
	
	

	
Automatic,	multi-grained	elasticity-provisioning	for	the	Cloud	

	

	

CELAR	is	funded	by	the	European	Commission	DG-INFSO	
Seventh	Framework	Programmed,	Contract	no.:	317790	

	
	

CELAR	System	Prototype	
	

Deliverable	no.:		6.4	
30/09/2015	

	
[Re-submission	29/01/2016]	

	 	

	
	

	
D	6.4	–	CELAR	System	Prototype	 2	/	25	
	

Table	of	Contents	
1	 Introduction	...	6	
2	 Integration	between	Platform	components	..	6	
2.1	 CAMF	(c-Eclipse)	OSGi	bundles	via	project’s	P2	repository	...	6	
2.2	 SlipStream	extensions	for	horizontal	and	vertical	scalability	..	6	
2.3	 VM	scaling	actions	on	Flexiant	and	Okeanos	..	8	
2.4	 Integration	of	SlipStream	into	CELAR	flow	..	9	
2.5	 TOSCA	translation	into	SlipStream	modules	..	9	
2.6	 DMM	bootstrap	and	integration	with	JCatascopia	..	9	

3	 Build	and	integration	process	...	10	
3.1	 Continuous	Integration	server	..	10	
3.2	 Maven	repository	...	10	
3.3	 RPM	artifacts	and	YUM	repo	...	10	
3.4	 Automated	Platform	deployment	for	integration	and	system	level	tests	11	

4	 Testing	of	the	CELAR	Platform	..	12	
4.1	 Chosen	testing	approaches	and	strategy	..	12	
4.2	 Test	plan	..	14	
4.3	 Per-component	functional	and	inter-component	integration	testing	15	
4.3.1	 DMM	and	JCatascopia	...	15	
4.3.2	 DMM	and	CELAR	Orchestrator	...	16	
4.3.3	 CELAR	Orchestrator	and	SlipStream	...	16	
4.3.4	 SlipStream	horizontal	and	vertical	scaling	framework	...	17	
4.3.5	 Vertical	scaling	in	SlipStream	Okeanos	and	Flexiant	connectors	17	
4.3.6	 CELAR	Manager	and	SlipStream	..	18	
4.3.7	 CAMF	and	CELAR	Manager	..	19	
4.3.8	 Information	System	and	CELAR	Manager	...	19	
4.3.9	 High	availability	of	CELAR	Manager	..	19	

4.4	 System	level	testing	...	20	
4.4.1	 System	testing	with	DataPlay	on	Flexiant	...	20	
4.4.2	 System	testing	with	SCAN	on	Okeanos	...	21	

4.5	 Results	and	Conclusions	..	21	
5	 The	CELAR	Platform	readiness,	delivery	and	support	..	21	
5.1	 Technology	Readiness	Levels	...	21	
5.2	 Delivery	...	22	
5.3	 Support	..	23	

6	 Conclusions	..	24	

7	 References	..	24	
	

	 	

	
	

	
D	6.4	–	CELAR	System	Prototype	 3	/	25	
	

	

List	of	Figures		

Figure	1	Platform	deployment	automation	with	SlipStream.	...	12	
	

	

List	of	Tables	

Table	1	The	available	user	application	hooks	in	SlipStream.	..	7	
Table	2	Set	of	IaaS	actions	supported	by	SlipStream	and	implemented	by	Flexiant	and	

Okeanos	connectors.	...	8	
Table	3	Chosen	testing	approaches	and	their	scopes	across	WPs.	...	13	
Table	4	TRL	levels	of	the	components	of	the	CELAR	Platform,	cloud	platforms	the	project	

was	using	and	the	project’s	pilot	applications.	..	22	
	

	

List	of	Abbreviations	

DMM:	Decision	Making	Module	

MELA:	Multi-Level	Metric	Evaluation	Module	

CAMF:	Cloud	Application	Management	Framework	

	 	

	
	

	
D	6.4	–	CELAR	System	Prototype	 4	/	25	
	

	
Deliverable	Title	 CELAR	System	Prototype	
Filename	 celar_D6.4_resubmission.pdf	
Author(s)	 Konstantin	Skaburskas	
Date	 29/01/2016	
	
	
Start	of	the	project:	 October	2012	
Duration:	 3	years	
Project	coordinator	organisation:	 Athena	Research	and	Innovation	Center	in	ICKT	
	
Deliverable	title:	 CELAR	System	Prototype	
Deliverable	no.:	 6.4	
	
Due	date	of	deliverable:	 30/09/2015	
Actual	submission	date:	 30/09/2015	
	
Due	date	of	resubmission:	 01/02/2016	
Actual	resubmission	date:	 29/01/2016	
	
Dissemination	Level	
	

X	 PU	 Public	
	 PP	 Restricted	to	other	programme	participants	(including	the	Commission	Services)	
	 RE	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission	Services)	
	 CO	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission	Services)	
	
	
Deliverable	status	version	control	
	

Version	 Date	 Author	
0.1	 28/09/2015	 Konstantin	Skaburskas	
1.0	 29/09/2015	 Konstantin	Skaburskas		
1.1	(resubmission)	 27/01/201	 Konstantin	Skaburskas,	

Giannis	Giannakopoulos,	
Dimitrios	Tsoumakos	

	
Abstract	
	

Final	Prototype	of	the	CELAR	System.	This	document	describes	the	build,	integration,	testing	
and	the	delivery	processes	of	the	CELAR	System.	The	document	also	acts	as	a	
complementary	material	to	the	code	and	binary	artifacts	of	the	Final	Prototype	of	the	CELAR	
Platform,	which	are	subject	to	be	released	to	the	public	domain.	
	
Keywords	
	

CELAR,	integrated	system,	Elasticity	provisioning,	monitoring,	application	description,	CELAR	
Server,	CELAR	Orchestrator,	Decision-Making	module	

	
	

	
D	6.4	–	CELAR	System	Prototype	 5	/	25	
	

	
	 	

	
	

	
D	6.4	–	CELAR	System	Prototype	 6	/	25	
	

1 Introduction	
	

This	 deliverable	 presents	 the	 final	 CELAR	 Platform	 integration	 and	 testing	 points	
during	 the	 last	year	of	 the	project.	 It	 also	briefly	presents	highlights	of	 the	automated	
integration	process,	as	well	as	the	release,	delivery	and	support	strategies.	

We’ve	identified	and	present	the	Technology	Readiness	Levels	(TRL)	[1]	as	a	whole	
for	the	CELAR	Platform	and	per	component	(where	applicable).	

For	 the	detailed	 functional	description	of	 the	Platform	components	please	 see	 the	
respective	project	deliverables	D1.2	CELAR	Architecture	[2],	D2.3	c-Eclipse	Framework	
(CAMF)	 [3],	 D3.3	 CELAR	 Manager	 and	 Orchestrator	 [4],	 D4.3	 Multi-Level	 Metric	
Evaluation	Module,	 JCatascopia	and	 Info	System	[5]	and	D5.3	Decision	Making	Module	
(DMM)	[6].	

2 Integration	between	Platform	components	

2.1 CAMF	(c-Eclipse)	OSGi	bundles	via	project’s	P2	repository	
	

c-Eclipse	is	now	an	official	Eclipse	Technology	project	and	is	now	called	the	Cloud	
Application	Management	Framework	(CAMF)	(see	[7]	and	D2.3).		CAMF	is	in	the	process	
of	being	officially	integrated	with	the	build	and	release	process	of	the	Eclipse	community	
to	be	able	to	be	distributed	via	Eclipse	Marketplace.	
	

