory

application/j
son

application/j
son

Returns all timestamps
and deployment ids for a
given resizing action. The
decision module can then
use the get metrics API to
get the state before and
after the resizing action

6.2 SlipStream – cloud provisioner and orchestrator

SlipStream service API is publicly available at
http://slipstream.github.io/SlipStreamDocumentationAPI/. It is a RESTful service that uses
XML as the content type for the REST calls.

6.3 Decision Making Module

6.3.1 MELA Analysis Service API

MELA provides RESTful API for elasticity analysis such as elasticity boundary, space and
pathway computation. For ease of use, it also provides API for application specific
configuration such as application structure, user elasticity requirements, metrics
composition rules submission, and communicates with MELA Data Service (WP4) to
achieve such functionality.

http://slipstream.github.io/SlipStreamDocumentationAPI/

D 1.2 – Updated User Requirements and System
Architecture

57 / 62

Table 6-2:MELA-Analysis Service API

6.3.2 SALSA API

The SALSA Service is located on GitHub on https://github.com/tuwiendsg/SALSA. The
SALSA exposes a service to retrieve deployment-related information from rSYBL, which
receives them from the CELAR Manager.

RESTful API: /MELA-AnalysisService/REST_WS/ Description

 Type Resource URL Consume
s

Produces

1 POST /{applicationID}/elasticitypathwa
y/json

applicati
on/xml

applicatio
n/json

Returns the elasticity pathway for a
supplied application component
belonging to the application having
the supplied ID

2 POST /{applicationID}/elasticitypathwa
y/xml

applicati
on/xml

applicatio
n/xml

Same as above, but returns XML

3 POST /{applicationID}/elasticityspace/js
on

applicati
on/xml

applicatio
n/json

Returns the elasticity space for a
supplied Monitored Element
(application component) belonging
to the application having the
supplied ID

4 POST /{applicationID}/elasticityspace/x
ml

applicati
on/xml

applicatio
n/xml

Same as above, but returns XML

1. PUT /service applicati
on/xml

- Submits a new application to be
managed by MELA

2. DELE
TE

/{applicationID } - - Removes application managed by
MELA

3. PUT /{applicationID
}/metricscompositionrules

applicati
on/xml

- Adds metric composition rules
used by the MELA DataService

4. PUT /{applicationID }/requirements applicati
on/xml

- Adds requirements used in
analyzing the elasticity space for
the application with the specified
ID

5. PUT /{applicationID }/structure applicati
on/xml

- Updates application structure

6. GET /{applicationID }/structure - applicatio
n/xml

Retrieves the application
structure

7. PUT /{applicationID
}/{targetEntityID}/executingact
ion/{action}

- applicatio
n/xml

Notifies MELA that an action
started executing

8. DELE
TE

/{applicationID
}/{targetEntityID}/executingact
ion/{action}

- applicatio
n/xml

Notifies MELA that action finished
started executing

https://github.com/tuwiendsg/SALSA

D 1.2 – Updated User Requirements and System
Architecture

58 / 62

Table 6-3:SALSA API

RESTful API: /salsa-engine/rest/ Description
 Type Resource URL Consumes Produces

1 PUT /services/xml application
/xml

- Submit new application
structure in TOSCA format.
This API returns the ID of the
service managed by SALSA.

2 PUT /services/{applicatio
nId}

multipart/
form-data

 Submit new application
structure via a HTML form,
which can be used by a web
interface.

3 DEL
ETE

/services/{applicatio
nId}

- - Remove the service managed
by SALSA.

4 GET /services/tosca/{ap
plicationId}

- applicati
on/xml

Get full description of the
application after
beingenrichedin TOSCA
format.

5 GET /services/tosca/{ap
plicationId}/sybl

- applicati
on/xml

Get the TOSCA description of
the application for rSYBL.

6.3.3 rSYBL Service API

rSYBL is exposed as a RESTful service for sending the necessary information from c-Eclipse
side, and for pushing out-of-the ordinary events (e.g., resources of a virtual machine being
abnormally highly used) when discovered by the Cloud Information and Performance
Monitor.

