Document narm DEBEERIfLAtoT R GelL Y 91/2015

Version: 1.0
Security: public

SEVENTH FRAMEWORK
PROGRAMME

Project Acronym: CUMULUS

Project Title: Certification infrastrUcture for MUIti-Layer cloUd Services
Call identifier: FP7-ICT-2011-8

Grant agreement no.: 318580

Starting date: 15t October 2012

Ending date: 30" September 2015

umvulus

D2.3 Certification models v.2

AUTHOR(S): Ernesto Damiani (UMIL), George Spanoudakis (CITY), Spyros
Katopodis (CITY), Khaled Mahbub(CITY), Maria Krotsiani (CITY), Stelvio Cimato
(UMIL), Marco Anisetti (UMIL), Claudio Ardagna (UMIL), Francesco Zavatarelli
(UMIL), Maria Rosa Vieira Alvarez (ATOS), Renato Menicocci (FUB), Alessandro
Riccardi (FUB), Vittorio Bagini(FUB),Javier Espinar (UMA), Antonio Murioz (UMA),

Antonio Mana (UMA), Hristo Koshutanski (UMA)

REVIEWERS(S): Alain Pannetrat (CSA), Daniel Schmoelzer (IFX), Matthias Junk

(IFX)

This document contains information, which is proprietary to the CUMULUS consortium.
Neither this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

PROPRIETARY RIGHTS STATEMENT

consent of the CUMULUS consortium.

Date: May 30, 2014
Page 1/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Summary
EX@CULIVE SUINIMATY cueiuiiiintiuissmsissssssssssssssssssssssssssssssssasss st ssssssesssssss s sesssssssss st s s et sesas e e aEsR s A EE AR AR SRR R R AR AR R R R R R AR R RS 5
3 I 0110 o7 L0 (0 L) o T, 6
2. A modular Certification Meta-Model ... 10
2.1. General consideration on CUMULUS Meta-MOdEL.............ceoeeronscronsirinsirssscrsnscronsisonsissssssssesssesins 10
2.2. NAMING CONMVENETION wceerereerereereeasersseasessessesssessssssessssasessssasessssssessssssessssssessssssesssessssssessssssessssssessssasessssasessss 12
2.3. Property VOCADULIATY MOAUIC......cueeeereeesreeseceeerserssressessecssesssssssssssesssesssssssssassssssesssssssssassssssesssesssssssssssssens 12
2.4. (002 Tole T = 1y T e LT L= OO OO 14
2.5. CertificAtion MOAEI MOAUI. ...t esss s sasis s i s essssesassssas s s s s sssisssasssssans 15
2.6. CertifiCAtion PrOCESS MOGUIC.........ceoeeereeesireesseriseesiseesisessssssessssesassssassssassssssssesassssassssisssssssssssssssasssssssssssssssans 17
2.6.1. 00500 T 1] PP 18
3. CUMULUS Meta-Model compared with a Common Criteria Model........ccccocurimnnnsssssinninsinns 21
3.1. CC MOAEL AESCIIPEION oovevrereerereeeerseeraserisseassesssesssssssssassesssesssssssssassesssesssessssssssssssesssesssssssssssesssesssssassssssesssesssssanes 21
3.2. CC Model mapping onto CUMULUS MEtA-MOUEceuceereeereereersererscsserssessssinsssssesssesssssassssssesssssssssanss 23
4. Test-based Certification Model ... ————————— 27
4.1. Test-based Certification Model XML SChem@ DeSCTIPtION.cweorerrmeessserseerisserissssssssesssesassssasssses 27
4.1.1. Certification MOl I ... sas s sssss s 29
4.1.2. LF@ CFCLE vttt et sas s s s bbb s b R bR 30
4.1.3. Target of Certification (TOC) EIEMENTcouriereerieneireeseisseeseeseetseessessesssesssessse e sssenns 34
4.1.4. SeCUTityProPerty EIEMENT ..ottt st sessessseesse s st sss s st 35
4.1.5. SIZNATUTE EIEIMENT . c.e ettt ettt bbbt s s st st 38
4.1.6. COlIECTOTS EIEIMENT ..o evureesremeerseersseesseessseessesssssssessssessssssssssssessssessssssss s ssssssssssssessssessssasssssssessanes 39
4.1.7. Aggregator SUD-EIEMENT ...t sesse s se s s ssessesassanes 42
4.1.8. L000) 4 Ut ¢l 0 1) 0 T=) o PPN 43
4.2. Test-based Certificate XML SCROIMAcceereeeeeeeeseerseerssssesessssssesassesassssissssssssesssssssssssisssssssssssssssassssanssses 414
4.2.1. F 7Y o (o) L 46
5. Monitoring-based Certification Model..........coumiimnmnninmsnnnis . 47
51 OVBTVIOW......cevooeeeriresersasesessssesesssssessasesessanesessonssssassssssnessssssss st osss s s8ss 688358850 47
52 Non repudiation of cloud storage services: an example of a service to be certified.................... 50
53. Certification Model XML SChemMa DE@SCIIPLIONcouveeerereerererreerseersessissssssssesssesassssissssisssessssessssesassssassses 53
5.3.1. LY (oo (3 N Lo 00 20 1<) 0's V=Y o U T 54
5.3.2. CASIGNALUTE EIEIMENT ...ttt seessesssesase e bbbt s s s s s bbb 54
5.3.3. TargetOfCertification (TOC) EIEMENTccuuieeriereereereiseeseisseesee st sessesssesssesssessse s sssenns 54
5.3.4. SeCUTityProPerty EIEMENT ..ottt sesssess e sssessse st s ss s e 57
5.3.5. AssessmentScheme EIEMENT ... ssseesssesssessessssesssssssssssssssssssssasessas 67
5.3.6. StateTransition MOAEL sess s sss s ssssnsasseseees 73
5.3.7. Logical EXpressionTyPe EIEMENT ...ttt ssssssss e sssssssssssssssssessssssesns 81
5.3.8. AnomalyMonitoring EIEMENT. ... seeseiseeseiesssssssessssssessssssse s s sssssssssessanes 87
5.3.9. ValidityTeStS EIEIMENTcuueeiereereieeeneieceeeeseeseessesssesssesssssse bbbt sesssss s sssesssassss s sos 103
5.3.10. MonitoringConfigurations EI€MENTt.. ...t sesssessseesse s sssssssssses 103
5.3.11. EvidenceAggregation EIEIMENT ... eeeeereirieneeseeseiseesssessessese st sesssessssssse s ssssssssssss 105
5.3.12. LifeCycleModel EIEMENT....oiorierreeeetreeeseesseeeseissessse s ssssssssssssesssesssssssessssssssssss st ssssssas 106
6. TC-based Certification Model.........oo————————— 112
6.1. TC-based Certification Model XML SChema DeSCTIPtIONowceovverreersmerssserssserssesssssissssssssessssesans 112
6.1.1. LY (oo (=3 N o 00 4 U= 1's V=Y 0 L VRN 114
6.1.2. TCCertificate TYPE ELEMENT ...ttt sseese st se st sessssss s sss e 114
6.1.3. CASIGNALUTE EIEIMENT ...ttt seesseesse s sss s sb s sess s s sss s s 114
6.1.4. Y0100 U0 0 33 (0] 0 1= TP 114
6.1.5. AssessmentScheme EIEMENT ... eeeersessssssesssssessssesssssssesssssssssssssessssesssssesssssssenes 114
6.1.6. ValidityTeStS EIEIMENTcuueeiereereieeeneieceeeeseeseessesssesssesssssse bbbt sesssss s sssesssassss s sos 114
6.1.7. EvidenceAggregation EIEMENT ... sesse s sesssesessesssens 114
6.1.8. LifeCycleMOdel EIEIMENTcvrieereeecesecesecseieseesseesse s seessssssss s sesssssssessssssss s st ns s 115
6.2. TC SUPPOTTL fOI COTLIFICALION ..reverrerrereeeeerereerissesis s esssesassssessssas s ssessssesas s sssssssssassssassssasssssssssssesenss 115

Date: May 30, 2014
Page 2/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

6.2.1. TC SUPPOTE BASICS couieuieureieeneieetseesseisseessesssesse e s s ss s ss s sss s s bbb a bbb 115
6.2.2. TC SUPPOTE MOAEL..oeeieriieeeeieeteceeetsees st st sss s ss s ss bbb sa s 116

7. Advanced Certification MoOdelS.......ccummmmmmmmmmmsssssssssssssssssssss s 120
7.1. MUIET-1AY Y COTTIfICALION ..eververrreesereeere st esassesis s e s sessss s as s sss s esssses s ss s ssss s sasessisssesas 120
7.1.1. Multi-layer Test-based CertifiCation ... ssssssssses 120
7.1.2. Multi-layer Monitoring-based certifiCation ... seessesseees 124

7.2. INCTEMENEAL COTEIfICALION covurverrreerereereere et ess s s s s s as i es s es s sa s bt s st ne s 124
7.2.1. Incremental Test-based CertifiCation. ... ssessseenas 124
7.2.2. Incremental Monitoring-based certifiCation ... eeesseeeeens 126

7.3. HYDTIA COEIfICALION covorrveeeretreeeeessesese s eesis i s sssssesassesas i s sass s s esss s ss s es s sssasessisssesas 126
7.3.1. Comparison between hybrid and traditional certification models........ccerurrreerreeneen. 151

£ T 0713 1 U L) () ¢ 152
L2 T T) o) ol T, 153
10. L] 013 1 10 155
10.1. Test-based Certification Model generic SChema (XS file)ooueoreevmreromrerorsersesrssserssserossesssisineens 155
10.2. Test-based Certification Model inStance ((XMI fil@)cueeorrerormerrmeressseressersserssssissssssssesssesassssaseens 161
10.3. Monitoring-based Certification Model generic schema (.XSd fil€)cooomerormrecmmrersneercnseronsirnnens 169
10.4. Monitoring-based Certification Model inStance ((XMI file)owrevomeeroneersssecnssesssserossesnsisineens 178
10.5. TC Support for Certification SCREMA ((XSA fle)couweuumeeuoreerosrerrrirsssrisssesssisssesssssssssssssesssesassssaseess 191
10.6. Specification of the BNF grammar Of SECUTeSLA™ ... eoreirseersssersserssesssssisssssssesssesassssaneens 192

List of Figures

Figure 1 — CUMULUS MEta-MOAEIcueririreeririrsisesesssssssssssssssse e ssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssssns 11
Figure 2 — Instantiation and Naming CONVENTION ... sssssssssssssssesssssssssssssssssns 12
Figure 3 — Cloud Layers, ToC, Cloud component instances and certificate binding (single layer)....16
Figure 4 — Example of Certificate Life CYClO.. s sssssssssssssssssssssssssssssssssns 16
Figure 5 — Definition Process: Models and INStANCES.......orenerrneressenssnesessssssesssssssssssssssssssesssssssssesssens 18
Figure 6 — COT (Chain Of TIUST) .oioceceeccciseirecese et sses s sse st ssssssssse st sssse s ss s sss s sesssssssssesssssssssnssssesens 19
FIUIE 7 — SIZNATUIE PrOCESS . curueurerercereesseresssessseseasssessssesssss st sess st sssess e st st s se s et ansse s e st s b e st seasas 19
Figure 8 — COmMMON Criteria MOUE! ...t 22
Figure 9 — Test-based Certification IMOUE] ...t sssassssns 28
Figure 10 — Test-based CM: Cm Id EI€MENT TYPE .rrererseneireneisessessssssessessssssessssssssssssssssssssessssssssssssssssens 29
Figure 11 — Test-based CM: Life Cycle EIEMENt TYPO .. nerireesissssesessssssesssssssssssssssssssessssssssssesssseens 30
Figure 12 - Test-based CM: Life Cycle State TranSitioNS.....enensnesesssnsssessssssessssssssssessessssssssssesssssens 31
Figure 13 — Test-based CM: Life Cycle Transition TYPE ...cneressenssnesessnsssesssssssssssssssssssessssssssssesssssens 31
Figure 14 — Test-based CM: TOC EIEMENT TYPE .vrverererersenesresesssessessssssessns 34
Figure 15 — Test-based CM: Security Property Element TYPE ... nnsenseneissssessessessssessesssssssessssssseens 36
Figure 16 — Test-based CM: Security Property SUb-Element TYPEeonrerenseneesensensesessessessssessesseeens 36
Figure 17 — Test-based CM: Signature ElemMent TYPEnninenensinsssesessssssesssssssssssssssssssessssssssssesssseens 38
Figure 18 — Test-based CM: Collectors El@mMeENt TYPe ... ineesinssresessssssessssssssssesssssssssessssssssssesssssens 39
Figure 19 — Test-based CM: Abstract Collector SUb-EI@mMeENnt........orerenennenesinsnesessssesessessesssseseseseens 39
Figure 20 — Test-based CM: Collector SUD-EIEMENTt ... ssessseens 40
Figure 21 — Test-based CM: Event Bus Collector SUD-EI@mMENt........cverencenereninsreesessessesesessessssessesseseens 41
Figure 22 — Test-based CM: Aggregator SUD-EIEMENt ... ssessseens 43
Figure 23 — Test-based CM: Context El@mMeNt TYP ... niesesessssessssssssessssssssssssssssssssssssssssssssssssens 44
Figure 24 — Test-Dased CertifiCate . ssssssssssssns 45
Figure 25 — Test-based Certificate: Certificate INfO TYPE. .o sseseeens 45
Figure 26 — Test-based Certificate: ASSEITION ... sssssssssns 46
Figure 27 — Non Repudiation protocol for cloud storage services (based on (Feng, 2011)).....ccccuuuue. 51

Date: May 30, 2014
Page 3/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Figure 28 — Monitoring-based Certification Model schema elements........cvneresrensenenesseneesesesseneens 53
Figure 29 — Monitoring-based CM: Target Of Certification TYPe....crrnrenensneesessensesessessessssesseseeens 55
Figure 30 — Monitoring-based CM: ProvidesINterface TYPe ... nmninsenssnenensssessesssssssessessssssssssesssseens 56
Figure 31 — Monitoring-based CM: RequiresInterface TYPe. . nmensnsenesesssessesssssssessessssssessesssssens 56
Figure 32 — Monitoring-based CM: Assertion EIemMeNnt TYPe.... i nenensenensnssssssssssssssessesssssssessesssssens 58
Figure 33 — Monitoring-based CM: Interface Declaration TYPEcnenerenenssnessessessssessesssssssesseseeens 61
Figure 34 — Monitoring-based CM: Variable Declaration TYPe.....nnenmnensnesnesesssssssessessssessessseens 64
Figure 35 — Monitoring-based CM: Guaranteed State TYPE ... nrrnnsnssnesensssessessessssessesssssssssssssssens 65
Figure 36 — Monitoring-based CM: Assessment SChEME TYPE ...wrrnenenenesnsssessessessssessessssssssssssssseens 68
Figure 37 — Monitoring-based CM: Evidence Sufficiency Condition TYPeccvreresrensenenenssssesessesseneens 69
Figure 38 — Example of expected TOC Behaviour MOdEl.......cnenineensensssesesssssssesssssssssesssssssessesssseens 70
Figure 39 — Monitoring-based CM: Expiration CoNdition TYPEccnerereneenseressnsssessessessssessesssssssessessseens 71
Figure 40 — Monitoring-based CM: CONFIICE TYPE ... sssssssssssssssesssssssssssssssens 72
Figure 41 — Monitoring-based CM: State Transition Model TYPe.....ccnrerenrinssnesnessessesessessessssesseseeens 74
Figure 42 — Monitoring-based CM: PSEUAO State TYPE ...crnnrrerinsinssnesesssssssesssssssssssssssssssssssssssssssssssens 75
Figure 43 — Monitoring-based CM: HiStory State TYPE ... sssssssssssssssesssssssssesssseens 75
Figure 44 — Monitoring-based CM: AtOMIC State TYPE ..ccrnrerrrrerensinsssesessssssesssssssssesesssssssesssssssssesssssens 76
Figure 45 — Monitoring-based CM: Operation Ref TYPE ... nninsnesississssesssssessssssssssssesssssssessesssseens 77
Figure 46 — Monitoring-based CM: COMPOSite States TYPE ..ocrrerrenmeresesssssssesessssessessessssessessssssssssesssssens 78
Figure 47 — Monitoring-based CM: Transition EI@MENt ... ssesssssessssessesssssssessssssseens 79
Figure 48 — Monitoring-based CM: Logical Expression Type and Condition TYPeccurevrereereresseneens 81
Figure 49 — Monitoring-based CM: Evidence Condition TYPe...nrmnensenenenssnesssssesssssssesssssssessssseeens 83
Figure 50 — Monitoring-based CM: Arithmetic EXpression TYPe....nesnsnesnessessssessesssssssessesseens 85
Figure 51 — Monitoring-based CM: ANOMAlY TYPE .crrerenmrrensinsssessessssssesssssssssesssssssssssssssssssssssssssssssssssssns 88
Figure 52 — Monitoring-based CM: Validity TEStS TYPe..unerrreresssnsssesesssssssesessssessssssssssesssssssesseans 103
Figure 53 — Monitoring-based CM: Individual Monitoring Configuration Type.......oeneenenenns 104
Figure 54 — Monitoring-based CM: Evidence AgEregation TYPE ... nenenmenessessensssessesssssssesssssssessenns 105
Figure 55 — Monitoring-based CM: Lifecycle MOdel TYPE ...nnenerensesssnesesssssssesessssessssssssssesssssssesseans 106
Figure 56 — Monitoring-based CM: UML diagram of Life Cycle Modelonrennensenessesensenenenns 107
Figure 57 — TC Certification Model SChEMA ... ssssneans 113
Figure 58 — Binding of Testing/Monitoring Agent to a Platform state.......essssnesnssnens 115
Figure 59 — TC-SUPPOrt MOdel SCEMA ...t s s ssssneans 117
Figure 60 — TC-Support for Certification EXamMpPle ... eneneessssesesessssssesesssssssessssssessssssssssesssssssssssans 119
Figure 61 — Storage service t0 be CErtified ... ssssssans 121
Figure 62 — Dependent mode hybrid certification MOEIS ... 141
List of Tables

TabIe 1 - STAtUS Of SECTIONS ...ttt 9
Table 2 — CertifiCation MOEIS ... 15
Table 3 — Certification Models Mapping between Common Criteria Model elements and CUMULUS
MELA-IMOUE] ClaSSES ..t 26
Table 4 — Mapping between Model classes and Meta-Model classes for the Test-based
CertifiCatioN IMOUEL. ..ottt s s s 28
Table 5 — Mapping of Monitoring Based Certification Models onto CUMULUS Meta-Model classes
... 49
Table 6 — TC Certification MOdel SChEMA ... snsens 113

Date: May 30, 2014
Page 4/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Executive Summary

This document is the second version of the conceptual framework underlying the specifications of basic
(Test-based, Monitor-based, Trusted Computing (TC)-based), multi-layer, hybrid and incremental
Certification Models for cloud-based processes, applications, and services, and the schemas used for
specifying such models. The proposed approach relies on a unifying meta-model to provide
representational guidelines for (i) the definition of the security properties to be certified (ii) the types of
evidence underlying them (iii) the phases of the certificate life cycle, as well as of all mechanisms for
generating supporting evidence. The first version of test, monitoring and trusted computing based
certification models was introduced in deliverable D2.2. To provide a comprehensive and definitive version
of the models, in this deliverable we document not only the changes to the first version but also the
unaltered parts of it.

In summary, the second version of certification models has introduced the following changes:

* In the case of test based certification models, v2 v2 has completely redefined the model of the
Target of Certification, including a concept of Target of Tests which represent the hooks to our
testing probes, and the model of how evidence is collected and aggregated, redesigning the
Collectors element in the Certification Model.

* In the case of monitoring based certification models, v2 has introduced models of expected
behaviour for Targets of Certification, a new scheme for defining sufficiency conditions regarding
monitoring evidence (conflict and sufficiency wrt expected behaviour), a new scheme for specifying
anomalies that should be monitored (along with security properties) in generating monitoring
based certificates, and a more elaborated scheme for specifying life cycle models for the
production and management of test based certificates.

* In the case of trusted computing certification models, the main changes relate to to the definition
of a TC support model for certification leveraging the trust necessary for validation of the
monitoring and test based certifications. The TC support model is seen as crucial for the relaiability
and acceptance of evidences gatherend by monitoring and testing agents.

Examples of Test-based, Monitoring-based and TC-based Certification Models and related Certificates are
made. Then a preliminary version of multi-layer, hybrid and incremental Certification Models is proposed.

Date: May 30, 2014
Page 5/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

1. Introduction

The freedom of choice given by dynamic software provisioning on the cloud needs to be reconciled with
the apparently conflicting requirement of making sure that software systems have the appropriate
assurance levels for the intended purpose. In the case of security, influential guidelines like the US-NIST
Special Publication (SP) 800-37s mandate users to check at the time of use that software systems hold the
desired set of security properties. This requirement is very difficult to satisfy in a cloud-based service
marketplace, and in general with any dynamic model of software provisioning.

According to the vision of the CUMULUS project, checking security properties is greatly facilitated when
some accredited authority continuously produces, maintains and manages signed certificates regarding the
properties held by cloud entities and applications, as well as the evidence supporting such properties.

In our approach, the certification process is a function that takes as input the assertions about a security
property and a target of certification, and produces as output a machine-readable certificate containing the
evidence that proves the requested properties, by means of verification and validation techniques.

There are different ways of persuading a customer that a security property holds for a given service. It is
possible to produce test-based evidence, that is, evidence that a test carried out on the software has given
a certain result (static or offline tests); alternatively, one could test dynamically when a specific service is
invoked (dynamic tests), monitor the service continually, rely on the use and/or synthesis of certificates of
components which contribute to the realisation of the service, or deploy hybrid schemes combining more
than one of these different types of evidence. Note that changes in the service may affect the service
model and in turn the evidence generated to support a given property.

A major effect of the certification process is that it modifies the trust of customer c in the security
assertions made on a service instance. As discussed in (Anisetti A. &., 2011)the lack of a certification
process for services results in a scenario where the level of trust Tc(Aws), with Aws a set of assertions made
by the service provider on its web service ws, mainly depends on the service provider’s reputation. With
the advent of service certification, the trust model includes the trust of customer c in assertions made by a
certification authority on a service, denoted as Tc(C), where C is the certificate awarded to the service ws
by the certification authority. Trust Tc(C) considers the assertions, the properties, the model, and the
evidence in the certificate. Certification is effective if Tc(C) = Tc(Aws), meaning that the credibility of the
certification authority is greater than the one of the service provider. The certification process permits to
extend the service-based infrastructure with runtime selection of services based on security certificates and
customer preferences. This certification, in fact, produces a set of metadata in the form of machine-
readable certificates, which can be used to compare and rank services, and identify the best one addressing
customer preferences. A client (i.e., a software agent acting on behalf of a human user or a service provider
aiming to implement a business process) can then select and compose services at run time on the basis of
the security properties and evidence in the certificate.

A major step toward implementing the CUMULUS vision is the proposition of a shared representation of
the domain, i.e. defining a model including all conceptual entities involved in the certification of cloud
entities. Such model lies at the core of the CUMULUS project, since how a certificate is produced, what is its
content, and how it is managed are all questions of paramount importance for the project. Furthermore,
both the certification infrastructure and the service engineering tools, that are goals of WP4 and WP5,
respectively, need the basic definitions of a certificate model to define the requirements, the architecture
and proceed towards the complete development of the whole framework.

As stated in the CUMULUS Description of Work (DoW), the conceptual framework developed in Work
Package 2 will deal with the specifications of basic, hybrid, multi-layer and incremental certification models
for cloud-based processes, applications, and services, defining the security properties of interest for
certification, and the types of evidence used for certificate issuing as well as the relevant mechanisms for
generating the evidence supporting a security property.

Date: May 30, 2014
Page 6/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Tasks 2.2, 2.3 and 2.4 of WP2 have the goal of defining three basic certification models: one for test-based
certification, i.e. where evidence is collected after the execution of test procedures; the second one for
monitoring-based certification, where the evidence is collected by monitoring the service during its
execution; and the last one for TC-based certification, where evidence is based on the lower layers of the
cloud stack and on the function set of a Trusted Platform Module. In WP2, the certification model should
also provide ways of combining different evidences in an integrated framework, paving the way for the
definition of hybrid and incremental certificates. Incremental certification is particularly important: when
the evidence gathered for a certificate is sufficient for verifying the security property related to it (as
determined by the certification model), a certificate that is an instance of this type can be issued. However,
even after they are issued, certificates can be updated subject to changes in the operational conditions of
the cloud service that they are associated with. This document discusses a generic life cycle model including
the possible updates and other key changes in the life cycle of incremental certificates.

The first efforts have been directed towards the definition of a unifying meta-model, under which different
certificate models can be treated. The meta-model gives an additional abstraction layer, allowing both the
definition of the common characteristics of the different models and the possibility to define the instances,
which is the detailed model for each different category of certificate. The vocabulary of terms, the entities
and the detailed description of the meta-model are provided in Section 3.

Section 4 provides a first comparison (which will be further refined and analysed in future CUMULUS
deliverables) between the abovementioned meta-model and a model of Common Criteria certification. This
comparison mainly aims at assessing the alignment of the CUMULUS meta-model with a real world
certification approach.

Sections 5, 6, and 7 contain the detailed description of the Test-based, Monitoring-based, and TC-based
certification models, respectively, and examples of Test-based, Monitoring-based and TC-based
Certification Models and related Certificates are made.

Section 8 has a preliminary version of multi-layer, hybrid and incremental Certification Models. Final
versions will be provided in Deliverable D2.4, “Final CUMULUS certification models”, to be released at M32.

As prescribed in CUMULUS Document of Work (CUMULUS Consortium, DoW, 2012), this deliverable
“Certification models v.2” is released at M20, and is the update of “Certification models v.1” released in
M12. A further refinement of the Certification Models will be included in D2.4 “Final CUMULUS certification
models”. To help the reader better understand the evolution of the deliverable and the underlying
certification models which are documented by it, each section of the deliverable contains a brief
description of the changes between v1 of the certification models (i.e., the version described in deliverable
D2.2) and v2 of the certification (i.e., the version described in this deliverable). A summary of the main
changes is also presented inTable 1 below.

This deliverable is also closely related to another deliverables of the CUMULUS project: D2.1 “Security-
aware SLA specification language and cloud security dependency model” (CSA, D2.1 Development of
security properties specification scheme and security dependency models, 2013), which defines vocabulary
to be used in project and the syntax of security property definitions.