For	the	project	the	original	git	repository	hosted	on	GitHub	is	still	being	used:	
	
https://github.com/CELAR/c-Eclipse	

	
Jenkins	and	Nexus	were	configured	for	automating	the	build	of	all	CAMF	OSGi	

bundles.		At	the	moment	for	the	scope	of	the	CELAR	Project	the	following	repo	should	be	
used	for	installation	of	the	CAMF	
	
http://downloads.celarcloud.eu/ceclipse/p2/	
	
The	P2	repository	is	refreshed	every	time	a	new	build	is	invoked.		
	

2.2 SlipStream	extensions	for	horizontal	and	vertical	scalability	
	

In	the	second	year	of	the	project	the	main	outcome	of	the	collaboration	with	the	
project	was	the	implementation	of	the	horizontal	scaling	feature	in	SlipStream.			This	
feature	was	validated	and	released	with	the	production	version	of	SlipStream	as	the	first	
class	citizen	and	used,	for	example,	by	CERN	for	running	production	computing	activities	
in	the	scope	of	EU	HelixNebula	project	[8].	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 7	/	25	
	

During	the	final	year	of	the	project	the	vertical	scaling	feature	was	added	to	
SlipStream.		The	SlipStream	connector	framework	was	extended	to	support	the	
following	scaling	actions:	

- resize	CPU/RAM	or	instance	type	
- attach	disk	
- detach	disk.	

	
	 To	ease	the	request	of	the	scaling	actions	from	the	SlipStream	clients	the	
following	set	of	CLIs	was	introduced	(see	[9]):	
	
ss-node-add	[options]	<run>	<node-name>	[<number>]	
ss-node-remove	[options]	<run>	<node-name>	<ids>	[<ids>	...]	
ss-scale-resize	[options]	[--cpu	<num>,	--ram	<num>]|[--instance-type	<type>]	<run>	<node-name>	<ids>	
[<ids>	...]	
ss-scale-disk	[options]	[--attach	<GB>	|	--detach	<device>]	<run>	<node-name>	<ids>	[<ids>	...]	
	

In	the	user	application	space,	to	be	able	to	prepare	to	and	make	use	of	the	VM	
changes	due	to	the	vertical	scale	actions,	SlipStream	added	pre-	and	post-scale	scripts	
(hooks).		Table	1	presents	the	full	list	of	the	available	to	the	user	hooks,	corresponding	
scale	action	they	are	bound	to,	and	when	they	are	executed.	

	
Table	1	The	available	user	application	hooks	in	SlipStream.	

Script	 Action	 When	Executed	

“On	VM	Add”	 horizontal	
scale	up	

after	addition	of	new	VMs	on	all	the	VMs	of	the	
deployment	except	the	ones	that	were	just	added.	

“On	VM	
Remove”	

horizontal	
scale	down	

after	the	removal	of	the	requested	VMs	on	all	the	VMs	
left	in	the	deployment.	

“Pre-Scale”	 horizontal	
scale	down	

before	VMs	removal	action,	on	the	VMs	targeted	for	
the	removal,	and	therefore,	before	the	“On	VM	
Remove”	script	

“Pre-Scale”	 vertical	scale	
up/down	

before	any	vertical	scaling	action	(VM	resizing	or	
attaching/detaching	of	extra	disk)	on	the	VMs	that	are	
subject	to	the	scaling	action.	

“Post-Scale”	 vertical	scale	
up/down	

after	any	vertical	scaling	action	(VM	resizing	or	
attaching/detaching	of	extra	disk)	on	the	VMs	that	are	
subject	to	the	scaling	action.	

	
The	corresponding	documentation	about	the	usage	of	the	scaling	actions	in	

SlipStream	Cloud	Application	Management	Platform	can	be	found	at	[9].	
	
In	most	of	the	cases,	the	application	of	the	vertical	scale	actions	requires	reboot	of	

the	targeted	VM.		The	SlipStream	node	and	orchestrator	executors	(agents	running	on	
the	VMs	and	responsible	for	provisioning	and	orchestration	of	the	user	applications)	
were	updated	to	support	the	reboot	of	the	VM.	
	

Applying	the	lessons	learned	from	the	usage	of	SlipStream	with	mutable	and	scalable	
runs	the	following	was	added	and	improved	

- updated	provisioning	framework	and	orchestration,	

	
	

	
D	6.4	–	CELAR	System	Prototype	 8	/	25	
	

- increased	reliability	and	fault	tolerance	of	the	provisioning	and	orchestration	of	
the	scalable	deployments.	

The	details	of	the	changes	can	be	found	on	the	SlipStream	release	notes	page	[10].	
	

2.3 VM	scaling	actions	on	Flexiant	and	Okeanos	
	
The	results	around	the	horizontal	scaling	achieved	during	the	second	year	of	the	

project	were	hardened	by	updating	the	Flexiant	and	Okeanos	connectors.		This	was	
made	possible	thanks	to	starting	running	the	deployments	of	the	project’s	pilot	
applications	from	the	WP7	and	WP8	(DataPlay	and	SCAN	respectively).	
	

In	the	third	year,	following	the	updates	of	the	SlipStream	connector	framework	
and	addition	of	the	ability	to	run	the	vertical	scaling	actions,	the	Flexiant	and	Okeanos	
connectors	were	extended	to	support:	resize	CPU/RAM	or	instance	type,	attach/detach	
extra	disk.	
	

The	following	Table	2	summarizes	the	IaaS	actions	supported	by	SlipStream	and	
developed	in	the	connectors.		It’s	clear,	that	by	the	end	of	the	project	the	collaboration	
was	able	to	achieve	promised	results	regarding	the	implementation	of	the	generic	and	
scale	IaaS	actions.	
	
Table	2	Set	of	IaaS	actions	supported	by	SlipStream	and	implemented	by	Flexiant	and	Okeanos	connectors.	

Action	 Flexiant	 Okeanos	
Authenticate	to	IaaS	 Yes	 Yes	
List	VMs	 Yes	 Yes	
Start	VM	(used	in	horizontal	scale	up)	 Yes	 Yes	
Terminate	VM	(used	in	horizontal	scale	down)	 Yes	 Yes	
Resize	CPU/RAM/Instance	Type	 Yes	 Yes	
Attach	disk	 Yes	 Yes	
Detach	disk	 Yes	 Yes	
Start	VM	with	volatile	extra	disk	 Yes	 Yes	
Start	VM	with	persistent	extra	disk	 No	 No	
Build	new	image	 Yes	 Yes	
Request	public	or	private	network	for	VM	 Yes	 Yes	

	
	

All	of	the	implemented	actions	from	Table	2	were	tested	and	validated	against	the	
actual	pilot	applications	from	WP7	and	WP8	both	on	Flexiant	and	Okeanos	Clouds.	
	

The	source	code	for	both	Flexiant	and	Okeanos	connectors	was	open	sourced	and	
is	publicly	available	on	GitHub.	

	
Flexiant:	
https://github.com/CELAR/SlipStreamConnector-Fco	

	

	
	

	
D	6.4	–	CELAR	System	Prototype	 9	/	25	
	

Okeanos:	
https://github.com/CELAR/SlipStreamConnector-Okeanos	

	

2.4 Integration	of	SlipStream	into	CELAR	flow	
	

CELAR	Manager	and	CELAR	Orchestrator	that	are	responsible	for	(i)	starting	the	
user	 deployments,	 	 (ii)	 tracking	 their	 overall	 progress	 and	 (iii)	 issuing	 elastic	 actions	
against	cloud	provisioner	were	updated	and	now	support	request	of	all	the	types	of	the	
application	or	VM	actions	exposed	via	SlipStream	API	[11].		Both	components	share	the	
same	codebase.		The	following	functionality	was	updated	and	implemented	
	

CELAR	Manager	(to	SlipStream)	
• define	project		(first	level	grouping	for	the	modules)	
• define	image	module	(holds	cloud	ID	and	app.	deployment	scripts)	
• define	deployment	(binds	together	the	images	for	deployment)	
• run	a	deployment	(representation	of	the	running	VMs	and	application)	
• monitor	state	of	the	run	(query	the	run	for	the	state	of	the	deployment)	

	
CELAR	Orchestrator	

• accept	elastic	actions	from	DMM	(decisions	made	to	scale	the	deployment)	
• issue	elastic	actions	against	SlipStream	

o VM	add	/	remove	(horizontal	scale)	
o VM	resize	CPU/RAM/instance	type	(vertical	scale)	
o VM	disk	attach/detach	

	
More	details	can	be	found	in	D3.3	[4].	
	