Table 6-4: rSYBL API

Nr. RESTful API: /rSYBL/restWS/ Description

 Type Resource URL Consumes Produces

1 PUT/POST /{id}/deployment application/
xml

- Setting the deployment topology,
after the deployment was done
as a “smart-deployment” with
the help of SALSA or as described
by the user

2 PUT/POST /{id}/description application/
xml

- Call used to send the application
description along with the
userpolicies and strategies tothe
Decision Module (information
sent as TOSCA-first URL- or as
CELAR-internally agreed
representation-second URL)

3 PUT /pushEvent application/
xml

- Sent by the Cloud Information
and Performance Monitor in case
out-of the ordinary events are

D 1.2 – Updated User Requirements and System
Architecture

59 / 62

detected

4 PUT/POST /{id}/elasticityCapabilitie
sEffects

application/j
son

- Sends effects for described
elasticity capabilities. Example of
such a description1

5 PUT/POST /{id}/metricsCompositio
nRules

application/
xml

 Sends composition rules for
newly added metrics. Example of
such a description2

6 PUT /{id}/prepareControl application/
xml

 Prepares rSYBL for control. This
means that a sub-controller is
allocated to the new application,
and all information above is
expected. After sending all
information above, the control
can start

7 PUT /{id}/startControl application/
xml

 Start the control for the service
with the specified id

8 PUT /{id}/stopControl application/
xml

 Stops the control for the service
with the specified id

9 PUT /{id}/onDemandControl/
unhealthy

plain/txt Starts emergency control for
cloud application with id, for the
component whose id is sent as
parameter

6.4 Monitoring System

6.4.1 JCatascopia API
The following table lists the current version of the JCatascopia REST API, which is used to
expose information to CELAR modules such as the MELA, the Decision Module and
Application Users via the JCatascopia-Web Interface.

BASE_URL = http://<Application_Orchestration_VM>:<Port>/jcatascopia/restAPI/

Table 6-5: JCatascopia REST API

URI Reque
st
Type

Parameters Respo
nse
Type

Description

/agents GET status JSON
Array

Lists Monitoring Agents in
deployment along with their
metadata. If status parameter
is provided (e.g. UP) then
only Agents with the
specified status are listed

/agents/{agentID}/ GET - JSON Lists the available/offered

1https://github.com/tuwiendsg/rSYBL/blob/master/starting%20rSYBL/rSYBL%20Python%20clients/singleEnforcementMechanism/e
ffects.json
2https://github.com/tuwiendsg/rSYBL/blob/master/starting%20rSYBL/rSYBL%20Python%20clients/singleEnforcementMechanism/c
ompositionRules.xml

D 1.2 – Updated User Requirements and System
Architecture

60 / 62

availableMetrics Array metrics (and metadata) from
the specified, via ID,
Monitoring Agent

/agents/
availableMetrics

GET - JSON
Array

Lists the available/offered
metrics (and metadata) for
ALL Monitoring Agents

/metrics POST comma
separated
list of metric
IDs

JSON
Array

Lists the current values (and
timestamp) for the metrics
specified, via metric IDs, in
the request body

/metrics/{metricID
}/

GET interval,
tstart, tend

JSON
Array

Lists the current value (and
metadata) of the specified
metric. Optionally: (i) if
interval (in seconds)
parameter is provided then
the latest metric values in the
interval are returned; (ii) if
tstart and tend are provided
then the value in the
specified timeframe are
returned

/metrics/agent/{ag
entID}/

GET - JSON
Array

Lists the current values (and
timestamp) for ALL metrics
collected for the specified, via
agent ID, Monitoring Agent

/subscriptions GET - JSON
Array

Lists the created metric
subscriptions (and metadata)
for the deployment

/subscriptions PUT Subscription
info [JSON]

- Creates a new metric
subscription based on the
provided information
(metric, aggregation type,
period, etc.)

/subscriptions/{su
bscriptionID}

GET - JSON
Array

Lists the metadata for the
specified, via subscription ID,
metric subscription

/subscriptions/{su
bscriptionID}

DELET
E

- - Deletes the subscription
specified via subscription ID

/subscriptions/{su
bscriptionID}/agen
t/{agentID}

POST action - Based on the provided action
(addAgent, removeAgent) the
specified via Agent ID is
either added or removed
to/from the specified
subscription

D 1.2 – Updated User Requirements and System
Architecture

61 / 62

6.4.2 MELA-DataService API

Table 6-6: MELA-DataService REST API

URL Request
Type

Parameters Response
Type

/service PUT application/xml -
/{serviceID} DELETE - -
/{serviceID}/metricscompositio
nrules