Date: May 30, 2014
Page 7/197

Document name: D2-3 Certification models v.2

Version: 1.0
Security: public

Section

Status

Modification

1 - Introduction

2 - A modular Certification Meta-
Model

Completed, some minor
modifications may occur

The Metamodel was updated.
The Certification Model module
(section 2.6) has been fully
developed with new concepts.
Sub-section about chain of trust
(section 2.6.1) is also new.

3 - CUMULUS Meta-Model
compared with a Common
Criteria Model

Completed, some minor
modifications may occur

New section (not present in D2.2)

4 - Test-based Certification Model

5 - Monitoring-based Certification
Model

6 - TC-based Certification Model

Updated

The main modifications of the
test based certification models
are in the Target of Certification
and in the Abstract Collectors
elements. In the former element
all the testing hooks, i.e. the
accessible APIs for CUMULUS
framework, are specified in a
Target of Tests sub-element. The
Abstract Collectors element
instead defines the evidence
collecting process, i.e. how
evidence is collected, aggregated
and archived.

The main modifications of the
monitoring based certification
models relate to the introduction
of models of expected behaviour
for Targets of Certification, the
amendment of the scheme for
defining sufficiency conditions
regarding monitoring evidence,
the introduction of a scheme for
specifying anomalies that should
be monitored (along with security
properties) in generating
monitoring based certificates, and
the introduction of a more
elaborated scheme for specifying
life cycle models.

A new TC support for certification
model is presented that provides
the trust necessary to validate
test and monitoring based
certification. The new model is
leveraged upon the use of TPM
v1.2 specification, especially the
cryptographic key binding
fucntionality allowing a
testing/monitoring agent to sign

Page 8/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2

Version: 1.0
Security: public

evidence (data) only if the
platform and the agent are in
valid state. The model also
considers restrictive and
permissive TC supoprt depending
on the flexibility one needs.

7 - Advanced Certification Models

Some initial ideas regarding the
form of these models are
presented in this deliverables.
The models will be properly
defined in deliverable D2.4

New section (not present in D2.2),
covering hybrid and incremental
certification

8 - Conclusion

Appendix

Table 1 - Status of sections

Page 9/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

2. A modular Certification Meta-Model

In this section we describe the modular Meta-Model underlying the CUMULUS cloud certification scheme.
The main reason of the Meta-Model definition is pragmatism: first we want to provide preliminary basic
shared conceptualization to guide modellers of individual certification schemes and, secondly, given the
complexity of a security environment which deals with heterogeneous stakeholders, we feel we do need to
share some common understanding about key concepts, such as certification, certificates, security
properties and assurance.

2.1. General consideration on CUMULUS Meta-Model

This section amends section 3.1 in D2.2. There are some changes in the proposed Meta Model: the
Target of Certification is now linked to the Context and the Certificate has now a LifeCycle.

The aim of CUMULUS Meta-Model the aim is threefold:

(i) Modularity, enabling a clean subdivision of the CUMULUS framework into different
modules
(ii) “Assertion centeredness”, ensuring that all transient and context features are attached to

assertions including security properties rather than to the properties themselves. This will
make CUMULUS property definitions reusable and sharable.

(iii) Simplicity, that is keeping the Meta-Model simple, concise and easy to understand.

The Meta-Model shown in Figure 1 is designed to meet these requirements.

Date: May 30, 2014
Page 10/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

package Data| metamodelu
Property Vocabulary
has Attribute belongs to Attribute_Type
Commitment 4 1.°
. 1 ety
Security Property QL'. T
1 1 has Simple Type Complex Type
based on
! 11 - has
Certificates Certification Model
supported bEY— admits >
Context < limited to vidence 1 il |1..'
1 Ues ks Evidence Collector Evid Aggregator
e 1 s
1 v Assertion has B |1..
des'cnbes \J 1 refers to has A 1
0. = basedon §
= 0.* [10. | D.*
Assumption
< contains Certification Model has s
R _ Certificate Metrics/Conditions
Retor takes responsability for > 1 1 - 1 defines pb
1
: instance of = | has 1
responsible for LY 111
| refers to
- = Life Cycle
1. Certification Process | —
Activity produces = Artefact instance of m 1
1 1 Target of Certification
admits [T 1

FIGURE 1 - CUMULUS META-MODEL

The CUMULUS Meta-Model has a modular structure representing: (i) the Property Vocabulary module with
Commitment, Security Properties plus Attributes and Types, (ii) the Certificate module with Certificate,
Assertion, Evidence, Context, Assumptions and Actor entities, (iii) the Certification Model module, including
Certification Model, Life Cycle, TOC, Evidence Collection, Evidence Aggregation and Metrics/Conditions
entities. The Commitment entity was not included in any module in a previous version of this deliverable,
mainly because it has just the purpose to be a bridge toward future SLA definitions (Damiani, Ardagna, &
Bezzi, 2012), but now it is in the Property Vocabulary module to give more consistency to the overall
architecture. Another module called Certification Process module has been introduced to take into account
the process that an Actor, as a Certification Authority, could undertake to produce Certification Model
instances and Certificates. All the modules have been designed as independent components. Next, we
briefly review the individual modules and their use.

For the sake of simplicity, our Meta-classes are represented via a UML class diagram. Our meta-classes
represent guidelines for modellers, that is, they will be instantiated into model classes by modellers when
they set up a certification model for a specific environment (Test, Monitoring, TC). Then, model classes will
be instantiated in certification artefacts, i.e. Certification Models and Certificates. As general criteria, we
leave the Meta-Model largely informal, and define the single models as semi-formal UML class diagrams. In
order to provide guidelines for certificate production and processing, besides having a Life Cycle entity in
the Meta-Model, we model the certificate life cycle as a UML state activity diagram. This choice goes in the
direction of readability and ready applicability on the part of modellers.

Furthermore, we assume that:

Date: May 30, 2014
Page 11/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

* relations between Meta-Model entities are all associations and all entities can be instantiated
independently, and

* relations between Meta-Model and Model entities are all an “is-a relationship” and will be
represented as generic dependence in UML with a comment.

Besides providing guidelines to modellers, the Meta-Model defines some important (though loose)
constraints on models: for instance, all Assertion instances contained in the Certificate should be of the
types listed in the Certificate Model.

Security Property Meta-Model entities express abstract security properties; some abstractions can be
defined over the Model classes, thus introducing a hierarchical multi-layered model for security properties.

2.2. Naming convention

This section corresponds to section 3.2 in D2.2. There are no amendments .

Since our Meta-Model is intended to support the design of certification models to be later instantiated into
artefacts, it is useful to define a naming convention. In particular, we use a sequence-based naming scheme
with the following notation: the name of the Meta-Model class becomes the final suffix and then starting
from this suffix all the classes and sub classes of the Model tree are attached. Finally we have the instance.

I [Security Property] l

meta model

model
A
[BCR:Availability].[Security Property]
[BCR:Availability:percentage_of_uptime].[Security Property]
model
instance v

[OXEOFFA].[BCR:Availability:percentage_of_uptime].[Security Property]

FIGURE 2 — INSTANTIATION AND NAMING CONVENTION

For example a Model class is denoted by [Model Class Name].[Meta-Model Class Name], a Model sub class
is indicate by [Sub Class Name.Model Class Name].[Meta-Model Class Name], finally an instance is
[Instance ID].[Model Class Name].[Meta-Model Class Name]. For the overall sequence-based naming
scheme, see Figure 2. For a Security Property entity the Model name takes the definition of Deliverable D2-
1 (CSA, D2.1 Development of security properties specification scheme and security dependency models,
2013) where its full name is defined as a Cloud Control Matrix (CCM) control domain name (“AlS”) plus a
sub-category (“integrity”) plus the name of the property (“data-alteration-detection”).

2.3. Property vocabulary module

This section corresponds to section 3.3 in D2.2. There are no amendments to this part.

The upper area of Figure 1 identifies the property vocabulary module and defines a very generic framework
where Security Property and Attribute are linked in a 1:N relationship (i.e. a set of Attributes is associated to
a Security Property) and allows a simple classification of the Attributes in terms of Types. We could say that

Date: May 30, 2014
Page 12/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

a Property is an aggregation of Attributes and an Attribute can take a value in at least two domains, Simple
and Complex. The Simple Type can be used to map XML data type, the Complex Type is meant for a
modeller who wants to define a new type; there are no specific requirements for a new type except to be
defined with a Complex Type as root.

The Security Property Meta-Model entities express abstract security properties: basic examples of abstract
security properties are Confidentiality, Integrity, Authenticity, and Availability. It should be noted that this
is not an exhaustive list of property types and in any case there is no consensus about them (Irvine & Levin,
1991) (Chung & Leite, Conceptual modeling, 2009) (Chung, Nixon, Yu, & Mylopoulos, 2000). In particular,
the Assert4dSOA project indicates the following abstract properties: Confidentiality, Integrity,
Authentication, Non repudiation, Robustness, Availability (Damiani, Anisetti, & Ardagna, Design and
description of evidence-based certificates artifacts for services, 2011). Other proposed abstract security
properties are: Deletion and Retention, Durability, Elasticity, Location, Continuity, Traceability, Anonymity,
Personal Data Privacy, Accountability. It should however be noted that in some cases, properties could be
conflicting, for example Anonymity (e.g., identity of the user who performed an action is not recorded) and
Accountability (e.g., knowing the identity of the user who has performed a given action). In CUMULUS
project a vocabulary of Security Properties is formally defined in another deliverable of Work Package 2
(CSA, D2.1 Development of security properties specification scheme and security dependency models,
2013)where a fine-grained security properties model is described in a multi-layered way. This vocabulary
will be in use during the project.

In more general terms, for every Security Property we distinguish the attributes qualifying the property
itself (e.g., assurance level and its measurement unit) and the attributes related to how the Evidence is
collected (e.g., sample size, frequency, etc.). The formers are attributes of the Property because they define
how the property value is represented along with its associated metric parameters, through performance
and parametric attributes (see CUMULUS deliverable D2-1 (CSA, 2013)). The latters represent parameters
concerning assurance, mechanisms and must be included in Assertion or Certification Model entities’.

As a guide to modellers we can indicate that Security Properties can have two kinds of attributes, the first
set (performance attributes) specify the Security Property definition itself, often summarized into a single
value (a Boolean or a number), and the second set (parametric attributes) specify Security Property
measurements, while some security property attributes are used to parametrize Assertions and finally
Certification Models have attribute elements specifying evidence nature and location.

As an example in a Dynamic Testing modelling we may consider the AlS:integrity:data-alteration-detection
Security Property, see definition in CUMULUS deliverable D2-1 (CSA, D2.1 Development of security
properties specification scheme and security dependency models, 2013).This property contains a single
“performance attribute” called data-alteration-detection and defined as Boolean, that measures the
property itself, and no parametric attributes. Additional attributes can also be defined in Evidence (and in
turn evidence collector and evidence aggregator) by means of assertion relation specifying all those
elements useful for configuration and execution of the evidence collection process (e.g., Traffic threshold,
Time interval between test execution). Finally the Dynamic Testing Certification Model could have
attributes as Generation model, Number of test cases, Category that specify evidence nature and location.
In summary our example of dynamic test model includes the Security Property [OXEEAF]:[AIS:integrity:data-
alteration-detection] with attribute {data-alteration-detection = NO}, the Testing Evidence Instance
[OXEFAB]:[Testing Evidence] with attributes { Traffic threshold = 200rps}; the Certification Model Instance
[OXAEDF]:[DynamicTesting] with attributes {Generation model = URI; Number of test cases = 100; Category
= Input Partitioning}.

The last entity of the module is the Commitment entity: it is a way to formulate a restriction over a data
type of a Property. Commitment has been added to the Meta-Model in order to create a bridge to future

! We note that in some cases, properties in D2-1 will be extended to cover specific aspects of the cloud (e.g., multi-
layer) and to exercise specific aspects of test-based and model-based certification.
Date: May 30, 2014
Page 13/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

security Service Level Agreements (SLAs) (Damiani, Ardagna, & Bezzi, Cluster Workshop on "Security
Contracts", 2012).

All security-related Commitments should be part of SLA definitions. Our Commitment entity, however,
could also be useful when querying the model. We note that Commitments are not part of certificates.

2.4. Certificate module

This section corresponds to section 3.4 in D2.2. There are no major amendments to this part,
Certificate has now a LifeCycle.

The certificate module includes five entities: Certificate, Assertion, Evidence, Context, Assumptions and
Actor.

A Certificate is a set of Assertions and is awarded by a Certification Authority for a specific Target of
Certification (ToC). Each Certificate has a Life Cycle with different states. Both the Target of Certification
and the Life Cycle are defined by the Certification Model. Certification types that will be taken into account
in CUMULUS are Test-based, Monitoring-based, TC-based, Hybrid, Incremental and Multi-layer. It is
important to point out once more that the Certificate meta-class presented in the Meta-Model will be used
through double instantiation (at model and at instance level) to produce a certification artefact, that is, an
instance representing the outcome of the certification production process, equipped with values.

We define an Assertion as a constraint on a given Property, supported by a set of Evidence, for a given
Target of Certification, and we define Evidence as a set of artefacts supporting a given Assertion and in turn
a Security Property. An Assertion is related to Security Property (one many relationship from Security
Property to Assertion), and to Evidence (1:N relationship); in other words a single Assertion has one or more
Evidence and a single Security Property can have more Assertions.

The Target of certification (ToC) is the entity that will be certified and it can be the service under
certification (i.e. SaaS layer), the platform deploying services (PaaS layer), the infrastructure hosting
platforms and services (laaS layer) or any combination of the above (in the case of multi-layer certification).
The process that creates a Certification Model will concretize the ToC in different steps, starting from the
generic cloud layer (SaaS, PaaS, laaS, or combinations of them). ToC and its concretization process are
detailed in next Sections (see Section 3.6 for the certification process).

Certificates refers to ToC an is bind to a cloud end-point (i.e. service at Saa$ level or other cloud layers like,
application engines, Virtual Machine, virtual infrastructure, network fabrics) and stored in a Certification
Repository. Each time a new service is created and certified a new record is added to the Repository; the
record contains information for the certification (assertions, etc.) and the specific TOC, via the Certification
Model entity, plus the actual life cycle Certificate state (Issued, Suspended, Expired, Revoked, etc.).

The Actor is whoever is taking responsibility for Assertions. In the model schema we may have multiple
Actors (for example Certification Authorities and Labs) and also Stakeholders such as CUMULUS customers
(customers searching certified resources), providers of services and platforms and cloud providers.

The last entities of the module are the Context and Assumptions: the Context is the description of the
Assumptions under which the Assertion has been made (including for example the configuration of all the
framework components to be used during the certification process). We support the use of a lightweight
Context, which can be simply defined by attribute-value pairs (such as certificate issue date). However
heavyweight context representation is also allowed, as context format and its properties are both defined
at Model level: each modeller is free to choose where to store the context information (a Context Server)
and a proper format.

Date: May 30, 2014
Page 14/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

2.5. Certification Model module

This section corresponds to section 3.5 in D2.2. There are no major amendments to this part, Context
and Target of Certification are now linked..

The lower right area in Figure 1 defines a certification model module, which includes Certification Model,
Evidence Collection and Evidence Aggregator, Life Cycle and TOC.

Each Certification Model includes all the elements needed for a given class of certification: Service,
Platform, and Infrastructure (S/P/I). There are also various types of Certification Models: Static Test-based
(also called Offline), Dynamic Test-based (also said Online or Runtime), Monitoring-based and TC-based.
The latter is based on Trusted Computing (TC) modules also called Trusted Platform Module or TPM, for
example the Common Criteria Client TPM 1.2 Protection Profile developed by the Trusted Computing
Group (TrustedComputingGroup, 2011). See also Table 2.

Certification Model Functioning

Static Test-based (also defined Offline) CM Tested in a pre-production environment

Dynamic Test-based (also defined Online or Tested in a production environment. For example a service is
Runtime) CM invoked and is immediately checked. This includes also periodic

test to validate the Evidence.

Monitoring-based CM Continuous monitoring of the operation of cloud services. Evidence
has been collected in the past and still collected on a regular basis.

TC-based CM Static certifications with TC modules.

Table 2 — Certification Models

The Evidence Collector, the Evidence Aggregator and the Metrics/Conditions entities provide information
about how Evidence is collected and aggregated, how metrics are computed and compared to thresholds,
and which starting conditions for online tests must be set.

A further entity is the Target of Certification (TOC): it does not only identify the instance of the service to be
certified but also an instance of every cloud stack layer, including definitions of components, connections,
interfaces, etc. As a result, the TOC enables a consumer to determine whether the security properties
satisfiy their requirement, thanks to a detailed description of the certification perimeter.

Services expose interfaces to consumers but the service internal dynamics are often not disclosed. This lack
of transparency contributes to a lack of assurance even if certain properties are certified. Increasing the
transparency of the service architecture can mitigate this drawback. Moreover, when considering possible
use cases such as the generation of “self-signed" certificates by service providers, the importance of service
descriptions that increase the transparency of the service architecture could become significant. It provides
a means of improving the trustworthiness of a service and compensates the lack of assurance given by the
absence of the involvement of a recognized certification authority. When a service consumer discovers a
service and fetches its certificate, in order to provide the service consumer with enough information to
allow the security status of the service to be compared with the consumer’s own specific security
requirements, the certificate must include a Target of Certification.

Often, the TOC refers to a service instance end-point (e.g. URI of a RESTFUL API or a WSDL PortType) but, in
more general terms, the TOC identifies the perimeter of certification thus it may refers to components
instances at a given cloud layer (or combination of layers in the case of multi-layer ToC) of the cloud
protocol stack. Figure 3 shows examples of certifiable stack components considering a single layer TOC.

Date: May 30, 2014
Page 15/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Q
‘ Web Service € 1(jJ instance certificate

SaaS J
‘ E-mail < L instance certificate

9
| Web Server € § instance certificate
Paas | Develop. tool < instance certificate
| Database <« instance certificate

VM

Storage I ; certificate
Network _' certificate

FIGURE 3 — CLOUD LAYERS, TOC, CLOUD COMPONENT INSTANCES AND CERTIFICATE BINDING (SINGLE LAYER)

The last entity of this module is the Life Cycle, which is linked to Certification Model and Certificate. When
explaining the Certificate module we already stated that the Certificate meta-class would be used through
double instantiation, at model and at instance level, to produce a certification artefact, i.e. an instance
representing the outcome of the certification production process, equipped with values. The Meta-Model
Life Cycle has been proposed with this artefact in mind; in other words, it is an artefact life cycle and not a
certification process life cycle. Furthermore, this Life Cycle is intended as a guideline to individual certificate
models, providing basic conceptual entities like revocation and validation. Particularly the Certificate might
have different states in its life cycle: examples include Valid, Invalid, Revoked, Renewed, Upgraded,
Downgraded (see Figure 4). At the model level, each certification type will define its own Certificate life
cycle state activity diagram and individual modellers will redefine or develop their own life cycle with a
different number of life cycle states.

Renew certificate

.———)@E rll Revoked I

Initial state !

Invalid certificate

Upgrade/Downgrade
| Invalid I

FIGURE 4 — EXAMPLE OF CERTIFICATE LIFE CYCLE

We also note that this specifies an implicit loose constraint between Certification Model and Evidence via
the Assertion entity: the Certification Model can be used to decide which kind of Evidence an Assertion can
support. In fact, in a specific Certification Model, say for example a Test-based model, all the Evidence that
supports the Assertion must be also Test-based. In a hybrid certification scheme, there are two or more
types of Evidence and each Assertion relies on a different Certification Model: when the Certification Model

Date: May 30, 2014
Page 16/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

is test-based also the Evidence will be test-based, when the Certification Model is monitor-based the
Evidence must be monitor-based. In other words, if Assertions have two related Certification Models then
Evidence must be provided for both Models.

An example of this scenario is a Security Property whose Assertions are first certified with some preliminary
Test-based Evidence and then subject to a Monitoring-based check on a later stage: in this case we have
the same Security Property, that is proved by one Certificate including Assertions certified by the same
Authority with two different Certification models.

We can also note that, as a consequence of what we said about the Certification Models, there are various
kinds of Evidence model classes: Static Test, Dynamic Test, Monitoring and TC-based.

2.6. Certification Process module

This section has been fully developed with new concepts. Sub-section about chain of trust is also new.

The last module is the Certification Process module, which includes two entities: Activity and Artefact (see
Meta-Model in Figure 1. The Certification Process models the activities of a very simple production process
that an Actor, in our case a Certification Authority, could undertake in order to produce two different kinds
of artefacts: the Certification Models and/or the Certificates.

An example of such a process in a Test-based scenario is a “definition process” that produces an XML-based
Certification Model (XML-based CM) in different steps as described in the following of this section and in
Figure 5.

The process starts by defining a XML schema (i.e., a .xsd file) that will be used to validate all the XML-based
CMs produced during the process itself. Examples of xsd fragments are available in Sections 5 and 6.

Then a preliminary and generic XML-based CM, called CM template, is produced. It has a Security Property
taken from a vocabulary (CSA, D2.1 DEVELOPMENT OF SECURITY PROPERTIES SPECIFICATION SCHEME AND SECURITY
DEPENDENCY MODELS, 2013) and a generic Target of Certification (ToC), in our case just a single cloud layer (or
a combination thereof) to be taken into account (SaaS/PaaS/laaS layers).

Furthermore, the certification process refines the CM template including information on how and which
tests must be performed, how the evidence must be produced, collected and archived (i.e., specifying
generic and abstract test cases). This information is stored in a single element called Collector (see Sections
5 and 6). In this phase, a more specific Target of Certification is also specified, for example a generic
database made by a vendor, a booking service, and the like.

Finally, starting from the refined CM template, a CM instance is produced where the Target of Certification
is fully defined, for example the exact version of the database that has to be certified; in this final stage also
the Targets of Test (ToTs), including specific information on the mechanisms tested by our certification
process, are added to the XML of the Certification Model.

Date: May 30, 2014
Page 17/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

ToC :EaS/FjiTS/IaaS
Certification !
Model

. 4
templates | XD |
more specific ToC
E
—— -
o~ \\//
Certification

Model
Instances Fully|defined
CMi

FIGURE 5 — DEFINITION PROCESS: MODELS AND INSTANCES

XML
Schema

Validation process (from .xsd to .xml)

2.6.1. Chain of Trust

The concept of trust influences our life and has been debated much before the advent of IT technologies.
With the success of IT technologies in general, and distributed systems in particular, the role of trust has
gained increasing importance, becoming a fundamental building block for their success.

In the traditional software purchasing trust model, a software purchase involves two parties, a supplier sp
and a customer c. In the following, we denote with A.,ws assertions made by an entity en over a
system/service ws, and with E,,s the evidence produced by an entity en over ws and supporting Ae,ws.
Suppliers can make claims, that is, publish assertions about their software systems' functionalities, as well
as on their non-functional properties. The customer c's trust in an assertion A, ws made by the supplier sp is
denoted Tr(c, Aspws), Where Tr takes discrete values on an ordinal scale (for example, for a Common Criteria
certified product, one could take for Tr the relevant assurance level (EAL) value (1-7)). Traditionally, these
claims were not supported by formal evidence on their truthfulness; rather trust in these claims was
grounded on supplier reputation, especially in distributed systems. Certification approaches have then
been adopted to increase trust in distributed systems (M. Anisetti, 2013).

Certification modifies c's trust in assertions by introducing trusted external entities (Certification Authority -
CA) in charge of collecting, validating, signing, and publishing assertions and related evidence. By doing so,
a certification process also introduces new types of assertions that c can trust, describing the collection and
validation processes. Traditional approaches to SOA certification assumes a chain of trust where the CA is
available during the entire certification process and responsible for all activities necessary for certificate
issuing (including signature). In this context, a certificate is issued at deployment time and eventually,
renewed in case of modifications due to composition management or service versioning (M. Anisetti C. A.,
2012).

A certification process in the cloud introduces the need of rethinking the trust model, the chain of trust,
and their relation as part of the overall certification process. In fact, the assumptions made on the
availability of the CA during the whole certification process cannot hold in a cloud scenario that is
intrinsically dynamic and time dependent. In particular, a more complex chain of trust between the service
provider, the customer, the certification authority, and the certification (Cumulus) framework must be
defined with reference to the process described in Figure 5. This chain of trust clearly defines
responsibilities for the different roles depending on the specific certification steps. This complexity is
mainly due to the dynamics of the cloud environment, which requires online testing and monitoring after
the issuance of a certificate for continuous support and management of certificates.

In this environment, differently from certification processes for SOA, we cannot assume a single signature
by a trusted CA; rather, the signature process and eventually the responsibilities need to be spread across

Date: May 30, 2014
Page 18/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

the certification process life cycle and the entities involved in the certification process. As a preliminary
approach, the certification process life cycle can be decomposed in three different signing points where the
information needed for building the Cumulus certificate is incrementally available: j) the generation of CM
Template (offline), ii) the instantiation of CM Template in a CM Instance (or simply CM) for a given system
(offline), iii) the generation of Cumulus Certificate based on the CM instance filled with all the details
necessary for dynamic certification and lifecycle management (online). As discussed above, our approach
cannot assume a single CA available for signing the artifacts produced during these three temporally
subsequent steps. Within Cumulus, we are thus investigating different approaches to certification process
management and certificate generation, with the corresponding chains of trust.

release
CM Template (CMT) v

Release Signed
CM Instance (CMgye) AEISTOLS (3] Tr(CA,CMT)
A

s rts produces release
upPp Signed CMT
Tr(crAF,ws,)
Tr(c,CM)
C
FIGURE 6 — COT (CHAIN OF TRUST)
(=
XML
CM template Cerfification
Certification Autherty
Model N Sénature (1)
templates <
CUMULUS
specifi¢c ToC and collectors [f‘Lﬁ]@W@[?[k
[i _Signature (2) | Signature (3)
Certificati) :j
ertification AL [XML
Mode | Q—
Instances ™ i"jta"ce Certificate

FIGURE 7 — SIGNATURE PROCESS

Date: May 30, 2014
Page 19/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Our initial approach is a three-state certification process implementing a chain of trust based on three
different signature processes (Figure 6 and Figure 7):

* CM Template signature: the CM Template is a partially specified CM (e.g., without the collector
endpoints, the ToC elements), which describes the methodology for the certification (similarly to
the protection profile of CC). The signature of the CM Template relies on the trust Tr(CA,CMTg)
between the signing entity CA and the Cumulus Framework F managing the CM Template.

* (M instance signature: the Cumulus Framework is responsible to instantiate the CM Instance by
filling all CM details, missing in the CM Template (collector configurations and test evidence E).?
The signature of CM Instance at this step eventually relies on trust delegation, from the CA to the
Cumulus Framework. It allows to support assertions on the security property of the given cloud
system (ws) to certify Ay, thanks to the evidence E generated by the instantiation of the CM
Template.