2.5 TOSCA	translation	into	SlipStream	modules	
	
CAMF	 interfacing	 with	 CELAR	 Manager	 produces	 user	 deployment	 projects	

description	 in	TOSCA	 format.	 	This	 format	 is	not	understood	by	SlipStream.	 	A	 special	
translation	 module	 from	 TOSCA	 to	 SlipStream’s	 project/image/deployment	 modules	
was	 considerably	 enhanced	 and	 updated	 to	 provide	 integration	 of	 the	 enhanced	
SlipStream	into	the	CELAR	flow.		The	major	third	year	extensions	include	the	translation	
of	the	user	application	elasticity	hooks.	

	

2.6 DMM	bootstrap	and	integration	with	JCatascopia	
	
To	 be	 able	 to	 start	 making	 scalability	 related	 decisions	 DMM	 should	 be	

bootstrapped	with	the	topology	of	the	deployed	application	and	elasticity	constraints,	as	
well	 as	during	 the	 application	 runtime	 supplied	with	 the	different	monitoring	metrics	
from	VMs	and	the	application	itself.		The	bootstrap	of	the	DMM	is	achieved	by	providing	
it	with	the	endpoint	of	CELAR	Manager	and	the	ID	of	the	started	application.		DMM	then,	
fetches	the	required	application	related	info	from	the	CELAR	Manager	and	prepares	to	

	
	

	
D	6.4	–	CELAR	System	Prototype	 10	/	25	
	

pull	 post-processed	 metrics	 from	 the	 MELA	 coupled	 with	 JCatascopia	 cloud	 and	
application	monitoring	service.	

The	installation	of	the	components	 is	done	in	advance	as	part	of	the	release	via	
CELAR	Orchestrator	VM	image	appliance	(see	section	4.),	and	the	configuration	for	the	
components	is	supplied	at	runtime.	
	 For	more	details	please	see	deliverable	D5.3	[6].	

3 Build	and	integration	process	
	
	 There	were	no	considerable	changes	in	the	code	hosting,	development,	build	and	
integration	process	(see	D6.2	[12]).		In	the	third	year,	the	consortium	continued	using	
the	same	git	repository	hosting	service	(GitHub)	under	the	organization	CELAR	
https://github.com/CELAR	

After	a	 feature	or	 fix	 is	 locally	developed	and	unit	 tested,	developer	pushed	the	
code	to	the	corresponding	git	repo	on	GitHub.	
	

3.1 Continuous	Integration	server	
	
The	 project’s	 Jenkins	 Continuous	 Integration	 service	 http://snf-

153388.vm.okeanos.grnet.gr	 was	 configured	 with	 a	 number	 of	 jobs	 to	 poll	 the	
corresponding	 GitHub	 repositories	 and	 if	 changes	were	 detected	 the	 code	was	 pulled	
from	GitHub	and	automatically	built.	
	

3.2 Maven	repository	
	
As	the	result	of	the	build	process,	the	produced	binary	artifacts	were	pushed	to	

the	project’s	maven	repository	http://snf-175960.vm.okeanos.grnet.gr/nexus	(Sonatype	
Nexus	is	used).	

Below	 is	 the	 configuration	 of	 the	 CELAR	 Platform’s	 maven	 Snapshots	 and	
Releases	repositories	
	
<distributionManagement>	
		<snapshotRepository>	
				<id>snapshots</id>	
				<url>http://snf-175960.vm.okeanos.grnet.gr/nexus/content/repositories/snapshots</url>	
		</snapshotRepository>	
</distributionManagement>	
	
<distributionManagement>	
		<repository>	
				<id>releases</id>	
				<url>http://snf-175960.vm.okeanos.grnet.gr/nexus/content/repositories/releases</url>	
		</repository>	
</distributionManagement>	
	

3.3 RPM	artifacts	and	YUM	repo	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 11	/	25	
	

The	 project	 chose	 to	 use	 RedHat	 based	 systems	 as	 the	 target	 distribution.			
Therefore,	OS	 level	binary	artifacts	generated	by	the	corresponding	maven	plugins	are	
RPMs.	 	 Nexus	 has	 a	 great	 plugin	 that	 is	 capable	 of	 detecting	 RPM	 artifacts	 that	 get	
uploaded	 to	 the	 repository	 and	 builds	 or	 updates	 YUM	 repo	with	 all	 the	 RPMs	 in	 the	
corresponding	 Nexus	 repository.	 	 Below	 is	 the	 configuration	 of	 the	 CELAR	 YUM	
snapshots	and	releases	repositories	
	
[CELAR-snapshots]	
name=CELAR-snapshots	
baseurl= http://snf-175960.vm.okeanos.grnet.gr/yum/snapshots	
enabled=1	
protect=0	
gpgcheck=0	
metadata_expire=30s	
autorefresh=1	
type=rpm-md	
	
[CELAR-releases]	
name=CELAR-	releases	
baseurl= http://snf-175960.vm.okeanos.grnet.gr/yum/releases	
enabled=0	
protect=0	
gpgcheck=0	
metadata_expire=30s	
autorefresh=1	
type=rpm-md	
	

3.4 Automated	Platform	deployment	for	integration	and	system	level	tests	
	
On	average,	the	above	process	takes	around	10	minutes	and	its	clear	to	see	that	

at	 this	 point	 the	 Platform	 developers	 can	 already	 deploy	 on	 the	 test	 machines	 the	
respective	Platform	components	and	perform	integration	or	system	level	QA	process.	

During	the	third	year	of	the	project	we	updated	and	used	the	previously	created	
set	 of	 the	 per	 component	 deployment	 scripts	 to	 automate	 the	 testing	 and	 validation	
process	 of	 the	 Platform	 being	 developed.	 	 The	 scripts	 for	 all	 the	 components	 that	
constitute	the	CELAR	Platform	are	publicly	available	on	GitHub		

https://github.com/CELAR/celar-deployment	
	

	 To	facilitate	and	streamline	development,	integration,	testing	and	validation	of	
the	CELAR	Orchestrator	components	constituting	the	core	of	the	CELAR	Elasticity	
framework	(see	D3.3),	the	project	was	actively	using	the	automated	build	of	the	new	
CELAR	Orchestrator	image.		The	build	image	feature	is	provided	by	SlipStream.		Building	
new	image	on	Flexiant	or	Okeanos	takes	approximately	15	min,	after	which	the	new	
image	with	the	latest	installed	CELAR	Orchestrator	components	is	ready	to	be	used	for	
validation	or	in	testing	of	the	elasticity	actions	for	WP7	and	WP8	applications	(DataPlay	
and	SCAN).	
	 More	details	on	the	Platform	testing	is	available	in	the	section	4	of	the	
deliverable.	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 12	/	25	
	

	
Figure	1	Platform	deployment	automation	with	SlipStream.	

	

4 Testing	of	the	CELAR	Platform	
	
	 A	good	definition	and	overview	of	the	testing	methodologies	and	strategies	can	
be	found	in	[13].		The	approaches	and	strategies	to	testing	chosen	and	implemented	in	a	
software	development	project	depend	on	the	purpose,	architecture,	complexity	and	
other	attributes	of	the	product,	as	well	as	they	should	be	related	to	the	adopted	
development	methodology.	
	