PUT application/xml -

/{serviceID}/requirements PUT application/xml -
/{serviceID}/structure PUT application/xml -
/{serviceID}/structure GET - application/xml
/{serviceID}/metrics GET - application/xml
/{serviceID}/monitoringdata/js
on

GET - application/json

/{serviceID}/monitoringdata/x
ml

GET application/xml

/{serviceID}/monitoringdata/x
ml

POST application/xml application/xml

/{serviceID}/historicalmonitorin
gdata/all/xml

GET - application/xml

/{serviceID}/historicalmonitorin
gdata/ininterval/xml

GET - application/xml

/{serviceID}/historicalmonitorin
gdata/lastX/xml

GET - application/xml

/{serviceID}/metriccomposition
rules/json

GET - application/ json

/{serviceID}/metriccomposition
rules/xml

GET - application/xml

/{serviceID}/{targetEntityID}/e
xecutingaction/{action}

PUT - application/xml

/{serviceID}/{targetEntityID}/e
xecutingaction/{action}

DELETE - application/xml

/{serviceID}/metricsGreaterEqu
alThanZero

GET - Boolean

/services GET - application/json

6.4.3 MELA-ComposableCostEvaluationService
MELA ComposableCostEvaluationService is a JAVA Web application which exposes its

API using RESTful services. For ease of use, it contains an embedded Tomcat 7 application
server, and is compiled in an executable JAR, rather than a WAR file, which can be executed
standalone, without the need for a separate application server.

Table 6-7: MELA-ComposableCostEvaluationService API

No. Method URL Input Output
1. PUT /cloudofferedservice/pricingscheme application/xml -
2. GET /cloudofferedservice/pricingscheme - application/xml
3. DELETE /{cloudofferedserviceID}/pricingscheme - -
4. GET /{cloudofferedserviceID}/pricingscheme - application/xml
5. GET /{serviceID}/cost/total/xml - application/xml
6. GET /{serviceID}/cost/tota l/json - application/json
7. GET /{serviceID}/cost/total/ csv - application/csv
8. GET /{serviceID}/cost/ininterval/{start}/{end}/xml - application/xml
9. GET /{serviceID}/cost/ininterval/{start}/{end}/json - application/json

D 1.2 – Updated User Requirements and System
Architecture

62 / 62

10. POST /{serviceID}/cost/total/ xml application/xml application/xml
11. POST /{serviceID}/cost/total/json application/xml application/ json
12. POST /{serviceID}/cost/total/csv application/xml application/csv
13. POST /{serviceID}/cost/ininterval/{start}/{end}/xml application/xml application/xml
14. POST /{serviceID}/cost/ininterval/{start}/{end}/json application/xml application/ json
15. POST /{serviceID}/cost/ininterval/{start}/{end}/csv application/xml application/csv
16. GET /{serviceID}/monitoringdata/cost/rate/json - application/json
17. GET /{serviceID}/monitoringdata/cost/rate/xml - application/xml
18. GET /{serviceID}/monitoringdata/cost/total/json - application/json
19. GET /{serviceID}/monitoringdata/cost/ total /xml - application/xml

6.5 CELAR Application Orchestrator
The execution of each functionality of the CELAR Application Orchestrator is exported as a
REST Web Service and is described in the Table 6-8.

Table 6-8: CELAR Application Orchestrator API

Nr. RESTful API: /app-orchestrator -api/ Description
 Type Resource URL Consume

s
Produces

1 GET /probes/upload applicatio
n/json

applicatio
n/json

Uploads a custom probe that
will be injected to the
monitoring agents in order
to retrieve custom metrics.

2 GET /deployment/
resizingAction

- applicatio
n/json

Enforces a resizing action to
a deployed application. The
resizing action configuration
is provided in the
parameter. Returns true if
the resizing action was
successfully executed.

2 GET /deployment/
resizingActionStat
us

- applicatio
n/json

Informs the Decision
Module about the status of a
resizing action. It expects a
resizing action id (provided
on the request of a resizing
action) and returns an JSON
.

3 GET /deployment/
getConfiguration

- applicatio
n/json

Returns the deployment
configuration for a given
timestamp(allocation of
resources per module).

4 GET /metrics/insert applicatio
n/json

- Inserts a set of metrics into
the database.

5 GET /metrics/get applicatio
n/json

applicatio
n/json

Returns performance
metrics about the specified
deployment in the given
time-frame