* Certificate signature: this signature binds the CM to the certificate. The signed CM is filled with all
the needed collectors and context configurations, and used to: i) execute real testing activities on
the target of certification and, ii) produce the final security certificate.

Cumulus is investigating different approaches to certification process management, including certificate
generation, along with corresponding chains of trust. Based on the preliminary analysis presented here, the
mechanisms for obtaining the above three-state certification signature can be different starting from
signature delegation, to incremental signature, or multiple signature protocols of partially filled documents.
The latter consists of signing CM with empty collectors’ endpoints URI and, only in a subsequent step, when
they are available, sign their binding to the target of certification. The results of the study in progress will
be reported in next relevant project deliverables.

2 We note that the context and collectors’ endpoints in the CM instance refers to laboratory endpoints, which will be
then substituted in the final CM instance and certificate with real endpoints when the target of certification will be
put in production.
Date: May 30, 2014
Page 20/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

3. CUMULUS Meta-Model compared with a Common Criteria Model

This section has no corresponding section in D2.2. It contains a comparison between the approaches to
certification taken in CUMULUS and in Common Criteria. The comparison involves the CUMULUS meta-
model and a suitable model for Common Criteria.

As already stated in Section 2, one of the objectives of defining a CUMULUS Meta-Model is to have a basic
conceptualization of the main elements characterizing a security certification process. For this purpose it is
also important to assess the alignment of the Meta-Model with already existing relevant approaches to
security certification. Such a comparison may be especially useful for the validation of the CUMULUS
Framework, where one of the significant dimensions selected is the representation capability (i.e., the
capacity of representing pre-existing certification processes) (CUMULUS Consortium, D2.4 Final
Certification Models, 2015).

A first comparison has been made with the Common Criteria (CC) approach, since CC is the security
certification standard that is prevalent in Europe and world-wide. For this purpose, a model of the Common
Criteria certification process (including evaluation) has been defined and its possible mapping to the
CUMULUS Meta-Model has been analyzed with the objective of establishing to what extent the CC model
could be seen as a test-based instance of the CUMULUS Meta-Model, so to have an indication of the
representation capability of this (notice that this preliminary analysis did not aim at evaluating if/how
CUMULUS may actually implement a CC certification process).

3.1. CC Model description

The elements of the CC model defined within CUMULUS and the relations between them are represented
in the UML diagram in Figure below. For those elements representing concepts that have standard CC
definitions, such definitions are reported with the respective references and possibly adapted. Definitions
based on CC practice are given for the remaining elements, except Life Cycle that has been considered self-
explanatory.

The element Certification Criteria represents all the rules that govern Common Criteria evaluation and
certification, including:

¢ The Common Criteria themselves (Common Criteria v3.1 R4 Parts 1, 2 and 3, 2012);

* The associated evaluation methodology (CEM v3.1 R4, 2012);

* The additional guidelines produced by the Common Criteria Recognition Arrangement;
* The additional guidelines produced by single Certification Bodies.

A Certification Body (also called Evaluation Authority) sets the standards and monitors the quality of
evaluations conducted by Evaluation Facilities within a specific community and implements the CC for that
community by means of an administrative and regulatory framework called evaluation scheme (Common
Criteria v3.1 R4 Part 1, 2012). A Certification Body completes the specification of Certification Criteria by
providing its additional guidelines. It also accredits Evaluation Facilities and issues CC Certificates and
Certification Reports.

An Evaluation Facility is an entity accredited by a Certification Body to act as an evaluator within a specific
community. An Evaluation Facility evaluates TOEs and produces Evaluation Technical Reports.

A CC Certificate is an official document that attests the positive result of a certification process of a given
TOE. A CC Certificate relies on Certification Criteria and depends on a Life Cycle that is defined by
Certification Criteria.

Date: May 30, 2014
Page 21/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

A Certification Report (CR) summarizes the results of the certification process of a given TOE (Target of
Evaluation). A Certification Report contains the relevant Evaluation Results and (a significant part of)
Security Target plus other information, as the evaluated configuration of the TOE. A Certification Report
relies on Certification Criteria and depends on a Life Cycle that is defined by Certification Criteria.

A TOE (Target Of Evaluation) is a set of software, firmware and/or hardware, possibly accompanied by
guidance (Common Criteria v3.1 R4 Part 1, 2012). Every CC Certificate, Certification Report and Security
Target is associated to one specific TOE.

-

- \
accredits -~ \
e \\
4 \
d \
|y
4 " 9 : :
L CC Certificate] Certification Criteria
- relies on
0000000 === T |~ — - »{CC
EvaluationFacilty | _____—----"""" CEM
evaluates \ relies on | CC additional guidelines
\ _ .- CC Body additional guidelines
\ -
\ -
\ - /’ /' :
- - e K !
pred \ e i 1
- \ . / |
produces v -7 relieson / !
\ / |
A / |
27\ / |
70 / i
s / 1
v - \ depends on / |
| EvaluationTechnicalReport | Certification Report]’ Security Target \ / defines |
\ / |
‘ I Evaluated configuration TOE Overview \ / !
Security Problem Definition \ / v
\ / | defines
\ / 1
N \ Fi]
S\ depends ol i i
N \ / I
o \ / !
Te~<__dependspn ¥ !
‘] LifeCycle | i
| EvaluationResults ‘ I !
|
‘ I | SecurityObjectives | |
|

SOs for the Operational Environment [Security Requirements Catalogue |

K
N\,
\
\, traces
\
N\

| SecurityF unctionalRequirements

SOs for the TOE ‘ ’ v

| SecurityAssuranceRequirements |

‘ SFR special parameters (if present)’

Evaluation activities ’

FIGURE 8 — COMMON CRITERIA MODEL

An Evaluation Technical Report (ETR) documents the overall verdict (i.e., the pass or fail statement issued
by an Evaluation Facility with respect to the result of the evaluation of a given TOE) and its justification and
is submitted to a Certification Body (Common Criteria v3.1 R4 Part 1, 2012). An Evaluation Technical
Report basically contains Evaluation Results.

Evaluation Results are a summary of the results of all the evaluation activities performed during the
evaluation process of a given TOE.

A Security Target (ST) is an implementation-dependent statement of security needs for a specific identified
TOE (Common Criteria v3.1 R4 Part 1, 2012). A Security Target relies on Certification Criteria and depends
on a Life Cycle that is defined by Certification Criteria. A Security Target contains Security Objectives and
Security Requirements plus other information, including a TOE Overview and a Security Problem Definition

Date: May 30, 2014
Page 22/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

(which is the description of the threats, Organizational Security Policies and assumptions on the
Operational Environment that are addressed by the Security Objectives).

For simplicity, the relevant concept of Protection Profile (PP) is not represented in the CC model described
above. A PP is an implementation-independent statement of security needs for a TOE type (Common
Criteria v3.1 R4 Part 1, 2012). In practice, a PP is intended as a template for any ST of a TOE of the
considered type. If a ST conforms to a PP, it explicitly claims this conformance and may also refer to the PP
to complete its contents.

Security Objectives are informal definitions of security measures. They include Security Objectives for the
TOE and Security Objectives for the Operational Environment (OE), which is the environment where the
TOE is operated. A Security Objective for the TOE is an informal definition of some IT security measure that
has to be implemented by the TOE to counter identified threats and/or satisfy identified Organisational
Security Policies (OSPs). A Security Objective is implemented by the TOE by means of a set of Security
Functional Requirements. A Security Objective for the OE is an informal definition of some IT or non-IT
security measure that has to be implemented by the OE to counter identified threats and/or satisfy
identified assumptions (on the OE) and/or OSPs (Common Criteria v3.1 R4 Part 1, 2012).

Security Requirements are either Security Functional Requirements or Security Assurance Requirements.

Security Functional Requirements (SFRs) are specifications (at a lower level with respect to Security
Objectives) of some IT security measure (Common Criteria v3.1 R4 Part 1, 2012). SFRs trace to Security
Objectives and may contain special parameters (details on SFR special parameters are given in Section 3.2).

Security Assurance Requirements (SARs) are specifications of some evaluation activities that concur in
providing assurance that the TOE meets the SFRs claimed in the ST (Common Criteria v3.1 R4 Part 1, 2012).
Notice that some SARs specifically address the development environment of the TOE.

The SFRs and SARs contained by a ST may be selected from a Security Requirements Catalogue that is
defined by Certification Criteria.

3.2. CC Model mapping onto CUMULUS Meta-Model

The model of the Common Criteria certification approach described in Section 3.1 has been analysed to
map its elements onto classes of the CUMULUS Meta-Model. The objective was not really to establish a
rigorous mapping, but indeed to perform a summary assessment of the Meta-Model against a real world
certification process.

In this sense, the mapping shown in Table 3 below should be read as a first attempt® to verify that each
pivotal concept of the CC model could be seen as one (test-based) instance of some Meta-Model class (or a
part of it). Each row of the Table 3 is organised as follows:, the first column reports one or more elements
of the CC model; the second column reports the Meta-Model class(es) which the given elements could be
mapped onto; finally, the third column reports some notes which provide additional information about
how the mapping should be interpreted. The sign “+” is used to group elements when more elements of
the CC model seem to be needed to instantiate one class of the Meta-Model or, vice versa, more classes of
the Meta-Model seem to be instantiated by one element of the CC model. The expression “and” is used if
more elements of the CC model seem to provide different instances of one class of the Meta-Model.

Some elements of the CC model do not appear in the Table 3 below but are covered by the mapping in an
indirect way as follows:

* Evaluation Results are contained in ETR, which is covered by the mapping;

% This preliminary version of the mapping will be further refined in next deliverables, such as D6.5 Initial Validation
Report.
Date: May 30, 2014
Page 23/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

¢ Security Assurance Requirements basically contain evaluation activities, which are covered by the

mapping;

¢ Security Requirements and Security Requirements Catalogue contain SFRs and SARs, which are
covered by the mapping (SARs are covered indirectly via evaluation activities, see above).

CC Model elements

Meta-Model classes

Notes on the mapping

TOE

TOC

Since the TOC concept identifies an instance of every cloud
stack layer (see Section 2.5), it seems that, depending on
TOE boundaries, TOC could map onto a single TOE or onto
several TOEs of different certification processes

Certification
Report + Security
Target* + CC
certificate

Certificate (instance of

Artefact)

The CR, ST and CC Certificate (see section 3.1 for
definitions) all provide a piece of information about the
certification of the TOE which could be mapped onto the
Meta-Model Certificate class. As a matter of fact, the
Certificate is a container hosting:

* The description of the security characteristics of a TOC
(similarly to the ST);

e The results of the evaluation/certification activities
performed (similarly to the CR);

* An official pronouncement of a Certification Authority
about the above two points (similarly to the CC
certificate).

*The fact that the ST could have a reference to a PP is not
relevant here (see Section 3.1).

Evaluation
Technical Report

Evidence (part of
Assertion)

The ETR seems to instantiate only a subset of the Evidence,
because it usually does not contain the complete
description of the tests performed during the CC
evaluation.

Since in Section 2.4 the Assertion is defined as a restriction
on a Security Property supported by a set of Evidence, the
association ETR-Evidence could be extended to Assertion.

Notice that the ETR is usually not publicly available (only a
subset of the information given in the ETR are publicly
available in the Certification Report)

Life Cycle

Life Cycle

In CC there is not a well-defined lifecycle for CR, ST* and CC
certificate (apart from guidelines for assurance continuity).
This is in agreement with the fact that CUMULUS Meta-
Model does not constrain a certification model to have a
specific form of life cycle.

* If the ST refers to a PP, then CR/ST/CC Certificate Life
Cycle could need to refer to this PP

Certification
Criteria

Certification Model

The mapping should be intended for Certification Criteria
once they are applied to a given service for a given security
property.

Date: May 30, 2014
Page 24/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

CC Model elements

Meta-Model classes

Notes on the mapping

The corresponding (test-based) Certification Model could
not provide a complete representation of the specified
Certification Criteria (at least, it could represent CC
evaluation activities only for the part which could be
automated)

Evaluation
activities (included
in SARs)

Evidence Collector +
Evidence Aggregator +
Metrics/Conditions

Each of the Meta-Model classes Evidence Collector,
Evidence Aggregator and Metrics/Conditions (see section
2.5 for definitions) could be instantiated by some part of
the CC evaluation activities.

Anyway, Meta-Model classes could not provide a complete
representation of CC evaluation activities, since these are
not meant to be automatic.

Furthermore, the operations to be performed onto the TOE
during evaluation activities are not specified exactly by CC.
Anyway, this should not be a problem since the Meta-
Model does not constrain a specific level of detail for the
relevant classes (Evidence Collector, Evidence Aggregator,
Metrics/Conditions)

Security
Objectives for the
OE (included in
Security
Objectives)

Context (description of
the Assumptions)

Also some other portions of the ST (e.g., Non-TOE
HW/SW/FW in the TOE Overview) and/or CR (TOE
evaluated configuration) could be mapped onto the
Context class of the Meta-Model.

Since Context describes Assumptions, this association could
be (directly) extended to Assumptions

Evaluation Facility
and Certification
Body

Actor (responsible for
Activity)

Evaluation Facility is responsible for TOE evaluation/ETR
production (Activity)

Certification Body is responsible for CcC

Certificate/Certification Report Issue (Activity)

Security
Objectives for the
TOE (included in
Security
Objectives) + SFRs

Security Property

A precise mapping of only one element of the CC Model
(i.e., either SOs for the TOE or SFRs) onto the Security
Properties defined in CUMULUS seems to be not achievable
because:

* SOs are free text in natural language (unlike CUMULUS
Security Properties);

* SFRs in CC catalogue are not directly connected to
abstract security properties.

The mapping proposed apparently holds for associations
with practical value in CUMULUS (i.e., for security
properties similar to the ones in D2.1).

For associations with less practical value in CUMULUS (i.e.,
for security properties defined to meet CC reality) an
alternative mapping could be considered, where the
Security Property in the Meta-Model is mapped to the
collection of SFRs in a given ST. In this view, the CC SFR

Date: May 30, 2014
Page 25/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

CC Model elements | Meta-Model classes Notes on the mapping

catalogue would correspond to the reference set for the
instantiation of a security property. Notice also that a ST
can contain SFRs which are not in the CC catalogue, even
though this is not recommended

SFR special Attribute (part of | SFR special parameters may be used to specify mechanisms
parameters Security Property) in a given SFR, or to select from a set of SFRs the one that
corresponds to a given amount of functionalities. They are
generally related to the level of assurance required to the
evaluation

Table 3 — Certification Models Mapping between Common Criteria Model elements and CUMULUS Meta-
Model classes

From the analysis conducted, it seems that the most significant CC concepts could be traced back onto the
CUMULUS Meta-Model. Anyway, not all the classes of the Meta-Model are covered, since some of them
(e.g., Commitment and Attribute Type) apparently may not be mapped to any CC concept. Moreover, the
mapping is neither complete nor straightforward. In particular, as pointed out by several notes in the table,
in general a CC concept does not exactly match with one Meta-Model class. The difficulties encountered
are mainly due to the fact that CC have a human-oriented nature while the CUMULUS Meta-Model is
designed to be suitable for (at least partially) automated security certification processes. However the
identification of a complete and straightforward mapping between CC model and CUMULUS Meta-Model is
out of the scope of this deliverable. On the other hand, the comparison between the CUMULUS Model and
the given CC model highlighted the fact that the CUMULUS Meta-Model is able to capture the most
significant elements of a real world certification process, thus providing a first answer about the
representation capability of the Meta-Model itself.

Date: May 30, 2014
Page 26/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

4. Test-based Certification Model

This section corresponds to section 4 in D2.2. There are some major amendments: Collector elements
have been fully developed (i.e. section 4.1.6 has been rewritten), the concepts of Abstrct Collectors and
of Target of Test have been introduced. There are also some minor amendments in the terminology:
Tested Security Property has been renamed as Security Property and Tester has been renamed as
Signature in order to underline similarities with the Monitoring-based Certification Model.

CUMULUS aims at defining a security certification scheme that can be used to make trusted assurance
information available in a cloud ecosystem; this is a recent idea that can allow users to evaluate different
services and select the appropriate ones for service composition on the basis of their security needs. In
other CUMULUS deliverable, i.e. D3-1 (CITY University, 2013) and D3-2 (University of Milan, 2014), we
outline this process. A first goal is the definition of a certification infrastructure and of a schema for the
specification and management of Static or Dynamic Test-based security certificates.

These kinds of certificates are evidence-based proofs that a test carried out on the software has given a
certain result, which in turn shows that a given property holds for that software. The certificates are
awarded by a Certification Authority for a specific Target of Certification and they aim to i) prove that some
(static or dynamic) test-related assurance activities have been carried out, and ii) specify which security
property these activities were meant to support. Checking CUMULUS certificates will allow consumers to
ascertain that the assurance level provided by a certificate complies with its own requirements and will
increase consumers’ confidence that their security requirements can be met, or, better, that they have
been met at the time and in the context of certification (Static or Offline Test-based certification process
made in a pre-production environment) or when some conditions are met (Dynamic or Online Test-based
certification process in a production environment).

Certification is carried out collaboratively by three main parties: i) a service provider that wants to certify
its services; ii) a certification authority managing the overall certification process; and iii) a Lab accredited
by the certification authority that carries out the property evaluation; in the following, we may use the
term certification authority to refer both to the certification authority and its accredited Labs.

The Test-based Certification Model and Test-based Certificate must fully comply with the CUMULUS Meta-
Model; the XML Schemas presented in this Section show the fundamental artefacts of Offline (Static) and
Online (Dynamic) Test-based Certification process.

4.1. Test-based Certification Model XML Schema Description

This section corresponds to section 4.1 in D2.2. Some amendments have been made (the concept of
Abstract Collector has been introduced, the Target of Certification includes now Targets of Tests).

The Test-based Certification Model fully complies with the CUMULUS Meta-Model. The XML Schema here
presented shows the fundamental artefacts deriving from the model for Static/Offline and Dynamic/Online
Test-based Certification. Then a XML incarnation of the Certification Model is provided.

The Certification Model specification schema includes the elements of the Figure 9 while the relations
between Meta-Model classes and the models (Test-based Certification Model and Test-based Certificate)
are shown in Table 4.

Date: May 30, 2014
Page 27/197

Document name: D2-3 Certification models v.2

Version: 1.0
Security: public

Model classes

Meta-Model classes

Collectors

Collector

Aggregator (sub element of the Collector)

Aggregator and Metrics & Conditions

LifeCycle

LifeCycle

ToC (Target of Certification) and Tots (Target of
Tests)

Target of Certification

SecurityProperty (according to CSA definition
in deliverable D2.1)

Security Property

Assertion (in the Certificate only) Assertion
Signature Actor
Context Context
Tests Evidence

Table 4 — Mapping between Model classes and Meta-Model classes for the Test-based Certification

Model.

© [testBasedCertificationModelType

Collectors o
Type collectorType

LifeCycle ®
Type lifeCycleModelType

[TestBasedCertificationModel

o——(@)o]
Type testBasedCertificationModeIType] @

Toc ®
Type tocType

Signature ®

Type testerType
Context ®
Type contextType

FIGURE 9 — TEST-BASED CERTIFICATION MODEL

A XML schema rendering of the description above is defined as follows:

<xs:element

[.]

"TestBasedCertificationModel"

"testBasedCertificationModel Type"/>

CertificationModelld ®
Type certificationModelType

SecurityProperty
. ®
Type securityPropertyType

Date: May 30, 2014

Page 28/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:complexType "testBasedCertificationModel Type">
<xs:sequence ">

<xs:element "CertificationModelld" "certificationModel Type" "1"/>
<xs:element "Collectors" "collectorType"> </xs:element>
<xs:element "LifeCycle" "lifeCycleType"/>
<xs:element "Toc" "tocType" "1"/>
<xs:element "SecurityProperty" "securityProperty Type"/>
<xs:element "Signature" "signatureType"/>
<xs:element "Context" "contextType"/>

</xs:sequence>
</xs:complexType>

[.]

The purpose of each Certification Model element is detailed in the next Sections.

All the Test-based Certification Models we define share the same structural elements of the schema above.
The process of building a Certification Model has been already defined in Section2.6: it starts with a generic
definition of the Certification Model where only the Security Property and the Collectors have been
properly defined. Then a more specific Target of Certification (ToC) is added and, as final stage of the
process, also the Targets of Test (ToTs) are added. The outcome is the XML code of the Certification Model
instance.

4.1.1. Certification Model Id

The Certification Model Id was also in D2.2 version but without a dedicated Section. We use a dedicated
Section to underline similarities between different CMs.

The CertificationModellD element represents a unique identifier of the CM instance.

© [certificationModelType

CertificationModelld . Cmld
[Type certificationModeIType]e O Type xs:ID =

FIGURE 10 — TEST-BASED CM: CM ID ELEMENT TYPE

A XML schema that can be used for the XML code validation is the following.

<xs:element "CertificationModelld" "certificationModel Type" "1/
[...]
<xs:complexType "certificationModel Type">
<xs:sequence>
<xs:element "CmlId" "xs:ID"/>

</xs:sequence>
</xs:complexType>

Every XML incarnation is validated against the schema above.
in the XML code below a correct and concrete Id has been instantiated by CUMULUS framework.

<CertificationModelld>
<CmlId>TEST000027</CmId>
</CertificationModelld>

Date: May 30, 2014
Page 29/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

4.1.2. Life Cycle

This section corresponds to section 4.1.2 in D2.2. There are no amendments to this part of the test
based certification model.

The LifeCycle element in the Certification Model schema defines all the states and transitions of the
Certificate.

© [lifeCycleType
© @ Attributes

InmaISlate
Type xs:string ©
Fixed NOT_ISSUED

© @ Attribi
ufeCycIe ttributes
Type llfeCycIeType NumberOfStates ©
Type xs:integer

LifeCycleld
Type xs:ID
LifeCycleState

Type Restriction of 'xs:string'

O LerCycIeSta(es G

1.0 @e

© [lifeCycleTransitionType

FromState
Type Restriction of 'xs:string'
o 1..00 .o InfeCycI.eTransmon . o . ToState - . o
Type lifeCycleTransitionType Type Restriction of 'xs:string

ConditionForLifeCycleTransition ©
Type lifeCycleConditionType

LifeCycleTransitions

FIGURE 11 — TEST-BASED CM: LIFE CYCLE ELEMENT TYPE

In a typical Test-based Life Cycle scenario we take into consideration four states: ISSUED, SUSPENDED,
EXPIRED and REVOKED. An initialState attribute in our schema is indicated as starting point of the full
process, in our case it will be is set as NOT_ISSUED for all the Test-based Certification Models; when
evidence is considered sufficient the certificate is created and issued with a certain validity period. In case
the tests are not fully successful the certificate keeps the NOT_ISSUED state till it is revoked.

From the ISSUED state the Certificate can go either to an EXPIRED state, if the validity period has expired,
or to REVOKED state, when evidence is contradictory, or to a SUSPENDED state, if for any reason the
evidence is not considered sufficient when a dynamic test is made during the validity period of the
certificate. If a Certificate is in this SUSPENDED state and the online tests are performed again with a fully
positive outcome (i.e. the evidence is again considered sufficient), the Certificate goes back to the ISSUED
state; see Figure 12; if instead the validity period has expired or dynamic tests produce contradictory
evidence and the assertions become questionable, the certificate goes from SUSPENDED to respectively
EXPIRED or REVOKED.

Once the certificate is REVOKED or EXPIRED, it cannot be validated any more and the full process has to be
undertaken again in order to issue a new one.
A usual data flow in a Test-based scenario is:

* In pre-production offline tests are performed to issue a certificate with a validity period, i.e. the
certificate has a ISSUED state; notice that in the Life Cycle there is no pending state where the
certificate is issued but not valid yet.

* Then in production, the same tests are performed again (the so called online or dynamic phase):
when the test outcome is positive the certificate is validated again (i.e. the ISSUED state is
confirmed), when validity period expires the certificate goes to EXPIRED. If the test outcome is not
positive, the certificate goes to REVOKED state, while if tests are not fully successful but test
metrics are above a certain threshold the certificate can go to a temporary SUSPENDED state.

Date: May 30, 2014
Page 30/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Validity period expired

A

Validity period
Evidence is not sufficient expired
(assertion_is questionablg

-

Evidence is sufficient
(assertion is valid)

Evidence is sufficient
(assertion is valid)

ontradictory evidenc®

(assertio not valid)

Revoked

Contradictory evidence
(assertion is not valid)

FIGURE 12 - TEST-BASED CM: LIFE CYCLE STATE TRANSITIONS

The Life Cycle described above is common to all possible Test-based Certification Model templates. For this
reason, the XML schema of the generic Certification Model already includes the definition of the four states
as previously defined, plus the initial state.

When a certificate is issued, a Validity Period is always attached to it. When the Validity Period expires,
according to our actual Life Cycle, the full process must be start again, but this is not the only possible Life
Cycle for a Test-based scenario: it is also possible to have another Life Cycle that allows confirmation of a

certificate extending its validity period. In such a case after a successful online/Dynamic test the certificate
is overwritten and Validity Period extended.

© [lifeCycleTransitionType

FromState ®
Type Restriction of 'xs:string'
ToState ®
Type Restriction of 'xs:string'
i iti © [lifeCycleConditionType
IlfeCycI-eTransmon . o .O
Type lifeCycleTransitionType — —
videncelsVali ®
Type xs:boolean
EvidencelsNotValid ®
Type xs:boolean
EvidencelsQuestionable ®
Type xs:boolean
ValidityPeriodExpired ®
Type xs:boolean

FIGURE 13 — TEST-BASED CM: LIFE CYCLE TRANSITION TYPE

Cond|t!onForL|feCysIe.Transmon = .O
Type lifeCycleConditionType

Other Life Cycles are possible but in our current CUMULUS Test-based scenarios we remain tied to the
process described above and the Life Cycle elements will be always be instantiated with these four states.