4.1 Chosen	testing	approaches	and	strategy	
	
 The requirements to the CELAR Platform were gathered at the beginning of the
project [14]. Later on, certain quality attributes were updated and minor features
added/removed [15], but in overall, the requirements and the feature set remained
relatively constant through the lifetime of the project.

	 The	fact	that	architecturally	the	CELAR	Platform	is	divided	into	a	number	of	
sufficiently	self-contained	multi-module	components	[2]	and	the	project	has	chosen	an	
iterative	approach	to	the	development	process,	the	incremental	integration	testing	in	
the	integration	process	looked	as	the	most	suitable	for	the	project.	

 In this case, the development WPs can work iteratively on the internal set of the
modules gradually building their respective components as a whole. At the same time,
when required, the WPs participate in the integration process by running the multi-

	
	

	
D	6.4	–	CELAR	System	Prototype	 13	/	25	
	

component functional tests or providing required mocking level information to the
developers of the component’s dependant services. This way we are trying to ensure
an immediate availability of the developed features and/or propagation of the changes
in the components to the integrated Platform. They key point here is a constant
coordinated interaction between the groups of developers from WPs, which was
achieved by running regular weekly WP6 integration meetings.

 The result of each iteration is either a new module/component, or enhancements
of the existing modules/components. This module is integrated into the software
architecture and the entire system is tested all together.

 Table	3 represents the testing approaches that were adopted on the different
granularity levels of the project.
	
Table	3	Chosen	testing	approaches	and	their	scopes	across	WPs.	

Approach	 WP	scope	 Details	
Development	testing	 Developers	in	WPs	 Unit	testing.	
Acceptance	testing	 Developers	in	WPs	 “Smoke”	tests.	
Functional	and	non-
functional	testing	

Developers	in	WP	and	
within	WP6	team	

	

Integration	testing	 Within	WP6	team	 Mocking	some	parts	of	the	
platform	(if	required)	
allowing	testing	of	a	subset	
of	it.	

System	testing	 Within	WP6	team	and	WP7	
and	WP8	

Following	the	Platform	
level	functional	
requirements	[14,	15].	

Usability	testing	 WP9	 Usability	of	CAMF	user	
interface.	

	
	 As	part	of	the	overall	integration	strategy	we	used	weekly	meetings	to	plan	for	
the	next	required	set	of	functional/integration/system	tests	depending	on	the	readiness	
of	the	different	per-component	features	and	advances	in	the	integration	of	the	Platform.		
The	planning	for	the	concrete	set	of	tests	and	their	execution	was	dynamic	to	suit	the	
development	pace	(utilizing	mocking	of	the	dependencies	when	required).		However,	a	
care	was	taken	to	not	jeopardize	the	overall	deadlines	set	for	the	delivery	of	the	major	
features	of	the	components	by	tracking	the	features	delivery	progress	against	the	
project’s	high	level	technical	plan.	
	
Those meetings were roughly split into three parts

- provide the latest information on the readiness of the modules/components,
- plan for the next set of functional, integration and/or system tests,
- retrospect the previous integration iterations to provide inter-WPs feedback and

improve coordination.
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 14	/	25	
	

The	meetings	allowed	to	define	different	(usually	short	term)	testing	strategies	and	
tactics:	

- set	testing	objective	for	the	next	iteration,	
- define	methods	of	testing	new	functionality,	
- define	required	testing	environment,	
- define	resources	required	for	testing,	
- estimate	total	time	required	for	testing.	

	
	 We	also	want	to	highlight	here	that	the	project	decided	not	to	address	the	
performance	and	security	testing,	labeling	them	as	non-functional	in	the	context	of	the	
project	goals.		To	address	the	generic	security	concerns	it	was	agreed	to	follow	the	
common	sense	approach	by	

- using	communication	over	SSL,	
- ensuring	no	credentials	provided	to	CLI	as	parameters	(so	that	they	don’t	become	

visible	in	the	listing	of	the	system	processes),	
- strict	ownership	and	permissions	to	the	configuration	files	containing	different	

credentials.	
	

4.2 Test	plan	
	
Development	testing.		Developers	of	the	Platform	components	that	are	hosted	in	the	
project’s	organization	on	GitHub	(https://github.com/CELAR)	were	responsible	for	
writing	the	unit	tests	and	making	them	automatically	runnable	by	the	project’s	build	
framework	(Jenkins	-	http://snf-153388.vm.okeanos.grnet.gr).		If	tests	don’t	pass,	the	
new	build	is	not	produced	and	the	code	committer	gets	notified.	
	
Acceptance	testing.		A	set	of	per-component	deployment	and	usage	“smoke”	tests	were	
defined	by	the	component	developers	in	WPs	and	was	ran	after	the	component	
deployment	by	the	corresponding	automated	deployment	scripts	
(https://github.com/CELAR/celar-deployment).	
	
Functional	and	non-functional	testing.		The	tests	were	planned	in	advance	and	
included	validation	of	the	features	that	each	Platform	component	provides	to	the	
system.		Most	of	the	tests	were	created	and	ran	by	the	component	developers.		Creation,	
planning	and	executions	of	some	of	the	tests	to	assert	certain	features	required	inputs	
from	the	developers	of	the	pilot	applications.			
At	the	same	time,	the	project	introduced	a	non-functional	feature:	high-availability	
solution	for	CELAR	Manager	component	(as	part	of	WP3).		This	feature	was	thoroughly	
tested	in	WP3.	
	
Integration	testing.		The	integration	test	plan	was	dynamic	and	was	subject	to	changes	
and	adjustments	whenever	new	features	were	becoming	available	in	the	Platform.		The	
integration	process	started	early	in	the	project	and	span	its	whole	lifetime.	
	
System	testing.		Because	the	idea	of	the	tests	is	to	exercise	the	functional	behavior	of	
the	Platform	as	an	integrated	product	by	the	pilot	applications,	the	tests	were	planned	
according	the	gathered	high-level	requirements	[15].	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 15	/	25	
	

Usability	testing.		Testing	of	the	usability	of	the	CAMF	was	planned	and	scheduled	
within	WP9	(see	[21]	-	D9.5	section	5).	
	
	 Each	major	feature	of	the	Platform	was	passing	through	all	of	the	above-
mentioned	test	types	and	was	a	subject	of	assertions	on	different	levels	–	code	
correctness,	ability	to	be	properly	deployed/configured/started,	properly	working	with	
the	other	services	on	the	interface	level	as	well	as	a	part	of	the	whole	Platform.		Due	to	
the	iterative	nature	of	the	development	process,	the	project	was	re-running	the	previous	
tests	for	the	purpose	of	regression	testing	anytime	updates	to	the	code	were	done	or	
new	features	introduced.		The	short/middle-term	planning	of	the	tests	was	usually	done	
during	the	weekly	WP6	integration	meetings	and	implemented	within	the	following	
weeks.		Integration	and	system	level	testing	of	some	of	the	major	features	(e.g.,	
application	vertical	scalability)	were	planned	before	and	executed	during	the	project’s	
face-to-face	technical	meetings	two/three	times	a	year.	
	
Our	functional	and	system	level	KPIs	were	binary	in	essence,	like	

- scaling	action	decided,	
- action	completed/not	failed,	
- metric	monitored,	
- application	described,	
- application	description	stored	

and	in	our	tests	we	were	asserting	if	they	were	'true'.		The	functional	and	integration	
tests	specific	KPIs	are	described	in	each	of	the	per-components	sub-section	4.3.x.	
	

4.3 Per-component	functional	and	inter-component	integration	testing	
		
	 This	section	highlights	functional	testing	on	the	per-component	level	and	
integration	testing	between	the	communicating	components.		The	tests	were	performed	
within	WPs	during	the	component	development	process	and	inter-component	interface	
level	integration	processes.	
	