An excerpt for a Life Cycle XML schema is the following:

<xs:element "LifeCycle" "lifeCycleType"/>
[...]
<xs:complexType "lifeCycleType">
<Xs:sequence>

Date: May 30, 2014
Page 31/197

<xs:element "LifeCycleStates">
<xs:complexType>
<xs:sequence
<xs:element
<xs:element

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

"unbounded">

<xs:simpleType>

"LifeCycleld" "xs:ID"/>
"LifeCycleState">
<xs:restriction "xs:string">

<xs:enumeration "NOT _ISSUED"/>

<xs:enumeration "ISSUED"/>
<xs:enumeration "SUSPENDED"/>
<xs:enumeration "REVOKED"/>
<xs:enumeration "EXPIRED"/>

</xs:restriction>

</xs:simpleType>

</xs:element>
<xs:element

"LifeCycleTransitions">

<xs:complexType>

<xs:sequence
<xs:element

"lifeCycleTransitionType"> </xs:element>
</xs:sequence>

"unbounded">
"lifeCycleTransition"

</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute "NumberOfStates" "required” "xs:integer"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute "InitialState" "required" "xs:string" "NOT ISSUED"/>
</xs:complexType>
[...]
<xs:element "lifeCycleTransition"
[...]
<xs:complexType "lifeCycleTransitionType">

<xs:sequence ">
<xs:element "FromState">
<xs:simpleType>
<xs:restriction
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "ToState">
<xs:simpleType>
<xs:restriction
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element
</xs:sequence>
</xs:complexType>

"ConditionForLifeCycleTransition"

"xs:string">

"NOT ISSUED"/>
"ISSUED"/>
"SUSPENDED"/>
"REVOKED"/>
"EXPIRED"/>

"xs:string">

"NOT ISSUED"/>
"ISSUED"/>
"SUSPENDED"/>
"REVOKED"/>
"EXPIRED"/>

"lifeCycleConditionType"/>

XML code is validated against the schema above. A XML example of a CM template is in the following box.
As an example the NOT_ISSUED state is the first Life Cycle state to be described: it has only one transition

Date: May 30, 2014
Page 32/197

Document name: D2-3 Certification models v.2

Version: 1.0

Security: public

allowed according to our Life Cycle diagram, from NOT_ISSUED to ISSUED when “evidence is valid”; there is

no intermediate state where the certificate is created but not valid yet.

<LifeCycle "NOT ISSUED">
<LifeCycleStates "5>
<LifeCycleld>ID1</LifeCycleld>
<LifeCycleState>NOT ISSUED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>NOT ISSUED</FromState> <ToState>ISSUED</ToState>
<ConditionForLifeCycleTransition> <EvidencelsValid>true</EvidencelsValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
<LifeCycleld>ID2</LifeCycleld>
<LifeCycleState>ISSUED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>ISSUED</FromState> <ToState>EXPIRED</ToState>
<ConditionForLifeCycleTransition> <ValidityPeriodExpired>true</ValidityPeriodExpired>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>ISSUED</FromState> <ToState>SUSPENDED</ToState>
[...]
<FromState>ISSUED</FromState> <ToState>REVOKED</ToState>
[...]
<FromState>SUSPENDED</FromState> <ToState>ISSUED</ToState>
[...]
<LifeCycleld>ID3</LifeCycleld>
<LifeCycleState>SUSPENDED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState> <ToState>EXPIRED</ToState>
[...]
<FromState>SUSPENDED</FromState> <ToState>ISSUED</ToState>
[...]
<FromState>SUSPENDED</FromState> <ToState>REVOKED</ToState>
[...]
<FromState>ISSUED</FromState> <ToState>SUSPENDED</ToState>
[...]
<LifeCycleld>ID4</LifeCycleld>
<LifeCycleState>EXPIRED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>ISSUED</FromState> <ToState>EXPIRED</ToState>
[...]
<FromState>SUSPENDED</FromState> <ToState>EXPIRED</ToState>

[...]
<LifeCycleld>ID5</LifeCycleld>
<LifeCycleState>REVOKED</LifeCycleState>
<LifeCycleTransitions>

[...]

</lifeCycleTransition>
</LifeCycleTransitions>
</LifeCycleStates>
</LifeCycle>

Date: May 30, 2014

Page 33/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

4.1.3. Target of Certification (ToC) Element

This section corresponds to section 4.1.3 in D2.2. The concept of Target of Tests, inside a Target of
Certification, has been introduced.

The Target of Certification (ToC) element in the Certification Model schema is defined below.

© [tocType

© (@ Attributes

‘aum Id ®
Type xs:ID
1..00 [CloudLayer 5
Type Restriction of 'xs:string'
Toc ol
Type tocType ConcreteToc ®
Type xs:string
TocDescription ®
Type Restriction of 'xs:string'
’O TocURI
Type xs:anyURI ®

Default http://www.cumulus-project.eu

ToTs
®
Type targetOfTestsType
1.0 OperativeCondition
_.G—‘ ®
@ Type operativeConditionsType

FIGURE 14 — TEST-BASED CM: TOC ELEMENT TYPE

A Certification Model defines a Target of Certification instance that is certified for the actual Security
Property, and the ToC describes the perimeter of what we want to certify.

In the Certification Model the Target of Certification element has an Identifier attribute generated by the
framework, in order to guarantee the alignment for Test-based and Monitoring-based CM instances.

The other sub-elements are: the generic layer in the cloud stack layer (i.e. SaaS, PaaS or laa$; it can happen
the two or three of these layers are specified, as for example Saa$S + PaaS), in the ConcreteToc sub-element
(i.e. the specific concrete instance to be certified) a textual description, a URI identifier (i.e. the reference to
the services to be certificated), the Targets of Test (ToTs) sub-element (the sub-element specifies the
accessible APIs for CUMULUS framework) and the operative condition sub-elements (they describe the
operational conditions under which the ToC works and include all the necessary technical information: the
vendor and the release related info, installation constraints, etc.)

An excerpt of the XMD schema is shown below.

<xs:element "Toc" "tocType" "1"/>
[...]
<xs:complexType "tocType">
<xs:sequence>
<xs:element "CloudLayer" "unbounded">
<xs:simpleType>
<xs:restriction "xs:string">

<xs:enumeration "SaaS"/>
<xs:enumeration "PaaS"/>
<xs:enumeration "laaS"/>

</xs:restriction>
</xs:simpleType>

Date: May 30, 2014
Page 34/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</xs:element>

<xs:element "ConcreteToc" "xs:string'> </xs:element>
<xs:element "TocDescription">
<xs:simpleType>
<xs:restriction "xs:string">

<xs:enumeration "WS"/> <xs:enumeration "Application"/>
<xs:enumeration "DBMS"/> <xs:enumeration "WEBSERVER"/>
<xs:enumeration "EMAIL"/> <xs:enumeration "CRM"/>
<xs:enumeration "SDK"/> <xs:enumeration "VIRTUALMACHINE"/>
<xs:enumeration "HD"/> <xs:enumeration "SWITCH"/>

[....]
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "TocURI" "xs:anyURI" "http://www.cumulus-project.eu"/>
<xs:element "ToTs" "targetOfTestsType"/>
<xs:sequence "unbounded" ">

<xs:element "OperativeCondition" "operativeConditionsType'"> </xs:element>

</xs:sequence>
</xs:sequence>
<xs:attribute "Id" "required" "xs:ID"> </xs:attribute>
</xs:complexType>

An example of a XML code is shown below.

<Toc [d="ID001">
<CloudLayer>SaaS</CloudLayer>
<ConcreteToc>e-health v1.0</ConcreteToc>
<TocDescription>Application</TocDescription>
<TocURI>10.0.0.155</TocURI>
<ToTs>[.....] </ToTs>
<OperativeCondition>
<TocTechnicalSpecifications>
<TocVendor>ATOS</TocVendor>
<TocRelease>1.0</TocRelease>
<TocDate>2014-09-24</TocDate>
</TocTechnicalSpecifications>
</OperativeCondition>
</Toc>

4.1.4. SecurityProperty Element

This section corresponds to section 4.1.4 in D2.2. A minor amendment was to rename
TestedSecurityProperty as SecurityProperty to underline similarities between different CMs.

The SecurityProperty element in the schema defines the Security Property, which has to be certified by the
Certification Model instance.

The securityPropertyType is an extension of the propertyDefType, already defined in (CSA, D2.1
Development of security properties specification scheme and security dependency models, 2013) and
includes some other parameters relevant to the property definition.

Date: May 30, 2014
Page 35/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public
© [securityPropertyType

© Attributes

SecurityPropertyld ®
Type xs:string

SecurityPropertyDefinition ®
Type xs:string

Vocabulary
Type xs:string

[SecurityProperty]

o1
Type securityPropertyType ShortName

Type xs:string

\ . o sProperty ®
Type propertyType

FIGURE 15 — TEST-BASED CM: SECURITY PROPERTY ELEMENT TYPE

The propertyDefType has Performance attributes and Parameters attributes to make the property concrete.
The representation of propertyDefType is the following:

© [propertyType

© O Attributes

class ®
Type xs:anyURI

propertyPerformance

sProperty 5
Type propertyType

—(@)o—L-= (propertPerformanceRow)o—(@)o—L:2| roperPeriommanceCe)

Perf
© ° propertyPerformanceRow)© @ Type Extension of 'xs:anySimpleType' 2
[7 xs:anySimpleType

© @ Attributes

@
Type xs:string

FIGURE 16 — TEST-BASED CM: SECURITY PROPERTY SUB-ELEMENT TYPE

@)

propertyParameterList

0..0c propertyParameter
e—.@ o
@ Type Extension of'xs:anySimpIeType'J

The class attribute is the name of the property according to CSA vocabulary (for example:
AlS:confidentiality:service-provider-data-access-level and AlS:confidentiality:external-data-exchange-
confidentiality).

Notice that Assertions are included neither in the Security Property element nor in any other element of
the Certification Model: in fact, when a Certification Model is created, an Actor (for example a Certification
Authority that takes decisions about a Certification Model) does not know yet which kind of Assertions will
be taken into consideration to certify the Property, and for this reason, a Certification Model instance does
not contain any Assertion instance.

The XSD schema and XML code of some security properties used in our scenarios are shown in the
following boxes.

The XML schema of the SecurityProperty element is the following:

<xs:element "SecurityProperty" "securityProperty Type"/>
[...]
<xs:complexType "securityProperty Type">
<xs:sequence " ">

Date: May 30, 2014
Page 36/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:element "sProperty" "property Type"/>
</xs:sequence>
<xs:attribute "SecurityPropertyld" "xs:string" "required"/>
<xs:attribute "SecurityPropertyDefinition" "xs:string" "required"/>
<xs:attribute "Vocabulary" "xs:string"/>
<xs:attribute "ShortName" "xs:string"/>

</xs:complexType>
[...]
<xs:element "propertyPerformance'">
<xs:complexType>
<xs:sequence>
<xs:element "propertyPerformanceRow" "
"unbounded">
<xs:complexType>
<xs:sequence>
<xs:element "propertyPerformanceCell" "
"unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension "xs:anySimpleType">
<xs:attribute "name" "xs:string"
"required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
[...]
<xs:element "propertyParameterList">
<xs:complexType>
<xs:sequence>
<xs:element "propertyParameter" "o" "unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension "xs:anySimpleType">
<xs:attribute "name" "xs:string" "required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

The XML code of a Certification Model instance is the concretization of the XSD Certification Model and the
XML code is verified against XMD Certification Model template.

Here is an example with the a property used in our ATOS scenarios: IAM:identity-assurance:user-
authentication-and-identity-assurance-level. It requires a Performance attribute (see level in
propertyPerformanceCell).

<SecurityProperty "Id101" "This property measures the strength of
the mechanism used to authenticate a user, on a scale from 0 to 4, notably taking into account identity proofing,
credential security during transfer and storage.">

Date: May 30, 2014
Page 37/197

<sProperty
identity-assurance-level">
<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell
</propertyPerformanceRow>
</propertyPerformance>
<propertyParameterList>
</propertyParameterList>
</sProperty>
</SecurityProperty>

Document name: D2-3 Certification models v.2

"level">1</propertyPerformanceCell>

Version: 1.0
Security: public

"http://cumulus-project.eu/security-properties#I AM:identity-assurance:user-authentication-and-

4.1.5. Signature Element

This section corresponds to section 4.1.6 in D2.2. The element was previously called Tester, but it hass

been renamed Siganture to underline the common parts of different CMs.

The Actor in the Meta-Model is represented by the Tester whose signature is an element of the XML
schema description: the Tester can be a Certification Authority dealing with the overall certification process
or a Lab accredited by the Certification Authority.

© [testerType

[Signature

—@
Type testerTypeJ

An excerpt of the XMD schema is shown below.

<xs:element

[.]

<xs:complexType

"Signature"

"testerType">

<xs:sequence ">
<xs:element "Name"
<xs:element "Role"

</xs:sequence>
</xs:complexType>

A XML fragments from a CM instance is:

<Signature>
<Name>SesarLab</Name>
<Role>Laboratory</Role>
</Signature>

"testerType"/>

"xs:string"/>
"xs:string"/>

Page 38/197

Name

Type xs:string
Role

Type xs:string

FIGURE 17 — TEST-BASED CM: SIGNATURE ELEMENT TYPE

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

4.1.6. Collectors Element ‘

This section corresponds to section 4.1.1 in D2.2. The section has been rewritten and the concept of
Abstract Collector has been introduced.

The Collectors element in the Certification Model schema is defined below. It includes all the sub-elements
that perform this task: Abstract Collector, the Collector list and an EventBusCollector.

© [collectorType

1..00 [AbstractCollector 5
Type abstracCollectorType

Collectors o .@ 0..0 Collector 5
Type collectorType Type GeneralCollectorType

EventBusCollector ®
Type eventBusCoIIectorTypeJ

FIGURE 18 — TEST-BASED CM: COLLECTORS ELEMENT TYPE

In principle the Abstract Collector element in the XML schema defines the Collector in a very generic way,
i.e. how tests must be performed, how the evidence must be produced, collected and archived in a Test-
based certification scenario. See Figure below.

© [abstracCollectorType

© (@ Attributes

=

——

Type xs:ID g

Aggregator ®
Type aggregatorType
TestCategory

©]
AbstractCollector o Type Restriction of'xs:string']
Type abstracCollectorType
Actionability ®
Type actionabilityType

Capability
Type capabilityType

@. TestType 3
Type xs:string

TestDescription
Type xs:string

TestGenerationModelLink
Type xs:anyURI @
Default http://www.cumulus-project.eu
(Testhuributes)

(TesCases)o

FIGURE 19 — TEST-BASED CM: ABSTRACT COLLECTOR SUB-ELEMENT

©]

©]

A Collector element in the XML schema defines instead how to activate the Abstract Collector in a real
scenario. For this reason it refers to an Abstact Collector that has been described above. It has also
attributes that describe the Static and Dynamic environments, a generic text escription, an expiration time.
See Figure below.

Date: May 30, 2014
Page 39/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

As an example, in a Static/Offline Testing environment, when a testing client probe is assessing a specific
Web Service (SaaS layer) and certifying “confidentiality in transit”, the collection process is the process of
sending and receiving a data stream from the probe to the Web Service under test in a pre-production
environment. In this case the isStatic attribute is set to “True” and the Collector specifies the inputs that
have to be submitted and the output that has to be collected.

© [GeneralCollectorType
© 0 Attributes
ExpirationTime ®
Type xs:gYearMonth

Descriptor
Type xs:string

11 Id o
Type xs:ID

isStatic
Type xs:boolean

Collector ‘O toDeploy
Type GeneralCollectorType | Type xs:boolean

0.0 AgentURI
Type xs:anyURI |

0..0 ConditionForSomministration o
Type conditionForSomministrationType

AbstractCollector
Type xs:string

FIGURE 20 — TEST-BASED CM: COLLECTOR SUB-ELEMENT

Onthe other hand in a Dynamic Test-based certification, the client testing probe works either
synchronously or asynchronously in a production environment. In the first case the probe waits for a
feedback after its stimulus, in the second case the probe sends its input and then reads or receives
parameters from a different channel, in particular the process could evaluate parameters of the
infrastructure itself or waits from an asynchronous feedback from the server. For example a typical
situation of the synchronous scenario is when tests are injected continuously with a delta time in between.
In an asynchronous scenario tests are not injected continuously but only when a certain condition is met,
for example when network traffic is below a certain threshold and tests do not affect the ordinary
operations of the service.

Some of the ancillary parameters could also be read in an Event Bus (see EventBusCollector element in
Figure below), which can provide generic platform events.

For example these events can be useful when evaluating a security property such as Confidentiality. In this
case, events such as the access and utilisation of server side encryption libraries could provide valuable
information to the Tester.

Date: May 30, 2014
Page 40/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

© [eventBusCollectorType

Eventld
Type xs:ID
EventCode
Type xs:string

FIGURE 21 — TEST-BASED CM: EVENT BUS COLLECTOR SUB-ELEMENT

EventBusCollect
ventBusCollector o 1..00 @e
Type eventBusCollectorType

An excerpt of the XMD schema of a Certification Model schema is shown below.

<xs:element "Collector" "collectorType"> </xs:element>
[...]
<xs:complexType "collectorType">
<xXs:sequence>
<xs:element "AbstractCollector" "abstracCollectorType" "unbounded"
n 1 H/>
<xs:element "Collector" "GeneralCollectorType" "0"
"unbounded"> </xs:element>
<xs:element "EventBusCollector" "eventBusCollectorType" "0"/>

</xs:sequence>
</xs:complexType>

[.]

The XML code for a Certification Model template is verified against the schema above and then a XML
instance is produced.

<Collectors>
<AbstractCollector [d="abstract]">
<Aggregator >
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>

<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType>Model Control Flow</TestType>
<TestDescription>Send user/pass (with malformed pass) to registerUser API. RegisterUser result must be
"fail".</TestDescription>
<TestGenerationModelLink>http://www.cumulus-project.eu/model005.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>

Date: May 30, 2014
Page 41/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<TestCase>

<ID>1</ID>

<Description>user generation</Description>

<TestInstance "registerUser">
<Preconditions/>

<HiddenCommunications/>
<Input>username=fred; password="12345"</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector [d="abastract2"> [...] </AbstractCollector>
[...]
<Collector "2014-09" "true" "true" "coll">
<ConditionForSomministration><DeltaTime>12:00:00</DeltaTime></ConditionForSomministration>
<AbstractCollector>abstract1</AbstractCollector>

</Collector>
[...]
<Collector "2014-09" "true" "true" "col2">
<ConditionForSomministration>
<Event>

<Action>Login</Action>
<Condition> failed
</Condition>
<Value>100</Value>
</Event>
</ConditionForSomministration>
<AbstractCollector>abstract4</AbstractCollector>
</Collector>
</Collectors>

4.1.7. Aggregator Sub-Element

This part was not present in D2.2 version, since it was included in the Collector Section (Section 4.1.1 in
deliverable D2.2)

The Aggregator sub-element describes how to collect the test outcomes and how the evidence must be
aggregated. In our Certification Model the Aggregator is a sub-element of the Abstract Collector.

This is also related to the Metrics and Conditions Class in the Meta Model. In fact this element deals also
with criteria for interpreting test results in terms of sufficiency of collected results and includes
performance thresholds that are appropriately scaled and arranged in different levels to provide different
levels of assurance.

In a Test-based scenario Static/Offline tests are performed in pre-production and then saved. When test
are performed again in production the results are compared with the evidence collected before in pre-
production and must satisfy a metric condition, for example a threshold or a percentage. The thresholds
could be of different types like test number, coverage of given test types, test duration/timing (e.g. one day
of tests). In other circumstances the metric condition could be a simple Boolean.

For example when tests about Confidentiality security property are performed on a remote storage, a
server agent on the cloud side could be able to provide whether the storage is properly encrypted
providing a Boolean value as a feed back to a probe, and, as a consequence, can indicate whether
Confidentiality security property can be certified or not. The conditions could also include rules to compare
actual results with expected results, for example, when considering the Availability security property, the
tests performed during one day of tests should have percentage-of-processed-requests of 95%. The

Date: May 30, 2014
Page 42/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

conditions deal also with problem of how possible conflicts could be resolved, for example if failure of a
limited number of tests affects the full validity of an already issued Certificate.

The Aggregator element in the Certification Model schema is defined below.

© [aggregatorType
© (@ Attributes

AggregatorDescription ®
Type xs:string

ModelLink

Type xs:anyURI
TestMetric ®
Type testMetricsType

Aggregator o
Type aggregatorType

ElementForExtension
Type elementForExtensionType

FIGURE 22 — TEST-BASED CM: AGGREGATOR SUB-ELEMENT

The Aggregator element in the specific Certification Models may have only a subset of these elements. The
TestMetrics element contains the set of metrics used to evaluate the quality, completeness, and suitability
of the tests executed on the ToC. All these metrics can be used in the matching between users’ preferences
and service certificates, and in the comparison between certificates to find the best that matches users’
preferences. Examples of test metrics are PathCoverage and InputCoverage. We note that the metrics can
be measured: i) using all available test cases thus providing a summary on the quality of the certification
process (as assumed in this deliverable); ii) per test category, meaning that only test cases of a given
category are considered; iii) for each pair of test category and test type, meaning that only test cases
generated with a given pair are considered. The calculation of the metrics at different levels using different
subsets of test cases permits to support enhanced scenarios of matching and comparison. To this aim, in
future version of the certificate, we would need to define multiple elements TestMetrics each one referring
to a given test category and test type.

An example of the XMD schema is shown below.

<xs:element "Aggregator" "aggregatorType"/>
[...]
<xs:complexType "aggregatorType'">
<xs:sequence>
<xs:element "ModelLink" "xs:anyURI"/>
<xs:element "TestMetric" "testMetricsType"/>
<xs:element "ElementForExtension" "elementForExtensionType"/>
</xs:sequence>
<xs:attribute "AggregatorDescription” "xs:string"> </xs:attribute>

</xs:complexType>

4.1.8. Context Element

This section corresponds to section 4.1.7 in D2.2. The element now focues on the configuration of the
tools used in the test-based certification process.

The Context element details the configuration of tools that were used in the certification process.

The Context element in the Certification Model schema is defined below.

Date: May 30, 2014
Page 43/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

© [contextType

© 0 Attributes

ConfigurationDate

Context 5 Type xs:date
Type contextType

@ O—(AgentConfigurations)OO—(AgentConfiguration)

FIGURE 23 — TEST-BASED CM: CONTEXT ELEMENT TYPE

The sub-element called AgentConfiguration describes a cloud side “fully trusted” software initial
configuration. This sub-element will be fully described in the next version of this Deliverable.

An excerpt of the XMD schema of a generic Certification Model is shown below.

<xs:element "Context" "contextType"/>
[...]
<xs:complexType "contextType">
<xs:sequence>
<xs:element "AgentConfigurations">
<xs:complexType>
<xs:sequence "unbounded">
<xs:element "AgentConfiguration"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute "ConfigurationDate" "xs:date"/>
</xs:complexType>

4.2. Test-based Certificate XML Schema

This section corresponds to section 4.2 in D2.2. There are no major amendments to this part.

The XML Schema presented below shows the fundamental elements for a Test-based certificate. In the
Test-based certification process first a Certification Model instance is created and then passed to the
testing module, which creates a Certificate with a NOT_ISSUED state and starts injection of tests. Once
sufficient evidence has been collected the Certificate switches to an ISSUED state.

Date: May 30, 2014
Page 44/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

© [testBasedCertificateType

Certificateld o
- Type xs:integer

_(CertificationModelld ®
\Type xs:integer

_,Certificatelnfo]@
\Type certificateInfoType

TestBasedCertificate o . O_,CertificateStatus ®
Type testBasedCertificateType \Type Restriction of 'xs:string'

_,ExpirationDate]
\Type xs:dateTime

e .
| [Assertion]
\Type assertionType

;’Signatu.re]@
\Type signatureType

FIGURE 24 — TEST-BASED CERTIFICATE

The XML Schema includes the following elements:

the Certificateld element is a unique identifier,
the CertificationModelld element provides a reference to the certification model instance,

the Certificatelnfo element that provides the information about the type of certification (in our
case it is always “Test-based”), the Date of Certification, the mode (i.e. whether the Certificate is
Static/Offline or Dynamic/Online),

the CertificateStatus element holds the current Certificate status, i.e. the Certification instance will
have one of the Life Cycle states derived from the Certification Model; in our scenario the states
are ISSUED, SUSPENDED, EXPIRED or REVOKED, there is no NOT_ISSUED state since a Certificate is
always created when evidence is valid, in other words there is pending state where the Certificate
is issued but without a validity period,

the ExpirationDate element represents the validity period of the certificate,
the Assertion that will be better detailed in the next Section,

the Signature represents the digital signature of the Certification Authority or of another Actor
involved in the process,

(Ce rtificateType]

\Type Restriction of 'xs:string'
P
CertificationDat
| [certificatelnfoType |®—. T;pel I:(i':ante;irene]ca
U 3

(OnlineOfflineMode]
\Type Restriction of 'xs:string'

FIGURE 25 — TEST-BASED CERTIFICATE: CERTIFICATE INFO TYPE

An excerpt of the XMD schema is shown below.

<xs:element "TestBasedCertificate" "testBasedCertificateType'"> </xs:element>

Date: May 30, 2014
Page 45/197

Document name: D2-3 Certification models v.2

[...]
<xs:complexType "testBasedCertificateType">
<xs:sequence ">

<xs:element "Certificateld" "xs:integer"/>

<xs:element "CertificationModelld" "xs:integer"/>

<xs:element "CertificateInfo" "certificateInfoType"> </xs:element>

<xs:element "CertificateStatus">

<xs:simpleType>
<xs:restriction "xs:string">

<xs:enumeration "NOT_ISSUED"/>
<xs:enumeration "ISSUED"/>
<xs:enumeration "SUSPENDED"/>
<xs:enumeration "REVOKED"/>
<xs:enumeration "EXPIRED"/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "ExpirationDate" "xs:dateTime"/>
<xs:element "Assertion" "assertionType"/>
<xs:element "Signature" "signatureType"/>

</xs:sequence>
</xs:complexType>

[.]

Version: 1.0
Security: public

4.2.1. Assertion

The Assertion element of the XML schema contains the reference to the SecurityProperty (called
TestedSecurityProperty), the constraint on the performance attributes of the Security Property detailed by

a XPath expression and the Evidence element.

© [assertionType

TestedSecurityProperty
®
Type propertyType

A i A i
ssertion : o . ssertions : ®
Type assertionType Type XPathExpressionType

Evidence ®
Type evidenceType

FIGURE 26 — TEST-BASED CERTIFICATE: ASSERTION

Our schema for the Assertion element is shown below.

<xs:element "Assertion" "assertionType"/>
[...]
<xs:complexType "assertionType">
<Xs:sequence>
<xs:element "TestedSecurityProperty" "property Type"/>
<xs:element "Assertions" "XPathExpressionType"/>
<xs:element "Evidence" "evidenceType"/>

</xs:sequence>
</xs:complexType>

Page 46/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

5. Monitoring-based Certification Model

This section corresponds to section 5 in D2.2. There have been several changes to vl which are
indicated in the individual subsections below.

5.1. Overview

This section corresponds to initial part of Section 5.1 in D2.2. The main amendment is the description
of the mapping of monitoring based certification models onto the CUMULUS meta model.

In incremental monitoring based certificates, the evidence required for assessing and verifying security
properties is acquired through continuous monitoring of the operation of cloud services. Hence, the
evidential basis in such certificates can cover contextual conditions that might not be possible to envisage,
test or simulate through other forms of assessment (e.g., testing and static analysis) before deploying a
cloud service. Continuous monitoring can capture contextual conditions in cloud service provision as, for
example, changes in the population of co-tenant services, the deployed virtualization and optimization
strategies and mechanisms, and network and middleware configurations in a cloud, which are difficult to
take into account in static forms of assessment. It can also capture and adapt to the migration of SaaS cloud
services within cloud federations, providing support for the adaptation of monitoring infrastructures when
this happens.

As with all types of certificates, the process of creating and managing incremental monitoring based
certificates is driven by certification models. The purpose of such models is to define the security property
that is to be certified, the types and extent of evidence that should be acquired in order to be able to
certify the property, the life cycle of certificates of the given type (e.g., when certificates can be issued,
should be validated, revoked etc.), the agents which will have responsibility for carrying out different parts
of the process (e.g. which will be the agent which will acquire the required monitoring evidence, which
agent will sign off the certificate etc.).

To enable the definition of certification models for incremental, monitoring based certificates, we have
developed a language for specifying monitoring based certification models (shortly referred to as “MBCM”
in the rest of this document). This language has been defined by an XML schema that we present in detail
in the sub sections below. More specifically, the language provides means for specifying the security
property to be certified, an assertion providing a formal definition of this property, the certification
authority who will sign of the certificate, and validity checks that should be executed before issuing and/or
using a certificate etc. In addition, the monitoring based certification models language enables the
specification of elements that pertain to monitoring based certificates but do not necessarily apply to other
types of certificates, as for example, responding to conflicts that may arise within the body of evidence that
is being acquired in order to assess a security property.

The schema for defining monitoring based certification models complies with the CUMULUS Meta-Model.
The following table summarises the correspondences between the different elements of the monitoring
based certification model schema and the CUMULUS meta-model.

Monitoring based Meta-Model classes Notes on the mapping
Certification model
(MBCM) elements

Certification Model Certification Model There is a direct correspondence between TOC in
MBCM and TOC in the CUMULUS meta model.

TOC Target of The Target of certification (ToC) in the CUMULUS meta

Date: May 30, 2014
Page 47/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Monitoring based
Certification model
(MBCM) elements

Meta-Model classes

Notes on the mapping

Certification

model is the entity that is certified. This can be the
service under certification (i.e. SaaS layer), the platform
deploying services (PaaS layer), the infrastructure
hosting platforms and services (laaS layer), or any
combination of the above (see Sect 2.4). This concept is
expressed by TOC in MBCMs. Thus there is a direct
correspondence between TOC in MBCM and TOC in the
CUMULUS meta model. The meta model leaves the way
in which a target of certification may be described open
to the discretion of different types of certification
models. In the case of MBCMs , TOCs are described by
an ID and the interfaces that they provide and expect
from external parties as interactions via them may be
subjected to monitoring.

Life Cycle Model

Life Cycle

An MBCM defines a life cycle model as required by the
CUMULUS meta model. This life cycle model
determines the basic states in the generation and
management of monitoring based certificates and
indicates under what conditions these states may be
reached and how they may be altered. A life cycle
model is a key concept for MBCMs as it establishes
explicitly the relation between different elements in the
specification of a MBCM and how they may affect the
certificates, which are generated from it. This relation is
established in a precise manner enabling the life cycle
model to function as the algorithm which is given to the
CUMULUS framework in order to be executed and
generate certificates.

Assertion +
AssessmentScheme (
ValidityTests + Conflicts
+ Anomalies)

Metrics/Conditions

The concept of Metrics/Conditions in the CUMULUS
meta model corresponds to several elements in
MBCMs. In particular, the core metrics and conditions
regarding the assessment of the property to be
certified are formally expressed through the
assertion(s) included in the definition of this property.
Further metric and conditions are specified in the
AssessmentScheme element in MBCMs (e.g., length of
monitoring periods, minimum number of monitoring
events etc.) and the element ValidityTests (e.g.,
conditions about the configuration and deployment of
the monitoring components used to acquire the
monitoring evidence).

Monitoring
Configuration
(Component)

Evidence Aggregator,
Evidence Collector

The concept of Evidence Collector in the CUMULUS
meta model corresponds to different types of
components that have responsibility for the collection
and analysis of the monitoring evidence required for
monitoring based certificates (e.g., event collectors,
monitors, aggregators). These are specified as part of

Date: May 30, 2014

Page 48/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Monitoring based
Certification model
(MBCM) elements

Meta-Model classes

Notes on the mapping

the element Monitoring Configuration in MBCM.

Security Property

Security Property

The concept of Security Property in the CUMULUS meta
model corresponds to the element Security Property in
the MBCM schema. In the MBCM schema, however,
the description of security properties in the form of
attribute-value pairs is optional since it cannot be used
in order to drive the monitoring activity required for
the generation of monitoring based certificates.
Security properties in MBCS are specified through one
or more formal assertions. They may also refer to a
categorisation scheme, as the scheme introduced in
D2.1

Attribute (part of
Security Property)

Commitment

This concept does not exist in MBCMs as it is irrelevant
for monitoring based certificates. Commitments are
implicitly expressed through security properties in
MBCMs.

Assertion

Assertion

The concept of Assertion in the meta model
corresponds to the element Assertion in a MBCM.
However, in the MBCM, an assertion provides a formal
specification of the security property that is to be
certified and it determines the evidence that must be
monitored in order to assess it.

Evidence (part of
Assertion)

An MBCM does not have an evidence-recording
element. It defines, however, what evidence needs to
be collected. This evidence is recorded in monitoring
based certificates.

Context

This concept of the meta model has no counterpart in
an MBCM.

CASignature

Actor (responsible
for Activity)

The concept of Actor in the meta model corresponds to
the element CASignature in an MBCM. CASignature
represents the entity that signs a certificate generated
according to MBCM. This entity (e.g., certification
authority) has responsibility for the execution of an
MBCM and the certificates generated from it although
it might not be the entity that has created this MBCM.

Table 5 — Mapping of Monitoring Based Certification Models onto CUMULUS Meta-Model classes

Date: May 30, 2014

Page 49/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

5.2. Non repudiation of cloud storage services: an example of a service to be
certified

This section is new.

To exemplify the use of the amended schema for the specification of monitoring based certification models
in the following subsections we use as an example the property of non repudiation (NR). Before presenting
the detailed specification of different parts of the certification model for NR in this section we give a
general introduction to this property in order to enable the reader understand better the certification
model of the property.

Non-repudiation is a property of data storage, requiring that when a data owner (consumer) sends a
request to a cloud provider for uploading (downloading) data, the data uploading (downloading)
transaction should be conducted in a way such that neither the data owner (consumer) nor the cloud data
storage provider could deny having participated in a part or the whole of this transaction.

Several protocols have been proposed to realise non-repudiation (e.g., (Feng, 2011) (Gurgens, 2005) (Ma.,
2013) (Markowitch, 1999) (Zhou, 1996) (Zhou, An Efficient Non-Repudiation Protocol, 1997)). The basic
principle that underpins these protocols is that along with a data uploading (downloading) request the data
owner (consumer) sends a “Non-Repudiation of Origin” (NRO) token, i.e., a proof of sending the request,
and expects to receive evidence of “Non-Repudiation of Receipt” (NRR) from the cloud provider,
acknowledging that the specific request was received. Whilst these protocols have been proven to provide
NR under given assumptions their implementation can have bugs or suffer from attacks, such as man-in-
the-middle, replay or timeline attacks (Feng, 2011). Therefore, certifying the correct implementation of
protocols and the robustness of their implementation to these types of attack is necessary for giving cloud
customers the assurances required for NR.

In this section we present an enhanced NR Protocol that can be used in clouds, which is based on (Feng,
2011). This protocol covers an uploading and a downloading session, as well as a recovery phase where a
trusted third party (TTP) is involved to resolve any dispute between the other parties. The parties involved
are a Data Owner (“A”), a Data User (“B”), the Cloud Provider (“C”) and a Trusted Third Party (TTP). TTP is
involved in the protocol to resolve any disputation between the data owners or users and the cloud
provider. The NR protocol in Figure 27 — Non Repudiation protocol for cloud storage services (based on)has
three phases: (1) an upload phase, (2) a download phase, and (3) a resolution of disputate (or recovery), as
shown in Figure 27.

Before describing these phases, we provide some basic definitions necessary for understanding them:

* NRO: Evidence of Non-Repudiation of Origin, sent by a sender to a receiver. The receiver will hold this
evidence as a proof in case the sender denies of having sent a specific message.

* NRR: evidence of Non-Repudiation of Receipt, sent by the receiver to the sender. The sender will hold
this evidence as a proof in case the receiver denies of having received a specific message.

* fu: Flagindicating the intended purpose of a message M.

* [: Unique label chosen by A to link all messages.

* M: Message sent from a sender to a receiver.

* H(M): Hash function applied to message M.

* K: Message key defined by the sender.

* B: List of data users B; who are authorised to download and are capable of decrypting a specific
message M.

* Seqg;: Unique sequence number of each message. Each message dispatch must be unique in order to
prevent replay attacks.

* EGg(): Group encryption scheme known only to members of B, .

* Ex(Y): asymmetric encryption of message Y with party X’s public key.

Date: May 30, 2014
Page 50/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

* Sx(Y): signature of message Y by party X produced by X’s private key.
The three phases of the protocol are described below.

Provider

/Cloud\‘

(€)

1
= E
E o
THE =
— glc|2
= g
v S E ,
/ Data \ HEE B [Data I
. | o \
[Provider | 2| S| B User (B)
Slw
(A) ;\ni_ E) A Q}é‘;\\ _-/
=1 [=] 4
B TR - Y O N
®) H - Q
\\ \2: g g 35:/ /%O“‘\/\
st Q
'%Q/e\‘ \QT//’)(‘/ | (\‘je,\,"/ > éx\
J‘[5 ~ R < '\/V,?,? AT q,"’QO/ 7 p 7 Q\\ﬂ\
Plhg s S, ,/T rusted \{'/7 2 ae
A /[/ ~ e ¥ . R
R0] Third) RA

a) \
g \

Party I
(TTP) /

FIGURE 27 — NON REPUDIATION PROTOCOL FOR CLOUD STORAGE SERVICES (BASED ON (FENG, 2011))

Upload Phase

In this phase the data owner A sends a request to the cloud provider C, for uploading data. Firstly, A
encrypts a message M (i.e., the data) with a key K and generates two different NROs: NROxg and NROjc.
NROpg Will be used by data users B to get the key K to decrypt M and Sa(H(M)) to verify the data integrity
after downloading M from C. A encrypts NRO,z using the group encryption scheme EGg() to guarantee that
only the intended recipients of the B, can have access and decipher NROag and M. NROyc is the proof that A
sent the request to C and is encrypted with C’s public key. This step is defined as:

A%C RQSAC= {fRQSAC' /, A, C, TTP, H(M), H(BL), Seql, Tgll Tl, EGB(NROAB), Ec(NROAc)}

Where:

e T, is the maximum time that the sender will wait for an NRR to RQSxc.

* T, is the time of the generation of RQSac.
* NROggis an NRO sent from A to B users through C. It is visible to all B, recipients, but not to C itself.

NROas = {K, I, Sa(H(M))}

* NROacis an NRO sent from A to C, defined as

NROac={Sa(H(M),H(B.),EGg(NRORg),H(l,Seq1,Tg1, T1))}.

When C receives a RQS,c it must produce a response to A. This step is defined as:

C2A: RSPcu= URSPCA, I, A, C, TTP, H(M), H(By), Seqy, Ty, Ts, EA(NRRcA)}

Where:

e Tsistime when dataiss

tored

* Ty is the time of the generation of RSPxc.

* NRRcais the NRR sent from C to A, defined as

NRRca = {Sc(H(M)), Sc(H(l, Seq,, Tga, Ts, NROac))}.

Date: May 30, 2014

Page 51/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Download Phase

In this phase, the data user B downloads data from the cloud provider C. To do so, B sends a request with
an NROgc to C. The request should include B’s identity to enable C verify whether the B is authorised to
download the requested data. This is done by checking B’s identity against the B, received for M from the
data owner A. If B is in B, C will send the requested data along with the encrypted NROag (EGg(NROxg))
received from A and its own non-repudiation evidence NRR¢s. These exchanges are defined below:

B,=>C: RQSsic= {fRQSBiC; I, A, C, B;, TTP, Seqs, Ty3, Ts, EC(NROgc)}
Where:

4 |i= H(A, C, Bi, TTP)
* NROgc is the NRO sent from B to C, defined as
NROBC = {SB(H(III AI CI TTPI Seq?u Tg3l TZ))}

C2Bi: RSPcsi = {fRSPCB/ I, A, C, B; TTP, H(M), Seqs, Tgs, EGs(NROas), E;(NRRcs)}
Where:

* NRRgsis the NRR sent from C to B, defined as
NRRca={Sc(H(M)),Sc(EGa(NROag)),Sc(H(l,Seds, Tga)) }-

When B gets the data and the EGg from C, it will obtain K and H(Data) by decrypting the NRO4z and check
the integrity of the data and the validity of NRRcg.

Resolution of Dispute

If A does not receive the expected response from the C, it sends a request to TTP with its identification and
the NROxc. TTP will subsequently send this request to C and C should respond with a corresponding NRRca.
The latter exchanges are defined as:

TTP ac RQSTC = {fRQSTC' l/ A/ C/ TTPI Seq5/ Tg5i T3I EC(NROAC)/ EC(NROTC)}
CTTP: RSPcr= {fRSPCT, I, A C TTP, Seqe Tge Ts, EA(NRRca), Er (NRRc7)}

where:

* T;is the maximum time that the sender will wait for an NRR to RQSc.

* Tgs (Tge) is the time of the generation of RQStc (RSP¢r).

* Tsis time when data was stored by C.

* NROqc is the NRO sent from TTP to C to resolve a disputation regarding an uploading session of A,
defined as NROc={St (H(l, A, C, TTP, Seqs, Tgs, Ts, Ec(NROx()))}

* NRR¢ris sent from C to TTP, defined as

NRRcr ={Sc(H(l, Seqs, Tgs, NRRca))}-

Date: May 30, 2014
Page 52/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

5.3. Certification Model XML Schema Description

This section amends section 5.1 in D2.2. The amendment made to this level of the monitoring based
certification model are the addition of an element for specifying the target of certification (TOC) and
the change of the type of LifeCycleModel elements.

The top layer of v2 of the schema for specifying Monitoring based certification models is shown in Figure
28.

® [] CertificationModelType

(Model_Id N

~ ®
\Type xs:string)

(CASignature
\Type xs:string)

(ToC
| Type TargetOfCertificationType

(SecurityProperty
\Type SecurityPropertyType

CertificationModel o . (AssessmentScheme ®

Type CertificationModelType (Type AssessmentSchemeType
G

ValidityTests

(Type ValidityTestsType

fMonitoringConfigurations
\Type MonitoringConfigurationsType
(EvidenceAggregation N ®

\Type EvidenceAggregationTypeJ

~\

\ (LifeCycleModeI

®

(Type StateTransitionModelType |

FIGURE 28 — MONITORING-BASED CERTIFICATION MODEL SCHEMA ELEMENTS

As shown in the figure, at the top level there have been two changes with respect to v1 of the schema: (1) a
target of certification (TOC) element describing the cloud service(s) to be certified has been introduced at
the top level of the model (in v1 of the schema for monitoring based certification models this element was
specified as part of the assertions used to define the security property covered by the model) and (2) the
type of the element LifeCycleModel has been changed to StateTransitionModelType (the type of this
element in vl was LifeCycleModelType). The meaning and purpose of these elements are defined in the
Sections below.

Date: May 30, 2014
Page 53/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

The first of these changes was introduced in order to make monitoring based certification models
consistent with the CUMULUS meta-model where the relationship between a certification model and a
target of certification is direct (see Figure 1). Furthermore, as a certification model may include security
properties defined by more than one assertion, the inclusion of the target of certification element as part
of the specification of assertions could lead to redundant and possibly inconsistent specifications of the

TOC.

The second change was introduced as we realised that both the expected TOC behaviour model that should
be used in order to define evidence sufficiency conditions and the life cycle model that should be used for
the specification of monitoring based certificates life cycles could be expressed as state transition
machines. Hence, a new monitoring based certification model element, called StateTransitionModelType
was introduced to cover the specification of both these kinds of models (see Sect. 5.3.6 below for more

detail).

‘ 5.3.1. Model Id Element

This section corresponds to section 5.1.1 in D2.2. There are no amendments to this part of the
monitoring based certification model.

Model _Id is the element in the schema that represents the unique identifier of the certification model
instance. Model_Id is an element of type integer. An example of model id is shown below:

<Model 1d>1001</Model Id>

It should be noted that the identifier of the certification model is different from the identifier of an instance
of the model that is used when the model is applied in order to certify a given property of a particular
target of certification.

5.3.2. CASignature Element

This section corresponds to section 5.1.2 in D2.2. There are no amendments to this part of the
monitoring based certification model.

CASignature is the element in the schema that represents the digital signature of the certification authority
that has defined or advocated the certification model. CASignature is an element of type string. An example
of a CASignature element is shown below. The example refers to a certification that will be used to
generate certificates which will be signed off by CUMULUS_City.

| <CASignature>CUMULUS_City</CASignature>

‘ 5.3.3. TargetOfCertification (TOC) Element

This section is new. TOC was defined inside assertions in v1 of the certification model schema. In v2 it is
defined as a separate element directly under the certification model.

The TargetOfCertification element describes the cloud service to be certified by the particular instance of
the certification model. TargetOfCertification is an element of type TargetOfCertificationType. As shown in
the Figure 30 below, the specification of a TargetOfCertification includes:
(1) An attribute, called “id”, which represents the unique identifier of the TOC. This attribute is
mandatory.
(2) A sequence of providesinterface and requiresinterface elements. These interface elements specify
sets of operations whose execution and or results will need to be monitored during the

Date: May 30, 2014
Page 54/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

certification process. The providesinterface elements specify the interfaces that the target of
certification offers itself. The requiresinterface elements specify interfaces that the target of
certification expects an external entity to have.

In the case of the NR property, the target of certification is the cloud provider. The interface that
provides this entity is the set of operations of uploading and downloading data, and handling dispute
resolution requests by the trusted third party. Assuming the the acknowledgement of results by the
cloud provider to data providers, consumers and the trusted third party is asynchronous, the TOC in the
case of NR would require three external interfaces: (1) an interface from the data provider to process
NRRca; (2) an interface from the data consumer to process NRR¢g; and (3) an interface from the trusted
third party to process NRRcr.

® [] TargetOfCertificationType

(S Attributes

id
_|®
Type xs:string

TOC o
Type TargetOfCertificationType 1..e | providesinterface]

@)o

Type sla:interfaceDeclrType

0..ec requiresinterface
Type sla:interfaceDeclrType

FIGURE 29 — MONITORING-BASED CM: TARGET OF CERTIFICATION TYPE

The XML schema for specifying TargetOfCertification elements in MBCM is given in below:

<xs:complexType "TargetOfCertificationType">
<xsd:sequence>
<xsd:element " "unbounded" "providesInterface"
"sla:InterfaceDeclrType"/>
<xsd:element "o" "unbounded" "requiresInterface"

"sla:InterfaceDeclrType"/>
</xsd:sequence>
<xsd:attribute "id" "xs:string" "required"/>
</xs:complexType>

An example of the TargetOfCerification in XML is given below:

<TOC id="id">
<providesInterface>
[...]
</providesInterface>
<requiresInterface>
[...]
</requiresInterface>
</TOC>

Date: May 30, 2014
Page 55/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

The sub-elements of a TargetOfCertification specify how interfaces are described the SLA schema and are
described below.

* The providersinterface element, as shown in Figure 30, includes a sequence of texts and properties

that define the interface that a TOC itself realises. The providersinterface defines what operations
will be invoked.

® [] sla:nterfaceDeclType

® [] slasoiAnnotatedType (extension base)

providesinterface o
Type sla:interfaceDeclrType

Interface

FIGURE 30 — MONITORING-BASED CM: PROVIDESINTERFACE TYPE

* The requirersinterface element, as shown in Figure 31, includes a sequence of IDs, provider
references (ProviderRef), zero or more Endpoints and Interfaces. This element defines the
interfaces that the TOC requires from external entities that TOC assumes in order to be able to
realise the functionality that will be monitored during the crtification process. To this end, for these
interfaces it is important to specify the endpoint where the relevant operations can be invoked.

® [] sla:nterfaceDeclType

O] D slasoi:AnnotatedType (extension base)

requiresinterface
Type sla:interfaceDeclrType

Interface

FIGURE 31 — MONITORING-BASED CM: REQUIRESINTERFACE TYPE
Below is an example of providesinterface and an example of requiresinterface in XML.

Date: May 30, 2014
Page 56/197

<providesInterface>
<Text></Text>
<Properties>
</Properties>
<ID>interface::id::c::1/</ID>
<ProviderRef>nr::id::c</ProviderRef>
<Endpoint>
<Text> </Text>
<Properties> </Properties>
<ID>cl111</ID>
<Location>http://www.cumulus-project.eu</Location>
<Protocol> SOAP </Protocol>
</Endpoint>
<Interface>
<InterfaceSpec>
<Text> </Text>
<Properties> </Properties>
<Name>nr::id::c::cloudinterface</Name>
<Operation>
<Text>rgqsac</Text>
<Properties> </Properties>
<Name>data</Name>
</Operation>
</InterfaceSpec>
</Interface>
</providesInterface>

<requiresInterface>
<Text> </Text>
<Properties></Properties>
<ID> interface::id::d::1</ID>
<ProviderRef></ProviderRef>
<Endpoint>
<Text> </Text>
<Properties></Properties>
<ID>d111</ID>

<Location> http://www.cumulus-project.eu </Location>

<Protocol> SOAP</Protocol>
</Endpoint>
<Interface>
<InterfaceRef>
<Text> rqsbc</Text>
<Properties> </Properties>

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<InterfaceLocation> http://www.cumulus-project.eu </InterfaceLocation>

</InterfaceRef>
</Interface>
</requiresInterface>

5.3.4. SecurityProperty Element

This section corresponds to section 5.1.3 in D2.2. The amendments made to this part of the model are

related to the specification of assertions.

SecurityProperty is the element in the schema that defines the security property that is to be certified by

the particular instance of the certification model.

SecurityProperty is

an element of type

SecurityPropertyType. As shown in the Figure 32 below, this type has:

Page 57/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

(1) An attribute, called “Property_Category”, which defines the category of the security property. Security
property names are restricted to the names of properties appearing in the security properties catalogue
defined in D2.1.

(2) A sub-element, called Assertion, which is used to provide the definition of the security property to be
certified. Assertion is an element of complex type AssertionType. The definition of this type is based on the
secureSLA* language that was introduced in order to specify security properties in a way similar to normal
SLAs. SecureSLA* is based on SLA*, a language that was originally developed in the SLA@SOI project in
order to express guarantee terms in service level agreements Several amendments have been made to this
language to enable the specification of security properties (e.g., the introduction of multi-valued variables,
event timestamps, forced executions of actions). Several amendments have been made to this language to
enable the specification of security properties (e.g., the introduction of multi-valued variables, event
timestamps, forced executions of actions). A full account of these changes will be given in the forthcoming
D3.2 deliverable.

According to this type, an assertion has a UUID, the effective period (EffectiveFrom, EffectiveUntil), when it
was agreed (AggreedAt), the parties that are involved (Party, AbstractParty), as well as the Interface
declaration, the variable declaration and the agreement term of the security property, which consists of a
sequence of guaranteed terms (see sub-element Guaranteed). A guarantee term defines conditions that
must be satisfied. Such conditions refer to the interfaces of cloud services and may make use of one or
more variables. Where necessary, further interfaces may also be defined in the assertion element.

uuID ®
Type slasoi:UUIDType

EffectiveFrom
- Type slasoi:TimeType
Assertion o
Type Extension of 'slasoi:AnnotatedType' [EffectiveUntiI J

®

®

Type slasoi:TimeType

AgreedAt
Type slasoi:TimeType
1.0 (Party
© S ; ®
LType slasoi:AgreementPartyType

0..0 AbstractParty

®

Type slasoi:AbstractPartyType

1. [InterfaceDeclr ®
Type slasoi:nterfaceDeclrType

0..00 VariableDeclr

Type slasoi:VariableDeclrType

1.0 [AgreementTerm ®
Type slasoi:AgreementTermType

FIGURE 32 — MONITORING-BASED CM: ASSERTION ELEMENT TYPE

The XML Schema of the SecurityProperty Element is given in below.

<xs:element "Assertion">
<xs:complexType>
<xs:complexContent "false">
<xs:extension "slasoi:Annotated Type">
<xs:sequence>

<xs:element R " "UuID" "slasoi:UUIDType" />
<xs:element R " "EffectiveFrom" "slasoi: TimeType" />
<xs:element R " "EffectiveUntil" "slasoi:TimeType" />
<xs:element R " "AgreedAt" "slasoi:TimeType" />

Date: May 30, 2014
Page 58/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:element R "unbounded" "Party" "slasoi:AgreementParty Type" />
<xs:element "0" "unbounded" "AbstractParty"
"slasoi:AbstractParty Type" />
<xs:element R "unbounded" "InterfaceDeclr"
"slasoi:InterfaceDeclrType" />
<xs:element "0" "unbounded" "VariableDeclr"
"slasoi:VariableDeclrType" />
<xs:element R "unbounded" "AgreementTerm"

"slasoi:AgreementTermType" />
</xs:sequence>
<xs:attribute "1d" "xs:string" "required"></xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The following example shows the specification of a security property. The category of this property is
“AlS:non-repudiation:non-repudiation-of-origin” as denoted by the value of the Property Category
attribute of security property element. The security property element identifies also the assertion that will
provide the formal definition of the property. The identifier of this assertion is “2100”.

<SecurityProperty "AIS:non-repudiation:non-repudiation-of-origin”>
<Assertion>

[.]

</Assertion>

An example of the parties involved in the NP protocol is presented below, which are the cloud provider c,
the data owner a, the data user b and the trused third party t.

<Assertion>
<Text></Text>
<Properties>
</Properties>
<UUID>url2 </UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>c</ID>
<Role>cloudprovider</Role>
</AbstractParty>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>a</ID>
<Role>dataowner</Role>
</AbstractParty>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>b</ID>
<Role>datauser</Role>

Date: May 30, 2014
Page 59/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</AbstractParty>
<AbstractParty>

<Text></Text>

<Properties>

</Properties>

<ID>t</ID>
<Role>trustedthirdparty</Role>

</AbstractParty>

[...]