4.3.1 DMM	and	JCatascopia	
	
	 The	DMM	needs	to	obtain	real	time	metrics	from	JCatascopia,	associate	them	with	
the	application	modules	and	decide	on	the	action(s)	that	should	be	applied	to	the	
application.	The	monitoring	metrics	are	sent	from	the	JCatascopia	Server	to	MELA,	
which	acts	as	a	part	of	the	monitoring	system	and	associates	the	monitoring	metrics	to	
the	related	application	modules/components	and	forwards	them	to	the	DMM,	that	will	
take	the	decisions.	
	
	 For	the	validation	of	the	accuracy	of	this	pipeline,	a	toy	application	(a	Cassandra	
cluster)	was	deployed	and	simple	monitoring	agents	were	also	installed	in	the	same	
hosts.	In	parallel,	a	JCatascopia	server	instance	was	deployed	along	with	MELA	and	the	
DMM	into	a	separate	host.	The	test’s	objective	was	to	verify	that	the	monitoring	metrics	
were	successfully	interpreted	by	the	DMM;	to	this	end,	a	YCSB	client	was	utilized	to	
generate	load	to	the	cluster.	The	load	followed	a	sinusoidal	pattern:	at	first	the	
requested	throughput	was	increasing	up	to	a	specific	point,	after	which	the	load	was	

	
	

	
D	6.4	–	CELAR	System	Prototype	 16	/	25	
	

decreasing	until	zero.	Through	this	procedure,	we	ensured	that	this	sinusoidal	pattern	
was	identified	by	JCatascopia,	MELA	and	the	DMM.	As	an	outcome,	the	DMM	issued	the	
appropriate	“scale	out”	request	at	the	increasing	front	of	the	load	and,	respectively,	
“scale	in”	requests	were	issued	during	the	decreasing	front.	In	the	following	section	we	
will	describe	the	testing	procedure	followed	for	the	integration	of	the	DMM	with	the	
CELAR	Orchestrator.	
	

4.3.2 DMM	and	CELAR	Orchestrator	
	
	 When	the	DMM	makes	a	new	elastic	decision,	it	issues	a	new	resizing	request	to	
the	CELAR	Orchestrator	module.	The	CELAR	Orchestrator	consumes	these	requests	and	
translates	them	into	SlipStream	commands	that,	in	turn,	create	(or	destroy)	resources	
and	orchestrate	the	application	to	utilize	(or	stop	utilizing)	them.	
	
	 Integration	testing	was	necessary	for	those	two	modules	in	order	to	verify	that:	
(a)	DMM’s	requests	where	successfully	recognized	by	the	CELAR	Orchestrator	and	(b)	
the	communication	protocol	between	the	two	modules	does	not	lead	to	deadlocks	or	any	
other	pathogenic	situations.	To	this	end,	a	Cassandra	cluster	was	deployed	through	
CELAR	and	instances	of	the	DMM	and	the	CELAR	Orchestrator	were	deployed	to	manage	
the	orchestration	of	the	application.	According	to	the	resizing	actions	that	were	under	
investigation,	the	test	load	and	the	user	policies	were	tweaked	accordingly:	e.g.	if	a	scale	
out	action	was	tested	then	the	resizing	policy	was	similar	to:	“if	request	throughput	is	
over	a	certain	value,	then	scale	out”	and	the	load	was	set	to	a	specific	value.	This	
procedure	was	repeated	for	each	supported	resizing	action	for	the	two	supported	cloud	
providers.	This	way,	the	testing	verified	that	(a)	the	resizing	requests	are	translated	
appropriately,	(b)	the	possible	resizing	actions	become	available	to	the	DMM	and	(c)	the	
policy	changes	drastically	affect	the	behavior	of	the	DMM.			
	

4.3.3 CELAR	Orchestrator	and	SlipStream	
	
	 When	the	CELAR	Orchestrator	receives	a	resizing	request	it	communicates	with	
SlipStream	that	enforces	the	action	into	the	deployed	application.	The	CELAR	
Orchestrator	should	be	able	to	translate	the	parameters	of	the	resizing	action	requests	
(made	by	the	DMM)	into	commands/parameters	that	SlipStream	was	able	to	
understand.	For	example,	all	the	resizing	requests	issued	by	the	DMM	that	entailed	VM	
flavor	changing	(e.g.	add/remove	cores	or	memory)	where	accompanied	by	parameters	
dictating	how	many	cores	and/or	memory	should	be	added/removed.	On	the	other	
hand,	SlipStream	only	understood	information	regarding	the	flavor	of	each	VM.	
However,	the	term	“flavor”	would	greatly	complicate	the	design	of	the	DMM,	thus	CELAR	
Orchestrator	became	responsible	for	the	translation	between	the	two	“dialects”,	which	
became	one	point	of	validation	for	the	integration	testing	between	the	CELAR	
Orchestrator	and	SlipStream.	Apart	from	that,	timing	issues	should	also	be	validated:	
when	an	issued	resizing	action	is	completed,	the	Orchestrator	should	be	notified	
immediately.	
	
	 These	two	points	were	tested	during	the	integration	testing	of	the	CELAR	
Orchestrator	and	SlipStream.	The	testing	was	also	driven	by	a	toy	application:	at	the	first	

	
	

	
D	6.4	–	CELAR	System	Prototype	 17	/	25	
	

stages	of	the	implementation,	a	simple	web	application	was	used	to	verify	that	
deployment	and	termination	of	an	old	deployment	was	possible.	Later	on,	the	horizontal	
resizing	actions	(scale	out/in)	was	tested	with	a	Cassandra	cluster	and	the	newly	added	
resizing	actions	related	to	disk	attach/detach,	vertical	and	diagonal	scalability	were	
tested	using	the	two	applications	(Dataplay	and	SCAN)	or	parts	of	the	applications	for	
the	two	different	IaaS	providers.	
	

4.3.4 SlipStream	horizontal	and	vertical	scaling	framework	
	
	 The	developed	framework	in	SlipStream	for	horizontal	and	vertical	scaling	was	
functionally	tested	as	part	of	the	development	and	integration	process	in	SixSq.		For	that	
we	used	the	example	multi-component	distributed	applications	that	come	bundled	with	
SlipStream.	
	
	 The	validation	and	testing	of	the	horizontal	scalability	was	performed	on	the	web	
application	(apache2)	and	a	set	of	test	clients.		SlipStream	was	requested	to	deploy	the	
web	application	layer	and	the	test	client	with	initial	number	of	instances	(VMs).		After	
the	successful	initial	deployment	of	the	components	of	the	test	application,	we	were	
manually	requesting	the	addition	and	removal	of	the	instances	on	the	two	layers	(the	
web	application	and	the	test	clients).		Then,	we	were	asserting	that	the	requested	
actions	were	fulfilled	on	both	the	cloud	layer	(VMs	were	properly	added/removed)	and	
on	the	application	layers	(all	the	application	level	deployment/startup/etc.	actions	and	
synchronizations	were	executed	correctly).	
	
	 The	vertical	scalability	feature	introduced	IaaS	actions	that	required	reboot	of	the	
VMs	under	the	actions.		In	the	case	of	the	vertical	scaling	part	of	the	framework	the	most	
important	was	to	ensure	that	the	SlipStream	node	executors	(agents	that	orchestrate	the	
application	deployment)	were	properly	acting	as	OS	daemons	on	most	of	the	latest	
version	of	the	Linux	distributions	(Debian	and	RedHat	based).		This	assumes	they	were	
properly	registered	within	the	system	startup	process,	starting	and	connecting	to	
SlipStream	without	any	issues	and	resuming	from	the	point	they	were	stopped.		But	
because	the	framework	was	developed	prior	to	the	cloud	connectors	implementing	the	
respective	IaaS	actions,	we	had	to	isolate	the	SlipStream	executors	and	run	the	VMs	
reboot	action	manually.		We’ve	tested	this	in	a	semi-automated	manner,	using	Vagrant	
[16]	with	VirtuaBox	[17]	as	the	virtualization	provider.		We’ve	created	a	set	of	Vagrant	
files	targeting	Ubuntu	(versions	10	to	14)	and	CentOS	(version	5	and	6)	for	the	
deployment	of	the	SlipStream	executor	only.		When	the	provisioning	process	is	done	and	
the	executor	is	running	correctly,	we	were	rebooting	the	VMs	and	asserting	that	after	
the	reboot	the	executor	is	running	and	its	state	is	consistent.	
	