</Assertion>

The element InterfaceDecl (Interface declarations) shown in Figure 33 provides the means by which details
of functional interface specifications are represented. An interface declaration element consists of:

The sub-element ID that uniquely identifies the InterfaceDeclr. D is a mandatory element.
The sub-element ProviderRef that uniquely identifies the party that is obligated to provide the
interface. ProviderRef is a mandatory element.
The sub-element Interface that defines the interface and which may be one of the following:
o Aninline Interface Specification (InterfaceSpec),
o An interface reference (InterfaceRef) to an externally located InterfaceSpec, identified by the
UUID attribute 'interfacelocation’', or
o A ResourceType (InterfaceResourceType), denoting a resource as a service ("Resource-as-a-
Service")

Interface elements are used in cases where the definition of a security property relates to operations
that belong to them. For example, the availability of a service may be required for some of the
interfaces that the service offers but not all of them. In such cases the interfaces that the availability
property will refer to need to be specified.

Zero or more Endpoint sub-elements. These elements specify the endpoints that implement the
specific interface and at which the interface operations can be invoked. Each Endpoint element is
specified by:
o A compulsory ID of the endpoint (this ID must be unique within the scope of the enclosing
InterfaceDeclr element),
o A compulsory Location element of type UUID, which records the address of the endpoint, and
o A Protocol element specifying the communication protocol required for invoking the interface
operations at the endpoint. This can take as value a reserved string (STDN) denoting specific
communication protocols (e.g., SOAP, REST, SSH).

Endpoint elements indicate where a service is invoked. For monitoring based certificates this
information is useful as it will determine where monitoring events should be captured from and,
therefore, possible monitoring configurations for acquiring the required monitoring evidence for a
certificate.

Date: May 30, 2014
Page 60/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

@ | | slainterfaceDeclrType

@ [] slasoi:AnnotatedType (extension base)
GeDo
@0
(Froperies)®
G) P slasoi:lDType)@
—(ProviderRef)O—(' sIasoi.IDTvpe)@

S InterfaceDecl: ol
|~ Type sla:interfaceDeclrType © [0 slasoi:EndpointType
@ [] slasoi:AnnotatedType (extension base)
GaDe
@)

(Froperien)®

®' s Endpoin()

(e)o——(B) ®
InterfaceResourceType)@

FIGURE 33 — MONITORING-BASED CM: INTERFACE DECLARATION TYPE

An example of an Interface Declaration element for the NR security property is shown below. In this
example four interface declarations are defined for each party with the relevant interfaces they require,
their provider, as well as the operations of each interface. For instance, the first interface has an ID “c1”
and is provided by “c”, as indicated by the ProviderRef sub-element. Moreover, it has an Interface
Specification named “cloudInterface” and three operations according to the tree different types of requests
that it can receive. The first operation refers to the request made by the data owner “a”, named “rgsac”,
which refers to the Upload Phase of the NR protocol. This operation takes as inputs “data” and “t”, which
are the data of the request made from the data owner to the cloud provider and the time that it will wait to
receive a response. The other two operations refer to the requests made by “b” and “t”, with the names
“rgsbc” and “rgstc. These operations refer to the request for downloading data and resolving a dispute and
they take as input the data of the request.

Date: May 30, 2014
Page 61/197

<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>c1</ID>
<ProviderRef>c</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>cloudinterface</Name>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqsac</Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
<Input>
<Text></Text>
<Properties></Properties>
<Name>t</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqsbc </Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqstc </Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>al</ID>
<ProviderRef>a</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>

Page 62/197

Document name: D2-3 Certification models v.2

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Name>ainterface</Name>
<Operation>
<Input>
< Text></ Text>
< Properties>
</ Properties>
< Name>RSPca</ Name>
< Auxiliary> true </ Auxiliary>
< Datatype>url</ Datatype>
<Domain></Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>b1</ID>
<ProviderRef>b</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>binterface</Name>
<Operation>
<Input>
< Text></ Text>
< Properties>
</ Properties>
< Name>RSPcb</ Name>
< Auxiliary> true </ Auxiliary>
< Datatype>url</ Datatype>
<Domain></Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>t1</ID>
<ProviderRef>t</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>tinterface</Name>
<Operation>
<Input>
< Text></ Text>
< Properties>
</ Properties>
< Name>RSPct</ Name>
< Auxiliary> true </ Auxiliary>
< Datatype>url</ Datatype>
<Domain></Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>

Date: May 30, 2014
Page 63/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

The example shows an interface with ID “CumulusNRService” that is provided by “CumulusProvider” as
indicated by the ProviderRef sub-element of it. Moreover, it has an Interface Specification named
“cloudInterface” and an operation named “UploadRequest”, which refers to the Upload Phase of the NR
protocol. This operation takes as inputs “RQSac” and “Time_RQSac”, and its output is the “RSPca”, which is
the response to the request.

e The VariableDeclr element assigns (or binds) an expression to a specific variable identifier (ID). This
identifier can be subsequently used in place of the original expression that is assigned to it Figure 34.
Variables are useful as they can be used in defining conditions within assertions, which specify formally
security properties. The identifier denoting a variable can, in principle, be bound to any Expr, but of
particular use are bindings to the following expressions:

o Functional expressions,
o Event expressions, or
o Service references

A VariableDeclr element has also a sub-element, called Customisable. This element is used in case there
is a need to define some extra constraints of the variable. The element Expr that is bound to the variable
must in this case be a DomainExpr, i.e. an expression specifying a range of permitted values.

© [] sla:variableDeclrType

© [] slasoi:AnnotatedType (extension base)

@ [] slasoi:MapStndAny

O@ 0.0)
O P7 slasoi:lDType |®
0,,00[riablel
Type sla:VariableDeclrType
O © [] slasoi:ExprType

ValueExpr }®
Eo—(®)o
=T

© [] slasoi:CustomisableType

) o——@)

FIGURE 34 — MONITORING-BASED CM: VARIABLE DECLARATION TYPE

An example of a Variable Declaration element is presented below. The example declares the value for the
the variable “rqgsacv” of the input “rgsac” of the “c1” interface in the interface declaration. In the Expr sub

element it is defined that this variable is an Invocation and has a value “nroac”.

<VariableDeclr>
<Text/>
<Properties/>
<Var>rgsacv</Var>
<Expr>
<ValueExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>invocation</Operator>
<Parameter>

Date: May 30, 2014
Page 64/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<ValueExpr>
<ServiceRef>
<OperationList>
<ID>nroac</ID>
</OperationList>
<EndpointList>
<ID>cl111</ID>
</EndpointList>
</ServiceRef>
</ValueExpr>
</Parameter>
</EventExpr>
</ValueExpr>
</Expr>
</VariableDeclr>

* The element AgreementTerm within an Assertion element defines a guarantee that a certain state of
affairs will hold. This state of affairs is defined in the sub-element Guaranteed. Optionally, each
AgreementTerm element may also be associated with a Precondition specifying any conditions that
must hold for the state to be guaranteed.

ID
Type slasoi:lDType
1.0 | AgreementTerm ol
Type slasoi:AgreementTermType Precondition \

Type sIasoi:ConstraintExprTvpe‘

0..0 | VariableDeclr
Type sIasoi:VariabIeDecIrTypeJ

[[] slasoi:GuaranteedType
o o .
Base Type slasoi:AnnotatedType
© [] slasoi:AnnotatedType (extension base)

Text
Type xs:string

Properties
Type slasoi:MapStndAny

(@)

1.0 | Guaranteed o
Type slasoi:GuaranteedType

State ®
Type slasoi:GuaranteedStateType

©

Action
Type slasoi:GuaranteedActionType

FIGURE 35 — MONITORING-BASED CM: GUARANTEED STATE TYPE
An example of an AgreementTerm element is given below.

The AgreementTerm in this example has the ID “term1” and a precondition, which states that when a
request (“rgsac”) from a data owner (a) for uploading data to a cloud provider (c) is made, there there is no
previous request with the same sequence number received. This is expressed by the “Difference”
operation, which checks that there is no previous rgsac in rgsac_series matching the latest rgsac invocation
(i.e., the value of var RQSacV). Furthermore, the Guarateed element, with the Id “gstatel”, has two
“Constraint” elements. The first constraint states that the response (“rspca”) should match with the
request (“rgsac”). The second constraint states that the time of the response should be less than or equal
to the sum of the time of the request and the variable “t”, which is the waiting time of the request to
receive the response.

Date: May 30, 2014
Page 65/197

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term1</ID>
<Precondition>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Difference>
<ValueExprl>
<ListValueExpr>
<Value>rgsac</Value>
</ListValueExpr>
</ValueExprl>
<ValueExpr2>
<ListValueExpr>
<Value>rgsacv</Value>
</ListValueExpr>
</ValueExpr2>
</Difference>
</EventExpr>
<DomainExpr></DomainExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate1</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#equals</Operator>
<Parameter>
<ID>rspcav</ID>
</Parameter>
<Parameter>
<ID>rgsacv</ID>
</Parameter>
</FuncExpr>
</Constraint>
<Constraint>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Operator>http://www.slaatsoi.org/coremodel#less than or equal</Operator>

<Parameter>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ID>rspca</ID>
</ValueExpr>
</TimeOf>

Page 66/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</EventExpr>
</CountExpr>
</ConstraintExpr>
</Parameter>
<Parameter>
<ConstraintExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Add>
<ValueExprl>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ID>rqsacv</ID>
</ValueExpr>
</TimeOf>
</EventExpr>
</ValueExprl>
<ValueExpr2>
<ID>t</ID>
</ValueExpr2>
</Add>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ConstraintExpr>
</Parameter>
</EventExpr>
</CountExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>

5.3.5. AssessmentScheme Element

This section corresponds to section 5.1.4 in D2.2. The assessment scheme specification that it describes
has been changed. The changes relate to the specification of evidence sufficiency conditions (conditions
regarding the expected behaviour of TOC) and conflicts.

The element AssessmentScheme defines general conditions regarding the evidence that must be collected
in order to be able to issue and maintain a certificate according to the particular certification model). These
conditions are related to the sufficiency of evidence collection (e.g., minimum period over which a target of
certification must be monitored before a certificate for the particular property of it can be issued), the
expiration date of the instance and the absence of conflicting evidence regarding the property to be
certified. These conditions must be satisfied, in addition to the guarantee states that are part of the
assertion definition of the property, for the certificate to be issued.

Date: May 30, 2014
Page 67/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

1. (EvidenceSufficiencyCondition
f \ Type EvidenceSufficiencyConditionType

1.0 (ExpirationCondition]

0.0 Conflict

\Type ExpirationConditionType
|] AssessmentSchemeType O@
®

Type ConflictType

Anomalies ®
Type AnomalyType

FIGURE 36 — MONITORING-BASED CM: ASSESSMENT SCHEME TYPE

The definition of the type that is used for specifying AssessmentScheme elements is shown in Figure 36. As
shown in the figure, the specification of an assessment scheme includes a sequence of evidence sufficiency
conditions, expiration conditions and conflicts. These sub elements of an assessment scheme are described

below.

Evidence Sufficiency Conditions

Evidence sufficiency conditions are conditions regarding the minimum extent and the profile of the
monitoring events. This EvidenceSufficiencyCondition element has a unique identifier (/d) and defines the
conditions of the sufficiency conditions that must apply to evidence in order to issue a certificate. These
conditions can be of three different types, which are listed below:

e}

MonitoringPeriodCondition: A condition of this type can be used to define for how long TOC should
be monitored before a certificate can be issued. Such conditions can be specified according to the
schema shown Figure 37. It should be noted that the security property to be monitored is
determined by the assertions defined as part of the security property of the model. The monitoring
period defines only for how long these assertions should be monitored before the evidence is
deemed sufficient and a certificate can be issued.

MonitoringEventsCondition: A condition of this type can be used to define the minimum number of
monitoring events that should be gathered before a certificate can be issued. Such conditions can
be specified according to the schema shown in Figure 37. Similarly to the monitoring period
element, the monitoring events condition determines the minimum number of events that must
have been considered.

ExpectedSystemOperationModelCondition: A condition of this type is used to define an expected
operation model of TOC. If such a model is defined the gathered evidence will be deemed sufficient
for issuing a certificate only if the actual operation of TOC does not deviate from this model. In v1
of monitoring based certification models this element had not been defined. In v2, conditions of
this kind are defined through a probabilistic state transition model of the behaviour of TOC and
external actors interacting with it. This probabilistic state transition model describes the
probabilities of occurrence of the events that TOC should be expected to receive and the
probabilities of the responses that it should be expected to produce along with some margin of
error for all these probability measures. Such a model is then used to assess whether the log of
events that the monitoring process which assesses a security property for TOC is representative of
TOC and therefore sufficient for drawing a conclusion with regards to the satisfaction or not of the
property. The exact XML schema for specifying state transition models is presented in Sect. 5.3.6.

Date: May 30, 2014
Page 68/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

(—(D Attributes

ExpectedSystemOperationModel ®
Type StateTransitionModelType

© [] MonitoringPeriodConditionType

|D EvidenceSufficiencyConditionType |G

[©] Attributes
id
Type xs:string

MonitoringPeriodCondition o r r
inMonit Peri
d Type MonitoringPeriodConditionType minienitoredrerio ®

Type xs:float

periodUnit
Type PeriodUnitType

® [] MonitoringEventsConditionType

[S) Attributes

MonitoringEventsCondition o
o eventsNo
Type MonitoringEventsConditionType v

Type xs:decimal

FIGURE 37 — MONITORING-BASED CM: EVIDENCE SUFFICIENCY CONDITION TYPE

Examples of EvidenceSufficiencyCondition elements are given below.

The first example corresponds to a monitoring period condition and states that the minimum period that a
cloud service should be monitored before issuing a certificate is 720 hours.

<EvidenceSufficiencyCondition Id="1011">
<MonitoringPeriodCondition "720" "hours"/>
</EvidenceSufficiencyCondition>

The second example corresponds to a monitoring events condition and states that a minimum of at least
5000 events should be monitored before issuing a certificate.

<EvidenceSufficiencyCondition Id="1012">
<MonitoringEventsCondition "5000"/>
</EvidenceSufficiencyCondition>

The third example corresponds to a sufficiency condition defined through an expected system behaviour
model. Our example refers to the monitoring based certification model for the NR property and is a model
of the expected behaviour of the TOC for this property, i.e., the cloud storage service C that should be
certified that it realises the NR protocol and, through it, satisfies NR.

A graphical representation of this model is shown in Figure 38. As the model shows the cloud storage
service Cinitially gets to statel and at this state it may respond to:

* Calls of the operation RQSac(nroac) from a data owner a to upload data along with an NRO for it.
The model specifies that the probability of C receiving such a call whilst being in statel is 0.2 with a
deviation margin d=0.02 (i.e., a probability between 0.18 and 0.22). This event will make C move to
state2.

Date: May 30, 2014
Page 69/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

* Calls of the operation RQSbc(nrobc) from a data user B a to upload data along with an NRO for it.
The model specifies that the probability of C receiving such a call whilst being in statel is 0.5 with a
deviation margin d=0.02 (i.e., a probability between 0.48 and 0.52). This event will make C move to
state4.

* Calls of the operation RQStc(nrobc) from a data user B a to upload data along with an NRO for it.
The model specifies that the probability of C receiving such a call whilst being in statel is 0.05 with
a deviation margin d=0.01 (i.e., a probability between 0.04 and 0.06). This event will make C move
to state3.

* Calls to an operation otherO() that is not related to the NR protocol with a probability Pr=0.25 and
a margin d=0.02 (i.e., a probability between 0.248 and 0.252). This event will make C move out of
and then back to statel.

state machine NR_C_exp_behaviour[@ NR_C_exp_behavioury A
|
otherO() |
Pr=0.25, |
d=0.02 N \ﬁ
S state1
e
RSPca(nrrca) RQStc(nrotc) RSPcb(nrreb)
Pr=1.0, d=0 RQSac(nroac) Pr=0.05, d=0.01 |RQSbc(nrobc) Pr=1.0, d=0
Y = = = = RSPct(nrrct)
Pr=0.2, d=0.02 Pr=0.5, d=0.02 Pr=1.0, d=0
— state2 state4 B
state3
S J

FIGURE 38 — EXAMPLE OF EXPECTED TOC BEHAVIOUR MODEL

The probabilities of the above call events at statel reflect the expected use of C, i.e., that (1) it is more
likely to receive data download requests than any other request (50%), (2) the next most probable event is
the execution of other non NR related operations (25%), (3) data upload requests have a probability that is
less than half of data upload requests, and (4) it is relatively unlikely to enter the resolution phase of the NR
protocol.

The model also specifies that the probability of C producing an NRR response to A, B or TTP once at states
state2, state4 and state3 respectively is Pr=1.0.

From an evidence sufficiency point of view, the above model determines the number of events of different
types that should be seen whilst monitoring C for the correct realisation of the NR protocol in order to
deem the monitoring evidence as sufficient. Assuming that there have been 10,000 requests to C in the
monitoring log, for instance, the expectation set by the model is that there should be: (i) between 2480 and
2520 events irrelevant to the NR protocol (i.e., invocations of the operation other0()), (ii) between 4800
and 5200 data download requests (i.e., invocations of the operation RQSbc(nrobc)), (iii) between 1800 and
2200 data upload requests (i.e., invocations of the operation RQSac(nroac)), and (iv) between 400 and 600
disputation resolution requests (i.e., invocations of the operation RQStc(nrotc)). Hence, if the monitoring
log does not contain the above numbers of events, it should not be considered as representative of the use
of C and deemed sufficient for issuing a NR protocol certificate.

Date: May 30, 2014
Page 70/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

The specification of different parts of the expected system behaviour model shown in Figure 42 is given in
Sect. 5.3.6 after the introduction of the XML schema for the specification of such models.

Expiration Conditions

An expiration condition defines when an issued certificate, which has been generated according to the
given certification model, should expire and a new one could be issued by considering further evidence.
This condition is expressed by an element of the MBCM schema, called ExpirationCondition, which is of
type ExpirationConditionType.

o [pirationConditionType
[S] Attributes

m Id
Type xsd:string

1..« | ExpirationCondition absoluteDate
Type ExpirationConditionType Type xsd:date

© [] ElapsedPeriodType

H@)o—(B)o

(o] Attributes

period
Type xsd:float

elapsedPeriod
Type ElapsedPeriodType

periodUnit
Type PeriodUnitType

FIGURE 39 — MONITORING-BASED CM: EXPIRATION CONDITION TYPE

The specification of ExpirationCondition elements in the MBCM schema is shown graphically in Figure 39.
The XML schema for ExpirationConditionType is listed below:

<xs:complexType "ExpirationConditionType">
<xs:sequence>
<xs:choice>
<xs:element "absoluteDate" "xs:date"/>
<xs:element "elapsedPeriod" "ElapsedPeriodType"/>
</xs:choice>
</xs:sequence>

<xs:attribute "Id" "xs:string"/>
</xs:complexType>
<xs:complexType "ElapsedPeriodType">
<xs:attribute "period" "xs:float"/>
<xs:attribute "periodUnit" "PeriodUnitType"/>

</xs:complexType>

According to the above schema, an expiration condition has a unique identifier (/d) and a choice of two
different ways to define the expiration date within it:
* Asan absoluteDate, which is an element of type date, or
* Asan elapsedPeriod, which is an element of type ElapsedPeriodType. An ElapsedPeriod element can
be used when a certificate needs to expire at the end of a specific period of time from the date that
it was issued. An ElapsedPeriod element expresses this by defining a period of time, as the number
of time units that should elapse following the creation of the certificate (see attributes period,
period unit).

An example of an expiration condition is given below. The example states that the certificate should expire
one year after the date it is issued:

Date: May 30, 2014
Page 71/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<ExpirationCondition [d="987">
<elapsedPeriod " "years"/>
</ExpirationCondition>

Conflicts

In an MBCM conflicts define circumstances that may affect the state of a monitoring based certificate and
the actions that should be taken in order to resolve it. The definition of conflict in v2 of MBCMs has been
changed with respect to the definition of the “conflict” concept in v1 of such models. More specifically, in
v2 of MBCMs, a conflict designates an assessment of the security property associated with the model
(MBCM) for a sub period of the time specified in the certification model, which gives a different result from
the assessment of the same property according to the assertion specified in the model. Consider for
instance, an MBCM used to certify the availability of a cloud storage service within which the assessment of
availability is based on average measures of the service availability taken over periods of one month. A
conflict in this case would arise if whilst the monthly availability measures of the service satisfy the
constraints required by the model (e.g., availability should be at least 95%), if considered over shorter
periods (e.g., on a daily or a weekly basis) the measures of the availability of the same service would violate
the constraints. For some weeks, the availability of the service may have been found to be less than 95%.
Such discrepancies do not necessarily de-validate certificates (e.g., lead to their suspension or revocation)
but may need to be audited by the certification authority that has signed or will sign the certificate before
confirming the validity of an existing certificate or allowing a certificate to be issued.

(S Attributes

assertionld

Type xs:string

| | ConflictType |Qw=—— assessmentPeriod
Type xs:float

assessmentUnit

Type Restriction of 'xs:string'

FIGURE 40 — MONITORING-BASED CM: CONFLICT TYPE

A conflict is defined by a conflict element in the MBCM schema. These elements are of type
ConflictType. The definition of ConflictType has been changed in v2 of MBCM schema with respect to
the definition of the corresponding type in vl of this schema. The new definition is shown in Figure 40
and its specification in the XML schema is shown below:

<xs:complexType "ConflictType">
<xs:attribute "assertionld" "xs:string"/>
<xsd:attribute "assessmentPeriod" "xs:float"/>
<xsd:attribute "assessmentUnit">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "nanoseconds"/>
<xs:enumeration "milliseconds"/>
<xs:enumeration "seconds'"/>
<xs:enumeration "minutes"/>

Date: May 30, 2014
Page 72/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:enumeration "hours"/>
</xs:restriction>
</xs:simpleType>
</xsd:attribute>
</xs:complexType>

According to this type, a conflict element is defined by the following four attributes:
* conflictld — this attribute is a unique identifier of the conflict element
* assertionld — this attribute identifies the assertion in the model that the conflict element refers to
* assessmentPeriod — this attribute determines the length of the period in time over which the
assessment whose purpose is to detect conflicts should be conducted; the value of this attribute is

constrained to be less than the normal assessment period of the property in the model by a
Schematron rule

* assessmentUnit — this attribute determines the time unit in which the conflict assessment period is
expressed

An example of a conflict element is given below.
<Conflict "1100" "guaranteel" 1 “week” />

The element specifies that a conflict arises when the guarantee element “guaranteel” that is used to
assess is violated on the basis of weekly measures. The way to deal with conflicts must also be defined by
an MBCM.

The specification of conflict handling is provided as part of the life cycle model of an MBCM (see Sect 5.3.12
below).

5.3.6. StateTransition Model

This section relates to Sect. 5.1.8 in D2.2, as it replaces the type LifeCycleModelType in v1 of the schema
for specifying monitoring based certification models.

To specify the expected behaviour of TOC, we use state transition models. These are specified as instances
of a new element type that we have introduced to schema for monitoring based certification models, called
StateTransitionModel. This element type has also replaced the type LifeCycleModelType in vl of the
schema that was used to specify life cycle model. The use of StateTransitionModel for specifying life cycle
models has certain restrictions, which are described in Section 5.3.6 below.

Date: May 30, 2014
Page 73/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

InitialState
Type PseudoStateType

© [[] StatesType

© [] StateType

atomicState
Type AtomicStateType &
Type StatesType Type StateType compositeState -
Type CompositeStateType
1..e | transitions ®
Type TransitionsType

FinalState
Type PseudoStateType

| [[] stateTransitionModelType |®—'O- historyState ®
Type HistoryStateType

© [] slainterfaceDeclrType

© [} slasoi:AnnotatedType (extension base)

@00
(Froperien)o

0..c0 | requiresinterface
Type sla:interfaceDeclrType

Interface

1. [providesinterface ®
Type sla:nterfaceDeclrType

FIGURE 41 — MONITORING-BASED CM: STATE TRANSITION MODEL TYPE

Figure 41 shows a graphical representation of the structure of the XML schema that is used to specify state
transition models. As shown in Figure 41, a state transition model consists of:

* an (optional) InitialState

* an (optional) FinalState

* an (optional) HistoryState

* asequence of atomic or composite states,
* transitions between states,

* one or more provided interfaces, i.e., sets of operations (aka interfaces) which are realised by the entity
whose behaviour is described by the model, and

* one or more required interfaces, i.e., sets of operations which the entity whose behaviour is described
by the model expects other external interacting entities to have

The specifications of the different elements of a state transition model are described below. However,
before presenting the fragments of the MBCM schema for specifying them, we introduce an example.

States

The InitialState and FinalState elements are pseudo states, which are used to designate (i.e., point to) the
initial state of the model and the final state of the model respectively. Both these elements are specified as
instances of the element type PseudoStateType that is defined as follows:

Date: May 30, 2014
Page 74/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

S Attributes

" vt |O——(Z_xs5tng)
xs:strin
|[:] PseudoStateType |G)-— Type xs:string 3

Built-in primitive type. The string datatype represents
character strings in XML.

FIGURE 42 — MONITORING-BASED CM: PSEUDO STATE TYPE

According to it, pseudo states have only one attribute called stateld that uniquely identifies them within a
state transition model. The state that the initial pseudo state points to and which point to the final pseudo
state are indicated by transitions.

A historic state element can be used in the cases where a state transition model is embedded within
another state transition model or more precisely a composite state of it (see composite states below).
Historic state elements are used to keep a record of the last atomic state within the embedded state
transition model that was active before a transition was triggered that moved the state of the relevant
entity to state outside from the embedded model that the historic state belongs to and to a state of the
embedding model. Historic state elements are described as instances of the element type HistoricStateType
that is defined below.

o Attributes

stateld

[] HistoryStateType [Type xs:string

refersToStateld
Type xs:string

FIGURE 43 — MONITORING-BASED CM: HISTORY STATE TYPE

Apart from the initial, final and historic states, state transition models have also normal states. At least one
of such states must be present in a model. These define periods in the life of the entity whose behaviour is
expressed by the model and over which the entity that the state transition model is associated with, waits
for external events that may make it move from the particular state and/or take some action. Normal
states can be atomic or composite.

Atomic states are specified by elements, which are instances of the type AtomicStateType. This type is
shown in Figure 44.