	 The	above	(and	a	number	of	other	tests)	were	ran	during	the	SixSq’s	sprint	demo	
meetings	to	validate	and	assert	that	the	planned	features	are	working	as	expected	and	
ready	for	the	public	release.	
	

4.3.5 Vertical	scaling	in	SlipStream	Okeanos	and	Flexiant	connectors	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 18	/	25	
	

	 The	implementation	of	the	cloud	platform	specific	IaaS	actions	for	Okeanos	and	
Flexiant	cloud	connectors	was	done	following	the	guidelines	coming	with	the	
corresponding	SlipStream	cloud	connector	framework.			
	
	 The	functional	testing	of	the	VM	resizing	and	extra	disk	attach/detach	features	
was	done	by	writing	the	tests	that	utilize	Python’s	unit	testing	framework.		An	example	
for	such	tests	can	be	found	in	[18].		It	uses	the	unit	testing	framework	to	create	the	
required	fixtures	and	mocks	and	launch	the	series	of	the	cloud	level	calls	to	run	the	
workflow	that	starts	VM,	resizes,	attaches/detaches	extra	disks	and	finally	releases	the	
allocated	cloud	resources.		The	assertions	in	the	tests	allowed	to	ensure	the	correctness	
of	the	code	and	its	proper	execution	within	the	predefined	workflows.		The	tests	were	
developed	and	ran	by	the	~okeanos	and	Flexiant	connector	developers,	ensuring	that	
the	main	functionality	of	the	features	work	as	expected.	
	
	 For	the	integration	testing,	separate	instances	of	SlipStream	were	deployed	on	
each	cloud	provider	(~okeanos	and	Flexiant).		Initially,	a	simple	single	node	deployment	
was	used	to	test	and	assert	the	correctness	of	the	added	vertical	scalability	features	
when	running	entirely	from	SlipStream.		The	next	step	was	to	test	the	added	
functionality	on	the	scalable	parts	of	the	pilot	applications.		We	used	DataPlay’s	pooled	
PostgreSQL	persistence	layer	on	Flexiant	and	SCAN’s	worker	VMs	on	~okeanos.		The	
tests	were	run	manually	using	SlipStream	API	and	scalability	CLI	(ss-node-resize,	ss-
disk-attach/detach	commands).		The	goal	was	to	assert	that		

• the	scaling	actions	are	correctly	applied	on	the	IaaS	level,		
• the	application	components	running	on	the	scaled	VMs	were	able	to	detect	and	

utilize	the	change,	
• the	SlipStream	executors	on	the	nodes	are	running	in	the	consistent	state,	
• the	SlipStream	deployment	after	orchestrating	the	scalability	actions	is	in	final	

and	consistent	state.	
The	above	tests	were	conducted	manually.		The	results	of	the	assertions	showed	that	the	
features	are	working	correctly	and	can	be	integrated	further	with	the	automated	
elasticity	decision	making	stack	of	the	Platform.	
	

4.3.6 CELAR	Manager	and	SlipStream	
	
	 As	presented	in	D3.3,	CELAR	Manager	is	the	endpoint	of	the	platform,	and	one	of	
its	responsibilities	is	to	interact	with	SlipStream	and	trigger	new	application	
deployments.	When	the	deployment	is	completed,	the	orchestration	control	is	passed	to	
the	CELAR	Orchestrator	instance	which	is	responsible	for	the	application	scaling	and	
management.		
	 The	integration	between	those	components,	needed	to	be	tested	for	the	following	
cases:	

• CELAR	Manager	can	describe	any	application	into	SlipStream,	
• CELAR	Manager	can	deploy	the	application,	providing	deployment-specific	info	to	

SlipStream	(e.g.	node	multiplicity,	etc.),	
• CELAR	Manager	can	terminate	a	deployment.	

	
	

	
D	6.4	–	CELAR	System	Prototype	 19	/	25	
	

The	aforementioned	actions	were	tested	for	a	handful	of	different	applications:	at	first	a	
Cassandra	cluster	was	used,	as	mentioned	before,	while	at	the	later	stages	of	the	
development	DataPlay	and	SCAN	were	used	as	pilot	applications.		
	

4.3.7 CAMF	and	CELAR	Manager	
	
	 CAMF	provides	a	user-friendly	UI	through	which	the	user	can	describe	their	
application,	in	terms	of	architecture	(modules	and	components),	deployment	artifacts	
(e.g.	number	of	VMs	per	module,	flavors,	etc.)	and	elasticity	constraints	(policies	and	
constraints).	All	this	information	is	packed	into	a	CSAR	file,	as	presented	in	D2.3.	This	
CSAR	file	is	sent	to	the	CELAR	Manager,	where	it	is	translated	and	deployed.	
	 The	testing	process	was	needed	to	verify	that	CAMF	produces	CSAR	files	
understandable	to	the	CELAR	Manager;	to	this	end,	numerous	CSAR	files	were	produced	
through	CAMF	describing	applications	with	different	architectures	and	deployment	
information.		Apart	from	the	CELAR	Manager,	the	CSAR	file	is	also	forwarded	to	the	
CELAR	Orchestrator	as	it	contains	information	needed	by	the	DMM	in	order	to	function	
properly.	The	same	testing	process	was	followed	for	the	CELAR	Orchestrator	case	as	
well.	
	

4.3.8 Information	System	and	CELAR	Manager	
	
	 The	Information	System	provides	details	to	the	users	regarding	the	running	and	
past	deployments	of	their	applications.	This	information	is	stored	into	the	CELAR	
DataBase	and	it	is	exported	to	the	Information	System	through	the	CELAR	Manager:	the	
later	retains	a	rest	API	serving	all	deployment	specific	details	a	user	may	require.	The	
Information	System	provides	a	friendly	UI,	enabling	the	user	to	authenticate	with	the	
platform	and	query	it	about	their	applications	and	deployments.	
	
	 The	testing	of	the	integration	of	those	two	components	is,	essentially,	
downgraded	to	testing	the	REST	API	(from	the	CELAR	Manager	side),	the	REST	client	
(from	the	Information	System	side)	and	their	cooperation.	Specifically,	every	provided	
call	was	tested	for	numerous	parameters	(if	the	call	supported	them)	and,	in	case	that	
the	queries	returned	no	results	or	the	parameters	were	illogical,	descriptive	error	
messages	were	returned	and	presented	to	the	user.	
	

4.3.9 High	availability	of	CELAR	Manager	
	
	 As	presented	in	D3.3,	CELAR	supports	the	deployment	in	an	HA	manner.	
Regarding	the	CELAR	Manager	instances,	we	in	parallel	deploy	multiple	CELAR	Manager	
instances	and	redirect	the	traffic	caused	by	the	clients	of	the	platform	towards	them	
through	a	single	load	balancer	(acting	as	the	endpoint	of	the	platform).	To	avoid	failures	
at	this	node,	we	utilize	a	cluster	of	load	balancers	and	elect	one	node	to	be	the	master	
(through	keepalived);	the	remainder	nodes	keep	checking	on	the	master’s	status	and,	in	
case	of	failure,	elect	a	new	master	and	execute	a	script	that	detaches	the	public	IP	
address	from	the	failed	node	and	attach	it	into	the	newly	elected	master	node.	This	new	
node	will	act	as	the	endpoint	of	the	platform.		