Date: May 30, 2014
Page 75/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

[S] Attributes

stateld
@
Type xs:string

(— name
Type xs:string

description
Type xs:string

© [] StateActionType
[} AtomicStateType [O4

(O] Attributes

executionPoint
Type Restriction of 'xs:string'

G) 0. [gaction © © [ActionType
Type StateActionType
..o Operationlnvocation

- ®
action W«
@ Type ActionType © .@ O =
0.0 | assignment

Type AssignmentType

FIGURE 44 — MONITORING-BASED CM: ATOMIC STATE TYPE

As shown in the figure an atomic state element is described by the attributes
* stateld which uniquely identifies the state within a state transition model
* name which provides a modeller chosen name of the state, and
® description which can be used to provide a description of the intended meaning of the state

Atomic states may also be associated with zero or more actions that must be executed when the entity is in
them (for example update some internal variables, store etc.). Actions are described as elements of the
type ActionType in the CBCM specification schema, as shown in Figure 44. More specifically, an action is
has an attribute, called executionPoint, that defines whether the action is executed when the entity enters
or exits the state (the fixed values “onEntry” and “onExit” define which of these two cases applies for an
action, respectively). Actions can be of two kinds:

* They may require the execution of operations in the entity associated with the state transition
model (i.e., an operation that belongs to one of the provided interfaces of the state transition
model) or the invocation of an operation in an external entity (i.e., an operation that belongs to
one of the required interfaces of the state transition model). Such actions are specified as
operationinvocation elements.

* They may require the assignment of a value to a variable of the entity of the model. Such actions
are specified as assignment elements.

Operation invocation actions are specified according to the type OperationRefType, shown in Figure 45
below.

Date: May 30, 2014
Page 76/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

[S] Attributes

Yl interfaceld
Type xs:string

© [slainvocationType
lls0pecationRetTypey ko] Endpoint)@—(' sIasoi:IDType)@

Operation)@—(| 4 sIasoi:IDType)O

O invocation o . © [] slasoi:MapldValueExpr
Type slainvocationType
© [] slasoildValueExprEntryType
. GDo
Parameters /O—.O = Entry ,JO
E— y @m)o

FIGURE 45 — MONITORING-BASED CM: OPERATION REF TYPE

According to OperationRefType, an operation invocation is described through:

* An attribute, called interfaceld, which refers to the interface that the operation to be invoked is a
member of.

* Aninvocation element. This element is specified by

o a sub element, called Endpoint, which indicates the endpoint where the operation to be invoked
should be invoked;

o asub element, called Operation, which includes the id of the operation to be invoked; and

o an (optional list) of Parameter elements, which are used to provide the values for the different
input parameters of the operation to be invoked; these parameters are indicated by key elements
and their values as value elements.

The definition of the type OperationRefType in the MBCM schema is:

<xs:complexType "OperationRefType">
<xsd:sequence>
<xsd:element " R "invocation" " InvocationType"/>
</xsd:sequence>
<xs:attribute "interfaceld" "xs:string"/>

</xs:complexType>

An example of an atomic state element is shown below:

<atomicState "s12657" "statel" "state of NR C model">
</atomicState>
<atomicState "s12658" "state2" "state of NR C model">
</atomicState>

The above examples represent in XML statel and state2 in the expected behavioural model of the cloud
storage service provider C in the NR protocol (see Figure 38).

Composite states are specified as instances of the type CompositeState, shown in Figure 46. As shown in
the figure, a composite state element has three attributes, namely stateld, name and description. The
meaning and use of these attributes is the same as in the case of atomic states. In addition to these
attributes, a composite state includes one or more substate elements. A substate element is described as a
state transition model itself, even if this submodel has only one single atomic state itself. If a composite
state has more than one substate elements, these elements are assumed to describe separate chunks of
behaviour which are executed in parallel (i.e., AND- or parallel-decomposition). If there is only one substate
element S, then the states of the state transition model that describes S are assumed to be disjunctive

Date: May 30, 2014
Page 77/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

substates, i.e., the entity can be at only one of these elements at any timepoint (i.e., OR- or disjunctive-

decomposition).

©

Attributes

stateld
. |®
Type xs:string

—

|[:] CompositeStateType |©OH

name
Ty sasng ©
Type xs:string
description
- |®
Type xs:string

© [] StateTransitionModelType

InitialState
Type PseudoStateTypeJ

1. | states ®
Type StatesType
1.« | transitions ®
Type TransitionsType

1.« | substate @
O Type StateTransitionModelType]O .0

FinalState
Type PseudoStateTypeJ

historyState
Type HistoryStateType J

0.« requiresinterface
Type J

1.« | providesinterface ®
Type sla:nterfaceDeclrType

sla:interfaceDeclrType

FIGURE 46 — MONITORING-BASED CM: COMPOSITE STATES TYPE
The definition of the type CompositeStateType in the MBCM schema is:

<xs:complexType "CompositeStateType'>
<xs:sequence>
<xs:element "
"StateTransitionModel Type"/>

</xs:sequence>

"unbounded" "substate"

<xs:attribute "stateld" "xs:string" "required"/>
<xs:attribute "name" "xs:string"/>
<xs:attribute "description" "xs:string"/>

</xs:complexType>

Examples of composite states are given in Section 5.3.12 below.

Page 78/197

Date: May 30, 2014

Transitions

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

As shown in Figure 47, transitions in state transition models are described by a Transitions element which

of a type TransitionsType. This element has one or

IndividualTransitionType.

1..e | transition
TransitionsType —.
O © lType IndividualTransitionType

Joi

more sub-elements, which are of type

© [} IndividualTransitionType

o

Attributes

From
()
Type xs:string
To
(O]
Type xs:string

Probability
®
Type xs:float

Deviation
c
Type xs:float

Built-in primitive type. Corresponds to the IEEE
single~-precision 32-bit floating point type [IEEE
754-1985).

—

Type LogicalExpressionType

CallEvent ®
Type OperationRefType

WhenCondition J

(8)o

,

Type LogicalExpressionType

0..ec action ®
Type ActionType

GuardCondition J

FIGURE 47 — MONITORING-BASED CM: TRANSITION ELEMENT

The definition of type IndividualTransitionType is shown below:

<xs:complexType name="IndividualTransitionType">

<xs:sequence>
<xsd:choice>

<xs:element minOccurs="0" maxOccurs="1" name="WhenCondition" type="LogicalExpressionType"/>

<l-- Trigerring conditions, i.e., conditions whose truth value change will trigger the transition -->

<!-- Guard conditions, i.e., conditions which must be true for the transition to be triggered -->

<xs:element minOccurs="0" maxOccurs="1" name="CallEvent" type="OperationRefType"/>

<!-- a call of an operation of the CUMULUS framework which should force the LC model interpreter to take the
transition, should be restricted to refer to the an operation in one of the interfaces provided by the life cycle model -->

</xsd:choice>

<xs:element minOccurs="0" maxOccurs="1" name="GuardCondition" type="LogicalExpressionType"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="action" type="ActionType"/>

</xs:sequence>

<xs:attribute name="From" type="xs:string" use="required"/>

—n

<xs:attribute name="To" type="xs:string" use=

<xsd:attribute name="Probability" type="xs:float"/>

<xsd:attribute name="Deviation" type="xs:float"/>
</xs:complexType>

required"/>

Date: May 30, 2014

Page 79/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Each IndividualTransitionType element consists of:

An attribute of type string, called From, which references the identifier of the state that the
transition starts from

An attribute of type string, called To, which references the identifier of the state that the transition
starts from

An attribute of type float, called Probability, which indicates the probability that the entity whose
behaviour is described by the state transition model will undertake the particular transition if it is in
the state indicated by the attribute From of the transition. So Probability is the conditional
probability Pr(Transitionld|From)®. (NOTE: The attribute Probability is used in the case of state
transition models which define evidence sufficiency conditions in MBCMs; they are not used in the
case of state transition models which define life cycle models in MBCMs).

An attribute of type float, called Deviation, which indicates the margin of deviation of the
probability for the transition.

Transitions can be triggered by two types of events:

A system condition whose value is changed (such conditions are described by the sub-element
WhenCondition in the above XML schema fragment), or

A call event sent to the entity whose behaviour is described by the state transition model (such
events are described by the sub-elements and CallEvent of a transition element).

WhenCondition elements are specified as elements of the type LogicalExpressionType, which is described
in Sect 5.3.7 below. A call event is specified as an element of OperationRefType.

Furthermore, transitions may have:

A GuardCondition element — this is an element expressing a condition which must be true when an
event that can trigger the transition occurs for the transition to be taken, and

Action elements defining the actions that must be executed and completed before the transition is
taken and the entity whose behaviour is described by the state transition model reaches the
destination state of the transition.

An example of a transition element is shown below.

<transition "statel" "state2" "0.2" "0.02">
<CallEvent>
<invocation>
<sla:Endpoint>b111</sla:Endpoint>
<sla:Operation><rspcb/sla:Operation>

<sla:Parameters>
<sla:Entry>

<sla:Key>data</sla:Key>
<sla:Value>nrrcb</sla:Value>

</sla:Entry>
</sla:Parameters>

</invocation>
</CallEvent>
</transition>

The above example represents in XML the transition from statel to state2 in the expected behavioural
model of the cloud storage service provider C in the NR protocol (see Figure 28).

* The correct specification of MBCM requires that Y14 - outtransitions(from) Pr(Trld|From) = 1.

Date: May 30, 2014
Page 80/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

5.3.7. LogicalExpressionType Element

A logical expression is defined as a condition, or logical combination of conditions, over monitored
evidence Figure 48 shows the structure of the LogicalExpressionType and ConditionType.

@ @ Attributes
e .
Condition J
| [] LogicalExpressionType IG)< @ \Jype CondtionType
o 3 ™
LogicalExpression ®
\Type LogicalExpressionType y

—(@)o

g N ~

LogicalOperator ®
0. . \Type Restriction of 'xs:string')
(LogicaIExpression %

®

\Type LogicalExpressionType)

(evidenceSufficiencyCondition
7 : ®
\Type xa:string

conflictCondition ®
Type xs:string
| [] ConditionType |G)—.O'
p
expirationCondition
]@

\Type xs:string

p
evidenceCondition
\ }@

\Type EvidenceConditionType

FIGURE 48 — MONITORING-BASED CM: LOGICAL EXPRESSION TYPE AND CONDITION TYPE

The XML schema for the specification of logical expression and condition elements is shown below. As
shown in the figure LogicalExpressionType is consists of:

An attribute that signifies if the logical expression is negated or not, and

A choice of a Condition, of a type “ConditionType”, or LogicalExpression, of a type
LogicalExpressionType. Moreover, there is a possibility to have 0 or more LogicalExpression of type
LogicalExpressionType combined by a LogicalOperator (AND/OR). These additional logical
expressions can be used in case there is a need to define complex or combined conditions.

XML schema definition shows that ConditionType consists of either:

An evidenceSufficiencyCondition of type string, or
A conflictCondition of type string, or

An expirationCondition of type string, or
An evidenceCondtion of type EvidenceConditionType.

Date: May 30, 2014
Page 81/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

It should be noted that evidenceSufficiencyCondition, conflictCondition and expirationCondition can only be
a reference to a predefined condition in the AssessmentScheme element; and evidenceCondition allows the
user to define condition except of the predefined conditions.

<xs:complexType "LogicalExpressionType">
<Xs:sequence>
<xs:choice>

<xs:element "Condition" "ConditionType"/>
<xs:element "LogicalExpression" "LogicalExpressionType"/>
</xs:choice>
<xs:sequence "0" "unbounded">
<xs:element "LogicalOperator">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "AND"/>
<xs:enumeration "OR"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "LogicalExpression" "LogicalExpressionType"/>
</xs:sequence>
</xs:sequence>
<xs:attribute "false" "negated" "xs:boolean"/>
</xs:complexType>

<xs:complexType "ConditionType">
<xs:choice>
<xs:element "evidenceSufficiencyCondition" "xs:string"/>
<xs:element "conflictCondition" "xs:string"/>
<xs:element "expirationCondition" "xs:string"/>
<xs:element "evidenceCondition" "EvidenceConditionType"/>

</xs:choice>
</xs:complexType>

An example condition that refers to previously defined conflict condition is shown below.

<Condition>
<conflictCondition>1100</conflictCondition>
</Condition

Figure 49 shows the structure of EvidenceConditionType.

Date: May 30, 2014
Page 82/197

@®

| [] EvidenceConditionType l

{KOperandZ

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Aftributes

KOperand1

Jo

\Type RelationaIOperandType]

\Type RelationalOperandType

(EvidenceRefOperand
\Type EvidenceRefOperandType

(Constam

| [] RelationalOperandType |e @@

[:] EvidenceRefOperandType

7 xs:string

\ Type ConstantTypeJ

/ArithmeticExpression

Jo

\Type ArithmeticExpressionType

= @ @ Aftributes
Base Type xs:string
i referencePath
; ®
Type xs:string
[] ConstartType
i @ @ Attributes
Base Type xs:string

o type

Type Restriction of 'xs:string'

Jo

FIGURE 49 — MONITORING-BASED CM: EVIDENCE CONDITION TYPE

The XML schema for the specification of evidence condition elements is shown below. As shown in the
figure an evidence condition can be negated (see the attribute negated) and is defined as a relational
operation (see the attribute rekation which can have value equalTo, notEqualTo, lessThan, greaterThan,
lessThanEqualTo, greaterThanEqualTo) between two operands (see the element operand1 and the element
operand2). These operands can be evidence reference operand, constants, or arithmetic expressions. An
evidence reference operand (see the EvidenceRefOperandType) can be used to refer to monitorable
evidence specified in the certification model. Constant operand can be used to specify a numerical or string
constant value. Constant operand can be used define a numerical constant or a string constant (see the

ConstantType in

<xs:complexType

<xs:sequence>
<xs:element
<xs:element
</xs:sequence>
<xs:attribute
<xs:attribute

the figure).

"EvidenceConditionType">

<xs:simpleType>

<xs:restriction

"Operand1" "RelationalOperandType"/>
"Operand2" "RelationalOperandType"/>
"false" "negated" "xs:boolean"/>
"relation" "required">
"xs:string">

Page 83/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:enumeration "EQUAL-TO"/>

<xs:enumeration "NOT-EQUAL-TO"/>
<xs:enumeration "LESS-THAN"/>

<xs:enumeration "GREATER-THAN"/>
<xs:enumeration "LESS-THAN-EQUAL-TO"/>
<xs:enumeration "GREATER-THAN-EQUAL-TO"/>

</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

<xs:complexType "RelationalOperandType">
<xs:choice>
<xs:element "EvidenceRefOperand" "EvidenceRefOperandType"/>
<xs:element "Constant" "ConstantType"/>
<xs:element "ArithmeticExpression" "ArithmeticExpressionType"/>

</xs:choice>
</xs:complexType>

<xs:complexType "EvidenceRefOperandType">
<xs:simpleContent>
<xs:extension "xs:string">
<xs:attribute "referencePath" "xs:string" "required"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType "ConstantType">
<xs:simpleContent>
<xs:extension "xs:string">
<xs:attribute "type" "required">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "NUMERICAL"/>
<xs:enumeration "STRING"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

An example of evidence condition is shown below. This condition specifies that the value of the variable
nofcalls should be equal than 0.

<Condition>
<evidenceCondition "EQUAL-TO">
<Operand1>
<EvidenceRefOperand "//VariableDeclr/Var/[text()='nofcalls']"/>
</Operand1>
<Operand2>
<Constant "NUMERICAL">0</Constant>
</Operand2>
</evidenceCondition>
</Condition>

Date: May 30, 2014
Page 84/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Arithmetic expression operand defines computations over the values of monitorabl evidence in
certification model. The sturcuture of arithmetic expression is shown in Figure 50 — Monitoring-based CM:

Arithmetic Expression Type.

(ArithmeiiCOperand
\Type ArithmeticOperandType

rArithmeticExpression
\Type ArithmeticExpressionType

[[] ArithmeticExpressionType |® — -
ArithmeticOperator]

\Type Restriction of 'xs:string'

0.« O — =
ArithmeticOperand] ®

: \Type ArithmeticOperandType

,ArithmeticExpression
\Type ArithmeticExpressionType

evidenceRefOperand) ®
Type EvidenceRefOperandType y

Constant ®
Type ConstartType
I [] ArithmeticOperandType IG)G)
@ @ Attributes

name

Type Restriction of 'xs:string' ,‘

1. ArithmeticExpression
(oA —
LType ArithmeticExpressionType

FIGURE 50 — MONITORING-BASED CM: ARITHMETIC EXPRESSION TYPE

The XML schema for the arithmetic expression element is shown below. As shown in the figure arithmetic
expression is defined as a sequence of arithmetic operands or other nested arithmetic expressions
connected by arithmetic operators. The arithmetic operators are: addition (plus), subtraction (minus),
multiplication (multiply), and division (divide) operators. The operands can be evidence reference
operands, constants, or functions, as shown in XML schema. A function supports the execution of a
complex computation over a series of arguments. The results of these computations are numerical values
that can be used as an operand in an arithmetic expression. A function has a name and a sequence of one
or more arguments. Each of these arguments may be an arithmetic expression. The currently supported
functions are MIN and MAX, which choose the minimum or maximum value of those expressions supplied.

Date: May 30, 2014
Page 85/197

<xs:complexType
<xs:sequence>
<xs:choice>

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

"ArithmeticExpressionType'>

<xs:element "ArithmeticOperand" "ArithmeticOperandType"/>
<xs:element "ArithmeticExpression" "ArithmeticExpressionType"/>
</xs:choice>
<xs:sequence "0" "unbounded">

<xs:element
<xs:simpleType>
<xs:restriction
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:choice>
<xs:element
<xs:element
</xs:choice>
</xs:sequence>
</xs:sequence>
</xs:complexType>

<xs:complexType
<xs:choice>
<xs:element
<xs:element
<xs:element
<xs:complexType>
<xs:sequence
<xs:element
</xs:sequence>
<xs:attribute
<xs:simpleType>
<xs:restriction
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

"ArithmeticOperand"
"ArithmeticExpression"

"evidenceRefOperand"
"Constant"
"Function">

"ArithmeticExpression"

"ArithmeticOperator">

"xs:string">

"PLUS"/>
"MINUS"/>
"MULTIPLY"/>
"DIVIDE"/>

"ArithmeticOperandType"/>
"ArithmeticExpressionType"/>

"ArithmeticOperandType">

"EvidenceRefOperandType"/>
"ConstantType"/>

"unbounded">
"ArithmeticExpressionType"/>

Hname">

"xs:string">

HMAX"/>
HMINH/>

An example of logical expression is shown below. This example specifies a logical expression that checks
that the event sufficiency condition (see the first condition in the logical expression) is satisfied and there
no conflict has been detected (see the second condition inside the first nested logical expression) and the
value of the variable nofcalls is equal to 0 (see the condition in the second nested logical expression).

Date: May 30, 2014
Page 86/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<LogicalExpression "false">
<Condition>
<evidenceSufficiencyCondition>1011</evidenceSufficiencyCondition>
</Condition>
<LogicalOperator>AND</LogicalOperator>
<LogicalExpression "true"/>
<Condition>
<conflictCondition>1100</conflictCondition>
</Condition>
</LogicalExpression>
<LogicalOperator>AND</LogicalOperator>
<LogicalExpression "true"/>
<Condition>
<evidenceCondition "EQUAL-TO">
<Operand1>
<EvidenceRefOperand "//VariableDeclr/Var/[text()='nofcalls']"/>
</Operand1>
<Operand2>
<Constant "NUMERICAL">0</Constant>
</Operand2>
</evidenceCondition>
</Condition>
</LogicalExpression>
</LogicalExpression>

‘ 5.3.8. AnomalyMonitoring Element

This section has no corresponding section in D2.2. It describes a new element in the monitoring based
certification models that has been introduced in order to specify the monitoring of anomalies.

Certification models may also need to monitor and gather runtime evidence about: (1) potential attacks on
TOC, (2) other suspicious behaviour, or (3) operational conditions related to the property, which despite
not having caused any violation of the security property of the model so far, may lead to a violation of this
property in the future. In the context of monitoring based certification models, we refer to (1)-(3) as
“anomalies”. Some anomalies may affect the status of certificates, i.e., they might lead to the suspension or
revocation of a certificate. Other anomalies may only be used for auditing purposes.

The definition of the potential “anomalies” that should be monitored as part of a certification model should
be based on an analysis of whether potential attacks, the ways in which the behaviour of different external
actors that interact with TOC, and the overall operating conditions of the interaction between TOC and
these actors may affect the satisfaction of the given security property by the TOC.

To specify the monitoring of anomalies we have introduced the following element, called Anomalies, as
part of the assessment scheme of the monitoring based certification models (see Figure 51). The type of
this element is AnomalyType. The structure of this type is shown in Figure 52 — Monitoring-based CM:
Validity Tests Type and the part of the XML schema that defines it is shown below:

<xs:complexType "AnomalyType">
<xs:sequence>
<xs:element " "unbounded" "Assertion"

"AssertionType"/>
</xs:sequence>
</xs:complexType>

Date: May 30, 2014
Page 87/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

® [] AssertionType

©) Attributes

ID
Type xs:string

| [] AnomalyType |G @G 1.0 (Assertion J

LType AssertionType

InterfaceDeclr
Type sla:interfaceDeclrType

0.. VariableDeclr

Type sla:VariableDeclrType |

Guaranteed
Type sla:GuaranteedStateType

FIGURE 51 — MONITORING-BASED CM: ANOMALY TYPE

As shown in the above XML schema specification, an anomaly element is specified by one or more
assertions that are to be monitored. These assertions are specified as elements of AssertionType, i.e., as
normal monitoring conditions that should be checked during the acquisition of evidence for a monitoring
based certificate. The difference, however, from assertion elements specified as part of the security
property to be certified whose violation would typically either prevent the issuing of a certificate or lead to
the revocation of an issued certificate, anomaly assertion elements are used to gather monitoring evidence
indirectly associated with the property that would typically need to be audited by the certification
authority, which issues the certificates of the particular type before any further action is taken. The way to
treat detected anomalies is specified by the life cycle model of the relevant certification model (see Section
5.3.12 for examples of ways of treating anomalies).

In the following we present examples of different anomalies of types (1)-(3) for the certification model of
the NR protocol. These exemplify also the use of the anomalies specification schema.

Potential attacks

In the case of NR, As and Bs may be non-trusted parties. Both of them, for instance, may try to launch a
denial-of-service attack on C. This may happen directly by, for example, issuing a high volume of data
uploading and downloading requests to C and/or re-issuing previous requests (replay attack). It should be
noted that the monitoring rule Rlguaranteed term in the certification model would requires C to respond
only to a request from a data provider A only if this request has not been responded before. Hence, the
certification model assumes that C should not respond to repeated requests. However, even if no response
of C is expected in such cases, high volume of repeated requests may escalate to a DOS attack that will
prevent C from satisfy the NR property.

Hence the purpose of anomaly monitoring is not to detect the individual instances of repeated requests
from A to C but to detect whether this unexpected activity appears in high volume. To monitor and keep a
record of the repeated requests from particular data owners, the NR certification model should include the
following anomaly detection assertions:

Date: May 30, 2014
Page 88/197

<Assertion "2101" >

<Text></Text>

<Properties>

</Properties>

<UUID>url1</UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>

<AbstractParty>

[...]
</AbstractParty>

<InterfaceDeclr>

[.]

</InterfaceDeclr>

<VariableDeclr>
[...]
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>rsqac</Var>
<Expr>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#is_list</Operator>
<Parameter>
<ListValueExpr>
<Value>nroac</Value>
</ListValueExpr>
</Parameter>
</EventExpr>
</CountExpr>
</ConstraintExpr>
</Expr>
</VariableDeclr>

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term2</ID>
<Precondition>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Difference>
<ValueExpr1>
<ID>rqgsac</ID>
</ValueExprl>
<ValueExpr2>
<ID>rqgsacv</ID>
</ValueExpr2>

Page 89/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

</Difference>
</EventExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate2</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ListOp>
</FuncExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>
</Assertion>

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

For readability purposes, we also provide the specification of the above anomaly in the BNF syntax of

SecurSLA* below”:

assertion {
agreedAt = n/a
effectiveFrom = 00

effectiveUntil = 23

templateId = urll

sla_template {
uuid = url2

sla _model version

/* —--- PARTY DESCRIPTIONS

00

59

sla at soi sla model v1.0

_______________________________________ * /
party {

id = nr::id::c

role = nr::cloudprovider

}

abstractparty {
id = nr::id::a
role = nr::dataowner

}

abstractparty {
id = nr::id::b
role = nr::datauser

}

abstractparty {
id = nr::id::ttp

role = nr::trustedthirdparty

}

/* —---- TOC INTERFACE DECLARATIONS

> The specification of the BNF grammar of SecureSLA* is given in Appendix.

Date: May 30, 2014
Page 90/197

interfacedecl {
id interface::id::c::
providerref nr::id::c

1

interfacespec {

Document name: D2-3 Certification models v.2
Version: 1.0

Security: public

name = nr::id::c::cloudinterface
operation { name = rgsac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = t
datatype = url
domain = (equals none)
auxiliary = true }
operation { name = rgsbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = rgstc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
}}
interfacedecl {
id = interface::id::a::1
providerref = nr::id::a
interfacespec {
name = nr::id::c::ainterface
operation { name = rspca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
}}
interfacedecl {
id = interface::id::b::1
providerref = nr::id::b
interfacespec {
name = nr::id::c::binterface
operation { name = rspcb
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
}}
interfacedecl {
id = interface::id::t::1
providerref = nr::id::t

interfacespec {
name nr::id:

:c::binterface

Page 91/197

Date: May 30, 2014

operation { name = rspct
input { name = data
datatype =
domain = (
auxiliary
}}
/* —-——— VARIABLE DECLARATIONS-—-——————————————————————mmmm—————————————

rgsacv is (invocation [clll
operation = rgsac

param { name = data value =

invoke { endpoint =
nroac} } 1)

rgsbcv is (invocation [c222
operation = rgsbc

param { name = data value =

invoke { endpoint =
nroac} } 1)

rspcbv is (invocation [blll
operation = rspcb

param { name = data value =

invoke { endpoint =
nrrcb} } 1)

rgstcv is (invocation [c333
operation = rgstc

param { name = data value =

invoke { endpoint =
nrotc} } 1)

rspctv is (invocation [t111
operation = rspct

param { name = data value =

invoke { endpoint =

nrrct} } 1)

rgsac::series is series (nil,
invocation [invoke { endpoint = cll1l
operation = rgsac

param { name = data value = nroac} }])

rgsca::series is series (nil,
invocation [invoke { endpoint = alll
operation = rgsca

param { name = data value = nrrca}l }])
rgsbcv::series is series (
invocation [invoke { endpoint =
operation = rgsbc
param { name = data value =

c222
nroac} } 1)

rgstcv::series is series (
invocation [invoke { endpoint =
operation = rgstc
param { name = data value =

c333
nrotc} } 1)

rspctv::series is series (
invocation [invoke { endpoint =
operation = rspct
param { name = data value =

tlll
nrrct} } 1)

rsgac::counts is list[index = nroac ,

/* —_—

Guaranteed Terms
agreement_term { id = at::term::2

precondition {

count (difference [rgsac::series , rgsacv

Page 92/197

Document name: D2-3 Certification models v.2

url
equals none)
true }}
]

type (integer)

]

greater than 0)

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

}

guaranteedstate { id = gstatel

update (rsqac_counts, rsgac counts::nroac equals rgsacv::data ,
add (rsgac::counts, 1))

}

}

The above assertion updates the value of the “rsqac_count” list by adding 1, in case a request rgsac has
occurred before. The “rsgac_count” element keeps record of repeated requests made from A to C. Further
to the above anomaly-monitoring assumption, the certification model for NR can include a warning to the
certification authority regarding the potential compromise of NR as soon as the number of repeated data
upload requests exceeds a given threshold (e.g., N repeated data upload requests per minute). This is
specified in the life cycle model of the NR certification model (see Sect. 5.3.12 below).