	
	

	
D	6.4	–	CELAR	System	Prototype	 20	/	25	
	

	
	 The	testing	procedure	of	this	deployment	was	the	following:	we	deployed	CELAR	
with	multiple	CELAR	Manager	and	load	balancer	instances	and	caused	failures	to	
specific	VMs.	In	our	case,	the	VM	failures	lead	to	connection	error	between	the	nodes.	
Since	many	different	errors	may	occur	during	the	platform’s	deployment	and	in	many	
levels	(OS	Level,	VM	Level,	Application	Level),	we	model	those	error	by	their	impact	on	
the	application’s	connectivity:	if	the	platform		is	able	to	respond	to	particular	queries,	we	
assume	that	it	is	running,	else	the	specific	node	is	considered	as	failed	and	recovery	
actions	are	triggered.	During	the	evaluation,	we	tried	to	disable	the	network	interfaces	
of	specific	VMs,	stop	the	platform’s	daemons	and	reboot	the	VMs.	When	those	test	
happened	on	the	CELAR	Manager	instances	we	noticed	zero	downtime:	the	load	
balancer	realized	the	absence	of	a	CELAR	Manager	immediately	and	new	traffic	was	not	
redirected	to	the	instance	that	erred.	On	the	other	hand,	when	those	tests	were	executed	
on	the	master	load	balancer,	we	noticed	a	downtime	of	1-5	seconds:	requests	made	at	
this	time	period	failed.	This	downtime	can	be	attributed	to	the	time	needed	to	detach	
and	re-attach	an	IP	address	into	a	running	VM,	a	procedure	that	occurs	when	a	new	load	
balancer	instance	is	elected	as	the	new	master	and	obtains	the	IP	address	of	the	failed	
master.	Obviously,	this	time	is	heavily	affected	by	the	cloud	provider	but	it	can	be	
considered	marginal	as	long	as	VM	failures	(from	the	cloud	provider	side)	are	seldom.	
Finally,	as	also	described	in	D3.3,	we	replicated	the	CELAR	Database	into	a	PostgreSQL	
cluster,	both	for	performance	and	HA	reasons.	The	load	balancer	that	redirects	the	
traffic	to	the	database	nodes	was	placed	into	the	same	host	as	the	load	balancer	
mentioned	above	(that	handles	traffic	for	the	CELAR	Manager	instances),	and	we	
utilized	the	same	architecture	and	evaluation	mechanisms.	In	D3.3	Figure	8,	we	also	
provide	an	evaluation	of	the	performance	degradation	occurring	due	to	master	
traversal.	It	is	visible	that	a	failure	does	not	result	in	downtime	and	the	performance	
drop	can	be	considered	as	marginal.	
	

4.4 System	level	testing	
	
	 During	the	system	level	testing,	the	platform	was	deployed	in	both	cloud	
providers	(~okeanos	and	Flexiant)	and	tested	through	deploying	and	scaling	the	two	
pilot	applications	(Dataplay	and	SCAN).	Since	the	nature	of	the	two	applications	differs,	
the	respective	application	descriptions	contain	different	elasticity	constraints,	resizing	
actions	and	policies.	During	the	testing,	it	was	verified	that	the	platform	is	capable	of:	

• Receiving	applications	descriptions	with	elasticity	constraints	
• Deploying	applications	
• Scaling	applications	according	to	their	elasticity	constraints	
• Abstracting	the	cloud’s	internal	properties	and	providing	a	unified	way	of	

describe/deploying	applications	to	the	user	
We	will	not	enlist	the	tests	conducted	for	the	two	pilot	applications	for	the	two	different	
infrastructures.	
	

4.4.1 System	testing	with	DataPlay	on	Flexiant	
	
	 DataPlay	was	deployed	and	tested	over	the	Flexiant	cloud.	The	following	resizing	
actions	were	tested:	

	
	

	
D	6.4	–	CELAR	System	Prototype	 21	/	25	
	

• Horizontal	scalability		
• Vertical	scalability	

	
	 Both	actions	were	applied	into	the	“Master”	cluster,	which	issues	queries	to	
Cassandra	and	Redis,	as	presented	in	D7.3.	Horizontal	scalability	refers	to	changing	the	
multiplicity	of	the	cluster	(adding	and	removing	nodes)	and	vertical	scalability	refers	to	
changing	the	amount	of	CPU	and	memory	for	each	node.	A	video	demonstration	of	
DataPlay’s	scaling	can	be	found	at	[19].	
	

4.4.2 System	testing	with	SCAN	on	Okeanos	
	
	 SCAN	was	deployed	and	tested	over	~okeanos.	The	following	resizing	actions	
were	tested:	

• diagonal	scalability,	
• disk	attach/detach.	

	
	 Both	actions	were	applied	to	SCAN’s	workers,	as	presented	in	D8.3.	Diagonal	
scalability	is	the	composition	of	horizontal	and	vertical	scalability:	new	VMs	are	
allocated	(increasing	the	cluster’s	multiplicity)	each	of	which	contains	an	increased	
amount	of	resources	in	comparison	to	the	existing	ones.	Disk	attach/detach	refer	to	
adding/removing	block	devices	into	the	existing	VMs.	A	video	demonstration	of	SCAN’s	
scaling	can	be	found	at	[20].	
	

4.5 Results	and	Conclusions	
	

	 During	the	development	and	integration	of	the	CELAR	Platform	the	multimodal	
and	multilevel	testing	was	performed.		The	testing	was	a	collaborative	process	between	
the	developers	in	the	research	and	development	WPs	(WP2-5),	the	WP6	team,	and	the	
early	platform	users	from	WP7	and	WP8.		All	the	intended	per-component	and	
integrated	system	level	features	were	tested,	asserted	and	proved	to	be	working	by	the	
projects	pilot	applications	(DataPlay	in	WP7	and	SCAN	in	WP8).			As	the	result,	the	
consortium	agreed	that	the	CELAR	System	meets	the	project’s	functional	requirements	
and	is	acceptable	for	the	final	public	release.	
	

5 The	CELAR	Platform	readiness,	delivery	and	support		

5.1 Technology	Readiness	Levels	
	 We	estimate	the	TRL	level	of	the	CELAR	Platform	as	TRL	6	-	technology	
demonstrated	in	relevant	environment	(industrially	relevant	environment	in	the	case	of	
key	enabling	technologies).		The	classification	is	given	according	to	[1].	
	
	 The	following	Table	4	lists	the	TRL	levels	of	the	components	of	the	CELAR	
Platform,	cloud	platforms	the	project	was	using	and	the	project’s	pilot	applications	
developed	as	part	of	the	project.	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 22	/	25	
	

Table	4	TRL	levels	of	the	components	of	the	CELAR	Platform,	cloud	platforms	the	project	was	using	and	the	
project’s	pilot	applications.	

Component/Application/Platform	 TRL	level	 Comments	
CELAR	Platform	(as	a	whole)	 TRL	6	 pre-alpha	
	 	 	
CAMF	(c-Eclipse)	 TRL	6	 pre-alpha	
DMM	 TRL	6	 pre-alpha	
CELAR	Manager	and	Orchestrator	 TRL	6	 pre-alpha	
JCatascopia	 TRL	6	 pre-alpha	
InfoSystem	 TRL	6	 pre-alpha	
	 	 	
SlipStream	cloud	provisioner	 TRL	9	 production	
FCO	cloud	platform	 TRL	9	 production	
Okeanos	cloud	platform	 TRL	9	 production	
SlipStream	Okeanos	connector	 TRL	8	 beta	
SlipStream	Flexiant	connector	 TRL	8	 beta	
	 	 	
DataPlay	 TRL	7	 alpha	
SCAN	 TRL	7	 alpha	
	

5.2 Delivery	
	

We	 are	 releasing	 the	 Platform	 as	 a	 set	 of	 four	 VM	 image	 appliances	 with	 the	
released	components	preinstalled	and	preconfigured	with	sensible	defaults.		The	release	
notes	contain	the	information	about	downloading	of	the	appliances,	bringing	them	up	as	
VMs,	configuring	and	using	them.		The	following	appliances	as	CELAR	Platform	v0.2	will	
be	released	

	
CELAR	Server	

• Manager	
• CELAR	DB	
• Information	System	
• SlipStream	

CELAR	Orchestrator	
• DMM	
• JCatascopia	Server	and	Web	
• CELAR	Orchestrator	
• SlipStream	Orchestrator	dependencies	

CELAR	user	VM	CentOS	
• JCatascopia	Agent	and	OS	level	probes	
• SlipStream	node	executor	dependencies	

CELAR	user	VM	Ubuntu	
• JCatascopia	Agent	and	OS	level	probes	
• SlipStream	node	executor	dependencies	

	

	
	

	
D	6.4	–	CELAR	System	Prototype	 23	/	25	
	

	 The	Platform	appliances	(as	VMs,	and	accompanied	by	the	documentation)	are	
available	at	the	following	address	
	
	 http://downloads.celarcloud.eu/appls	
	
	 An	alternative	way	to	deploy	the	CELAR	Platform	could	be	the	deployment	
directly	from	the	binaries	repository.		As	the	project	chose	CentOS	6.x	as	the	target	OS	
the	following	is	the	link	to	the	YUM	repo	with	RPMs	for	CentOS	6.x	
	
	 http://downloads.celarcloud.eu/yum	
	
	 In	the	second	case,	the	set	of	SlipStream	images	and	deployments	utilizing	the	
deployment	scripts	of	the	CELAR	Platform	itself	that	the	project	used	in	its	integration	
processes	is	going	to	be	handy.		That	is	why	they	were	made	publicly	available	for	
download	and	use	from	GitHub	
	 https://github.com/CELAR/celar-deployment	
	
	 Using	SlipStream	CLI	ss-module-upload,	the	SlipStream	modules	available	under		
https://github.com/CELAR/celar-deployment/tree/master/deployment-slipstream	
can	be	simply	uploaded	to	any	SlipStream	instance	and	used	to	deploy	the	CELAR	
Platform	to	any	cloud	the	SlipStream	instance	is	pointing	to.	
	
	 After	the	release	of	the	final	version	of	the	CELAR	Platform,	we	are	also	planning	
to	publish	the	deployments	of	the	CELAR	Platform	to	SlipStream	AppStore	on	
https://nuv.la		This	will	make	the	Platform	available	for	deployment	on	virtually	any	
cloud	in	one	click.	
	
	 The	following	link	points	to	the	list	with	the	CELAR	Platform	per	component	
documentation	
	 https://docs.celarcloud.eu	
	

5.3 Support	
	
	 After	the	end	of	the	project,	partners	will	be	providing	a	certain	level	of	support	
to	the	components	of	the	Platform	they’ve	developed.		Thus,	the	support	for	the	Platform	
as	a	whole	should	be	viewed	as	based	on	the	options	provided	by	each	partner	
responsible	for	the	development	of	the	respective	components.	
	
	 Support	for	the	components		

- SlipStream	(SixSq)	
- SlipStream	connector	for	FCO	(Flexiant)	
- Flexiant	Cloud	Orchestrator	(Flexiant)	

developed	and	open	sourced	or	publicly	licensed	by	the	commercial	partners	Flexiant	
and	SixSq	is	on	the	best	effort	basis.	
	
	 Support	to	the	components		

- CELAR	Manager,	Orchestrator,	DB	(ATHENA)	
- CELAR	Information	System	(UCY)	

	
	

	
D	6.4	–	CELAR	System	Prototype	 24	/	25	
	

- CELAR	DMM	(TUW)	
will	be	provided	by	the	respective	academic	partners	on	the	voluntary	basis.	
	
	 Since	CAMF	is	now	an	official	Eclipse	technology	project,	support	will	be	
provided	according	to	the	principles	that	guide	the	Eclipse	Development	Process	
(see	https://www.eclipse.org/projects/handbook/).		Members	of	partner	UCY	who	
currently	leading	the	CAMF	project	will	make	sure	that	the	necessary	policies	and	
guidelines	of	the	above	process	are	adequately	maintained.	
		
	
	 Support	for	SlipStream	connector	for	Okeanos	by	GRNet	will	be	provided	until	
there	is	an	interest	and	usage	of	the	later	as	part	of	the	SlipStream	installation	on	
Okeanos	by	GRNet	for	the	purposes	of	the	National	Greece	scientific	community.	
	

6 Conclusions	
	 The	work	package	was	able	to	successfully	fulfill	the	defined	goals	regarding	the	
extensions	of	the	cloud	provisioner	and	its	connectors	to	support	horizontal	and	vertical	
scaling	actions	on	both	cloud	platforms	used	in	the	project,	and	the	integration	of	the	
coherent	set	of	the	components	into	the	CELAR	Platform.	
	 At	the	moment	the	Platform	is	undergoing	the	last	steps	of	the	integration	and	
the	system	level	testing	process.		The	final	release	of	the	CELAR	Platform	v0.2	is	
scheduled	for	the	end	of	October	2015.	
	

7 References	
	
[1]	TRL	levels.	https://en.wikipedia.org/wiki/Technology_readiness_level	
	
[2]	D1.2	CELAR	Architecture	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_1.X:D1.2	
	
[3]	D2.3	c-Eclipse	Framework	(CAMF)	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_2.X:D2.3	
	
[4]	D3.3	CELAR	Manager	and	Orchestrator	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_3.X:D3.3	
	
[5]	D4.3	Multi-Level	Metric	Evaluation	Module,	JCatascopia	and	Info	System	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_4.X:D4.3	
	
[6]	D5.3	Decision	Making	Module	(DMM)	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_5.X:D5.3	
	
[7]	CAMF.	https://projects.eclipse.org/proposals/cloud-application-management-framework	
	

	
	

	
D	6.4	–	CELAR	System	Prototype	 25	/	25	
	

[8]	HelixNebula	project.	http://www.helix-nebula.eu	
	
[9]	Scalable	deployments	in	SlipStream.	Documentation.	
http://ssdocs.sixsq.com/documentation/advanced_tutorial/scalable_deployments.html	
	
[10]	SlipStream	release	notes.	
http://ssdocs.sixsq.com/documentation/release_notes/candidate_releases.html	
	
[11]	SlipStream	API.	http://ssapi.sixsq.com	
	
[12]	D6.2	Integration	Prototype	"CELAR	System	Prototype"	V2.	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_6.X:D6.2	
	
[13]	Ali	Mili,	Fairouz	Tchier,	“Software	Testing:	Concepts	and	Operations”,	Wiley-Blackwell,	
2015.	ISBN-13:	978-1118662878.	
	
[14]	D1.1	User	Requirements	and	System	Architecture	V1,	Month	6	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_1.X:D1.1	
	
[15]	D1.2	Updated	User	Requirements	and	System	Architecture,	Month	20	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_1.X:D1.2	
	
[16]	https://www.vagrantup.com/	
	
[17]	https://www.virtualbox.org/	
	
[18]	Example	of	vertical	scalability	tests	https://github.com/CELAR/SlipStreamConnector-
Okeanos/blob/master/python/tar/test/TestOkeanosClientCloudLive.py	
	
[19]	https://www.youtube.com/watch?v=xDHt61N4wbM	
	
[20]	https://www.youtube.com/watch?v=YWdSy-l3QOA	
	
[21]	D9.5	Dissemination	and	Exploitation	Activities	Report	V3	
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_9.X:D9.5	
	