Suspicious behaviour

An example of suspicious behaviour that the NR certification model should monitor is the receipt of
requests for recovery from TTP corresponding to requests for data uploading (downloading) from A(B),
which have been acknowledged by C. Such requests are suspicious since, in normal circumstances, TTP
should not be asking for a recovery of a request that has been acknowledged by C (i.e., a request from A or
B for which C has sent an NRR).

This anomalous behaviour from TTP may be due to different reasons. To issue a recovery request, TTP
should know the details of the original data uploading (downloading) request from A(B). There are four
different ways in which TTP can obtain this knowledge: (i) A or B might have sent the original request to
TTP and ask it to initiate the recovery phase, (ii) an attacker, who has managed to obtain the details of the
original request of A and B and impersonate them, sends the original request to TTP, or (iii) TTP has itself
acted as an attacker (as in (ii)), obtained the details of the original request from A or B and sent the
recovery request to C.

Case (i) itself may be the result of a malicious attempt to initiate the recovery phase by A or B. The reason
for this could be, for example, to test via TTP how C and TTP would react to such non normal requests and
whether it would be possible to launch some DoS attack onto C (via TTP) or onto TTP itself. However, (i) can
also be the result of A or B being timed out due to a (non malicious) delay in the arrival of the NRRA(B) sent
to them by C caused by the network connection between A(B) and C.

To monitor requests for recovery from TTP corresponding to already responded requests for data
uploading from A, the NR certification model uses the following monitoring assumption:

<Assertion "2102">
<Text></Text>
<Properties>
</Properties>
<UUID>url1</UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>
<AbstractParty>
[...]
</AbstractParty>

<InterfaceDeclr>

Date: May 30, 2014
Page 93/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

[.]

</InterfaceDeclr>

<VariableDeclr>
[...]
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>rpstc_record</Var>
<Expr>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#is_list</Operator>
<Parameter>
<ListValueExpr>
<Value>nrotc</Value>
</ListValueExpr>
</Parameter>
<Operator>invocation</Operator>
<Parameter>
<ValueExpr>
<ServiceRef>
<OperationList>
<ID>rgste</ID>
</OperationList>
<EndpointList>
<ID>c333</ID>
</EndpointList>
</ServiceRef>
</ValueExpr>
</Parameter>
</EventExpr>
</CountExpr>
</ConstraintExpr>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#equals</Operator>
<Parameter>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ListValueExpr>
<Value>
<ID>rqstc</ID>
</Value>
</ListValueExpr>
</ValueExpr>
</TimeOf>
</EventExpr>

Date: May 30, 2014
Page 94/197

</CountExpr>
</ConstraintExpr>
</Parameter>
<Parameter>
<ValueExpr>
<Value>nrotc</Value>
</ValueExpr>
</Parameter>
</EventExpr>
</CountExpr>
</ConstraintExpr>
</Expr>
</VariableDeclr>

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term3</ID>
<Precondition>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Specialisation>
<ValueExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<TimeSeriesOp>
<SeriesValue>
<FuncExpr>
<Text></Text>
<Properties></Properties>

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Operator>http://www.slaatsoi.org/coremodel#equals</Operator>

<Parameter>
<ID>rgstev</ID>
</Parameter>
<Parameter>
<ID>rqgsac</ID>
</Parameter>
</FuncExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
</EventExpr>
</SeriesValue>
</TimeSeriesOp>
</FuncOp>
</FuncExpr>
</ValueExpr>
<ConstraintExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>

<Operator>http://www.slaatsoi.org/coremodel#greater than</Operator>

<Parameter>
<CONST>
<Value>0</Value>
</CONST>

Page 95/197

Date: May 30, 2014

</Parameter>
</FuncExpr>
</ConstraintExpr>
</Specialisation>
</EventExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate3</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ListOp>
<Insert>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>

<Operator>http://www.slaatsoi.org/coremodel#equals</Operator>

<Parameter>
<ValueExpr>
<ID>rsqtc</ID>
</ValueExpr>
</Parameter>
<Parameter>
<ValueExpr>
<ID>rgstev</ID>
</ValueExpr>
</Parameter>
</EventExpr>
</CountExpr>
</ConstraintExpr>
<ValueExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ID>rgstev</ID>
</ValueExpr>
</TimeOf>
</EventExpr>
</ValueExpr>
</Insert>
</ListOp>
</FuncOp>
</FuncExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>
</Assertion>

Page 96/197

Document name: D2-3 Certification models v.2

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

The specification of the above anomaly in the BNF syntax of SecurSLA* is given below®:

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2

sla model version = sla at soi sla model v1.0

/* —--—— PARTY DESCRIPTIONS (AS ABOVE) —--—--———-——--
/* —-——— VARIABLE DECLARATIONS-—--——————-—-—————————————
rgsacv is (invocation [invoke { endpoint = cll1l

operation = rgsac

param { name = data value = nroac} } 1)
rgsbcv is (invocation [invoke { endpoint = c222

operation = rgsbc

param { name = data value = nroac} } 1)
rspcbv is (invocation [invoke { endpoint = blll

operation = rspcb

param { name = data value = nrrcb} } 1)
rgstcv is (invocation [invoke { endpoint = c¢333

operation = rgstc

param { name = data value = nrotc} } 1)
rspctv is (invocation [invoke { endpoint = tl111l

operation = rspct

param { name = data value = nrrct} } 1)
rgsac::series is series (nil,

invocation [invoke { endpoint = cll1l

operation = rgsac

param { name = data value = nroac} }])
rgsca::series is series (nil,

invocation [invoke { endpoint = alll

operation = rgsca

param { name = data value = nrrca}l }])

rgsbcv::series is series (

invocation [invoke { endpoint = c222
operation = rgsbc
param { name = data value = nroac} }])

rgstcv::series is series (

invocation [invoke { endpoint = c¢333
operation = rgstc
param { name = data value = nrotc} }])

rspctv::series is series (
invocation [invoke { endpoint = t111
operation = rspct

®The specification of the BNF grammar of SecureSLA* is given in Appendix.

Page 97/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

param { name = data value = nrrct} }])
rgstc_record is list[index = nrotc , invocation [invoke { endpoint = c333
operation = rgstc param { name = data value = nrotc} }] , timeof [invocation [
invoke { endpoint = ¢c333 operation = rgstc param { name = data value = nrotc} }
111
/* === Guaranteed Terms - -—-——-——————-— */

agreement_term { id = at::term::3
precondition {
/* 1f there is an nro RQS in RQSac series matching RQStc */

count (specialisation [rgsac::series ,
rgstcv::data equals rgsac::series::data] greater than 0)

}
guaranteedstate { id = gstate3

insert (rsqgtc::record, rsqgtc::record::nrotc equals rgstcv::data ,
rgstcv, timeof [rgstcv])

}

}

The above assertion monitoring formula updates the values of the element “rsqtc_record” list, by
inserting the values of rgstcy, if there is a matching request “rqsac” made by A. The “rsqtc_record”
is a list variable that keeps record of all requests made by TTP, as well as the time that they
were made. Thus, according to the above anomaly-monitoring assumption, the certification
model should raise a warning to the certification authority, in case TTP makes a request to C for
recovering an acknowledged request from A.

Anomalous operating conditions

An example of an operating condition that should be monitored by the NR certification model is the
average time that it takes for a response from C to reach its intended recipient party (i.e., A, B or TTP).
Monitoring this time is important as it might indicate that responses to A, B or TTP reach them with delays
that can get them timed out, despite C having issued these responses within the time period required by
the NR protocol (i.e., within the period [_tAReq, tAReqg+f(_t1)] required by rule R1 in the case of NRRs from
C to A). Such delays might be due to network delays or some man-in-the-middle attack on the
communication lines between C and A, B and TTP.

Monitoring the exact average time of the arrival of a NRR from C to A, B or TTP is not possible as in general
the monitoring framework of the certification authority that realises the NR certification model does not
have access to events occurring at A and B. An approximate estimate of this average time is, however,
possible by monitoring the average time of network traffic in the opposite direction, i.e., the average time
that it takes for RQSAC, RQSBC and RQSTC to reach C after being dispatched by A, B or TTP.

The following anomaly monitoring assertions show how the NR certification model monitors the network
delay for traffic from A to C:

Date: May 30, 2014
Page 98/197

<Assertion "2103">
<Text></Text>
<Properties>
</Properties>
<UUID>url1</UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>
<AbstractParty>
[...]
</AbstractParty>
<InterfaceDeclr>
[...]
</InterfaceDeclr>
<VariableDeclr>
[...]
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>rqsac_ave</Var>
<Expr>
<ValueExpr>
<ListValueExpr>
<Value>0</Value>
</ListValueExpr>
</ValueExpr>
</Expr>
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>nofcalls</Var>
<Expr>
<ValueExpr>
<ListValueExpr>
<Value>0</Value>
</ListValueExpr>
</ValueExpr>
</Expr>
</VariableDeclr>

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term4</ID>
<Precondition>
<CountExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Divide>
<ValueExprl>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>

Page 99/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

<Add>
<ValueExprl>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Multiply>
<ValueExprl>
<ID>rgsac_ave</ID>
</ValueExprl>
<ValueExpr2>
<ID>nofcalls</ID>
</ValueExpr2>
</Multiply>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExprl>
<ValueExpr2>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Substract>
<ValueExprl>
<ID>rgstev</ID>
</ValueExprl>
<ValueExpr2>
<CONST>
<Value>1</Value>
</CONST>
</ValueExpr2>
</Substract>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr2>
</Add>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExprl>
<ValueExpr2>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Add>
<ValueExprl>
<ID>nofcalls</ID>
</ValueExprl>
<ValueExpr2>
<CONST>
<Value>1</Value>
</CONST>
</ValueExpr2>
</Add>

Page 100/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2

</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr2>
</Divide>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate4</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#less_than</Operator>
<Parameter>
<ID>rgsac_ave</ID>
</Parameter>
<Parameter>
<CONST>
<Value>30</Value>
</CONST>
</Parameter>
</FuncExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>
</Assertion>

The representation in SecureSLA* is given below:

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2

sla model version = sla at soi sla model v1.0

/* —=—- PARTY DESCRIPTIONS (AS ABOVE) —————=-—————————————————————
/* —=—— VARIABLE DECLARATIONS——=—— === === oo
rgsacv is (invocation [invoke { endpoint = cll1l

operation = rgsac

param { name = data value = nroac} } 1)
rgsbcv is (invocation [invoke { endpoint = c222

operation = rgsbc

param { name = data value = nroac} } 1)

Page 101/197

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

rspcbv is (invocation [invoke { endpoint = blll
operation = rspcb
param { name = data value = nrrcb} } 1)
rgstcv is (invocation [invoke { endpoint = c¢333
operation = rgstc
param { name = data value = nrotc} } 1)
rspctv is (invocation [invoke { endpoint = tl11l1l
operation = rspct
param { name = data value = nrrct} } 1)
rgsac::series 1is series (
invocation [invoke { endpoint = cll1l
operation = rgsac
param { name = data value = nroac} }])
rgsca::series 1is series (
invocation [invoke { endpoint = alll
operation = rgsca
param { name = data value = nrrca}l }])
rgsbcv::series is series (
invocation [invoke { endpoint = c222
operation = rgsbc
param { name = data value = nroac} }])
rgstcv::series is series (
invocation [invoke { endpoint = c¢333
operation = rgstc
param { name = data value = nrotc} }])
rspctv::series is series (
invocation [invoke { endpoint = t111
operation = rspct
param { name = data value = nrrct} }])
rgsac_ave is type(float) initially 0 units
nofcalls is type(integer) initially 0 units
/* === Guaranteed Terms = ———————-——-— */
agreement_term { id = at::term::3
precondition {
rgsac_ave is divide (add (multiply (rgsac ave, nofcalls),
subtract (rgstcv::data::t::areg , rgstcv::data::t::g::one)),
add (nofcalls, 1))

}

guaranteedstate { id = gstate3

rgsac::ave less than 30

}

This assertion monitoring formula updates the variable rgsav_ave that is used to keep a record of the
average time that it takes for data upload requests RQSAC to reach C from A. The variable noofcalls in the
assertion is the variable keeping the number of requests that have been taken into account for calculating
this average. In this case, the certification model should raise a warning to the certification authority in

Date: May 30, 2014

Page 102/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

cases where rgsav_ave > f(t1), as this would lead to A being systematically timed out due to delays in the
network traffic between A and C. This warning is also shown in the NR certificate life cycle model in Sect.
5.3.12.

5.3.9. ValidityTests Element

This section corresponds to section 5.1.5 in D2.2. There are no amendments to this part of the
monitoring based certification model.

A certification model may, in addition to the assessment scheme, define extra validity tests as
preconditions for issuing a certificate of a given type. These tests may relate, for example, to conditions
regarding the cloud where the service is deployed (e.g., requiring that the cloud offers full isolation of
virtual machines) or the adherence of other services that this service may depend on to standards (e.g.,
requiring that a storage service, which is used by a SaaS service implements correctly a proof-of-
retrievability protocol) or the monitoring infrastructure itself (e.g., requiring the integrity of the
transmission of monitoring events and results inside the infrastructure and to external clients of it). Such
conditions are specified by the element validityTests in the certification model schema (see Figure 52).

The type for specifying validity tests has not been defined yet. It will be defined in the third year of the
project. However, we envision that the specification of validity tests can be based on expressing conditions
regarding Trusted Computing based certificates and/or other types of certificates regarding TOC and/or its
operational context that will confirm the adherence of such entities to required conditions. For example, a
validity test might be that the monitoring components, which have been used to gather the evidence
underpinning a certificate, have integrity and have remained the same throughput the monitoring period.
Thus, we expect that validity tests can be expressed as logical conditions over such certificates and their
contents.

MalidiTests e [] ValidityTestsType
Type ValidityTestsType

FIGURE 52 — MONITORING-BASED CM: VALIDITY TESTS TYPE

‘ 5.3.10. MonitoringConfigurations Element

This section corresponds to section 5.1.6 in D2.2. There are no changes to the monitoring based
certification model schema but we have provided examples of monitoring configuration elements.

This element specifies the list of the monitoring configurations that have been used to collect the evidence
for generating certificates Figure 53).

Each monitoring configuration includes:

* Aunique Identifier (ID) as an attribute,

* Alist of components of the monitoring environment.

These components can be of two types: (1) sensors, which are components capable of capturing
and transmitting primitive monitoring events, and (2) reasoners, which are components capable of
analysing events and checking whether monitoring conditions are satisfied (aka monitors).

* ConcreteProperty — This element provides the concrete operational specification of the security
property that is to be certified by the model, expressed in the language accepted by the reasoner(s)
of the particular monitoring configuration. The concrete security property is generated
automatically from the abstract security property once a monitoring configuration is selected.

Date: May 30, 2014
Page 103/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

© [] MonitoringConfigurationsType
© [] IndividualMonitorConfigurationType
[©] Attributes

— Id
Type xsd:string

© [] ComponentType
[S] Attributes

@ 0..0 MonitoringConfiguration o
Type IndividualMDni(orConfigura(lnnTypeJ S

Type Restriction of 'xsd:string' |®

1.0 [Component Default REASONER
Type ComponentType
EndPoint
@o o
Type xsd:string

© [] ecformulasType
ConcreteProperty 0.0

= formula
Type ecformulasType © QQ

FIGURE 53 — MONITORING-BASED CM: INDIVIDUAL MONITORING CONFIGURATION TYPE

XML schema for monitoring configuration type is shown below.

<xs:complexType "IndividualMonitorConfigurationType">
<Xs:sequence>
<xs:element "unbounded" "Component" "ComponentType"/>
<xs:element "ConcreteProperty" "ec:formulasType"/>
</xs:sequence>
<xs:attribute "1d" "xs:string"/>
</xs:complexType>
<xs:complexType "ComponentType">
<Xs:sequence>
<xs:element "EndPoint" "xs:string"/>
</xs:sequence>
<xs:attribute "REASONER" "type">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "SENSOR"/>
<xs:enumeration "REASONER"/>

</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

An example monitoring configuration is shown below. As show in this example, the framework is
configured with reasoner (see the Component element insidet he MonitoringConfiguration element)
component and the selected reasoned is assigned with a set of concrete properties (see the formula
elements inside the ConcreteProperty element) that should be monitored. For brevity the monitorable
formulas are not shown here.

<MonitoringConfiguration Id="Id4">
<Component type="REASONER">
<EndPoint>https://192.168.43.23:8888/CumulusService.wsdl</EndPoint>

</Component>

<ConcreteProperty>
<formula formulald="formulald0" type="type2" forChecking="true" diagnosisRequired="false"

threatDetectionRequired="false">....

</formula>

<formula formulald="formulald1" type="type2" forChecking="true" diagnosisRequired="false"
threatDetectionRequired="false">....
</formula>
Date: May 30, 2014
Page 104/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</ConcreteProperty>
</MonitoringConfiguration>

5.3.11. EvidenceAggregation Element

This section corresponds to section 5.1.1 in D2.2. There are no amendments to this part of the
monitoring based certification model schema.

This element defines how often should the monitoring evidence being checked to create a new certificate,
with new aggregated evidence (Figure 54).

In this element should be specified the:
* The StartDate of the first aggregation,
* A choice of either:

o The NumberOfEvents, which is the number of the primitive monitoring events being
aggregated, or

o The intervalsTime, which specifies how often should the evidence being aggregated, and
the intervalUnit, which declares the unit used to specify the intervals.

* FunctionalAggregatorld, which defines what type of aggregation should done in the events, and

* IntermediateResults, which is an optional element that could be used to specify if there is a need to
aggregate evidence between two predefined aggregation periods, to check the validity of the certificate.

o [denceAggregationTyp
Startdate

®
Type xs:date
NumberOfEvents
Type xs:string

© [] IntervalsType

[C] Attributes

EvidenceAggregation o G) intervalsTime
Type EvidenceAggregationType

Type xs:string

Intervals
Type IntervalsType

intervalUnits
Type Restriction of 'xs:string'

FunctionalAggregatorld ®
Type Restriction of 'xs:string'
IntermediateResults ®

Type xs:boolean

FIGURE 54 — MONITORING-BASED CM: EVIDENCE AGGREGATION TYPE

An example of an Evidence Aggregation element is shown below. In this example, an aggregation element
with start date “2013-01-01” is defined, that states that the aggregation of detailed evidence should be
carried out at intervals of 720 hours in generating certificates, and should apply a Boolean value for the
property.
<EvidenceAggregation>
<StartDate>"2013-01-01"</StartDate>
<Intervals "720" "hours"/>
<Functional Aggregatorld>Boolean</Functional Aggregatorld>
<IntermediateResults>True</IntermediateResults>
</EvidenceAggregation>

Date: May 30, 2014
Page 105/197

Document name: D2-3 Certification models v.2
Version: 1.0

Security: public

5.3.12. LifeCycleModel Element

This section amends section 5.1.8 in D2.2. In the new version of the schema for specifying monitoring
based certification models, life cycle model elements are specified as instances of a new type of elements
called StateTransitionModel (see section 5.3.6). This replaces the element type LifeCycleModelType in v1

of the schema.

This element defines all possible states that a certificate could have, as well as the transitions between the
different states, and their conditions, which are references of predefined conditions of the certification

model.

© [] StateTransitionModelType
InitialState ®
Type PseudoStateType
1. [states
®
Type StatesType
1.0 | transitions
- ®
Type TransitionsType
LifeCycleMode! FinalState
- - o——(@)o ®
Type StateTransitionModelType Type PseudoStateType

historyState
Type HistoryStateTypeJ

0.« requiresinterface
Type sIa:InterfaceDecIrTypeJ

1.0 [providesinterface ®
Type slaiinterfaceDeclrType

FIGURE 55 — MONITORING-BASED CM: LIFECYCLE MODEL TYPE

The life cycle model of a monitoring-based certificate is described by the A UML stare chart diagram in the
below figure, where all states and transactions are presented.

Date: May 30, 2014
Page 106/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

(state machine Monitor M [[Monitori MU N\
Activated
. > entry / star itoring
e forin)/ reco i it(e: ingResult)
monitoringEvidence(e: _— T
MonitoringResult) / \'\

Continuous Monitoring

when
(expiration-conditions
AND

) when no-unresolved-anomaly’
(assertion-satisfied
AND Issuing
sufficiency-conditions-
satisfied)
Issued

when entry / CheckValidity Conditions

(expiration-condition when (validity-conditions-satisfied) / aggregate evidence _

unresolved-anomalies)

History

when
unresolved-anomalies) /

when when
(no-unresolved-confiict) (unresolved-confiict) /|
auditConfiicts

ly)

Anomaly-Audit Conflict-Audit

when resolvedAnomaly(a:

Anomaly) resolveConfiict(c: Conflict)_ when (unresolved-confiict)

Anomaly when (anomaly-selected) N Anomaly
Selection 7 Inspection

Confllgl when (confict-selected) Conflict Selection |

when (non-resolvable-anomaly)| when (non-resolvable-confiict)

Revoked
entry / stopMonitoring

s

FIGURE 56 — MONITORING-BASED CM: UML DIAGRAM OF LIFE CYCLE MODEL

1

As shown in the figure, the life cycle model has an initial state called “Activated” and the states “Pre-
Issued”, “Issued”, “Conflict Inspection”, “Conflict Selection”, “Anomaly Inspection”, “Anomaly Selection”,
“Revoked” and “Ended” (i.e., the final state). Moreover, there are three composite states named

”n

“Continuous Monitoring”, “Anomaly-Audit” and “Conflict-Audit”, as well as the historical state “History”.

According to this model, the first state in the certificate’s lifecycle is called Activated, where the certificate
is activated. After being activated, the certificate moves to the “ContinuousMonitoring” composite state,
which consists of three other composite states named “Issuing”, “Conflict-Audit” and “Anomaly-Audit”.
Whilst at this state (“Issuing”), the evidence required for the assessment of the certificate is continually
gathered by the monitoring infrastructure. When the accumulated evidence, becomes sufficient according
to the EvidenceSufficiencyConditions specified on the CM, the certificate moves to the state “Pre-Issued”,
which is a sub-element of the composite state “Issuing”. At this state, the certification infrastructure will
check if the extra validity conditions for the certificate type (if any) are satisfied and, if they are, the
certificate will move to the state “Issued”, from which it will generate a certificate instance and return it
back to the requester.

Whilst a certificate type is at the “Issuing” state, the monitoring of the evidence continues and according to
the EvidenceAggregation element, any additional operational evidence is recorded in an aggregated
format. In case a warning is raised concerning a defined anomaly that is defined in the Anomaly element of
the CM, the certificate moves to the sub state “Anomaly-Selection” of the composite state “Anomaly-
Audit” (“when (no-unresolved-anomaly)” transition). In this state the framework will select the appropriate
anomaly to be handled and the certificate will move to the “Anomaly-Inspection” state where the
framework will try to resolve it. In case there are more anomalies to be resolved then the certificate will
move back to the previous state (“Anomaly-Selection”) for another anomaly to be selected and when all
anomalies are resolved, then the certificate moves to the “History” state, which is the state where it was
prior to entering the “Anomaly-Audit” state, as signified by the guard condition of the transition.
Otherwise, in case an anomaly cannot be resolved by the certification infrastructure, the certificate type
moves to the “Revoke” state, which will lead to its termination.

Similar to the anomalies, in case a conflict occurs (according to the Conflict element of the CM), the
certificate will move to the “Conflict-Audit” state, and more specifically to the “Conflict Selection” sub state
(“when (unresolved-conflict) / auditConflicts” transition). At this state the framework will select the

Date: May 30, 2014
Page 107/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

appropriate conflict to be handled and the certificate will move to the “Conflict Inspection” state. If the
conflict is being resolved then the certificate will move to the “History” state. If more conflicts need to be
handled, then it will move back to the “Conflict Selection” until all conflicts are resolved before moving to
the “History” state. Otherwise, if a conflict cannot be resolved then the certificate will move to the
“Revoke” state and it will be terminated.

Finally, when the expiration date of the certificate is reached as stated in the ExpirationCondition of the
CM, and if there are no unresolved anomalies, the certificate will move back to “Activated” state (as
depicted by the transition “when (expiration-conditions AND no-unresolved-anomaly)”). At this point the
monitoring process will continue until sufficient evidence is available again for issuing another instance of
the same certificate. Subsequently, if SufficientEvidenceCondition is satisfied, the certificate will move to
the “Pre-Issued” state. However, if there are unresolved anomalies during the expiration of the certificate,
it will first move to the “Anomaly-Audit”, as indicated by the transition “when (expiration-condition AND
unresolved-anomalies)” in order to resolve any occurred anomaly, and then by moving back to the “Issued”
state, from where the “when (expiration-conditions AND no-unresolved-anomaly)” condition will be
triggered for the renewal of the certificate.

An XML example of the life-cycle model is given below. In this example all the states are being defined
according to their type (atomic, composite, history), as well as their transitions. An example of a transition,
as shown in the following example is between the state with id “statel” (“Activated”) and the state with id
“state2” (“Pre-Issued”). The condition for this transition states that and in order to go from the “Activated”
state to the “Pre-Issued” state the EvidenceSufficiencyCondition with id “1011” defined in the
AssessmentScheme element of the model should be satisfied.

<LifeCycleModel>
<states>
<state>
<atomicState "statel" "Activated" "Initial State"/>
</state>
<state>
<compositeState "compstatel" "ContinuousMonitoring">
<substate>
<states>
<state>
<compositeState "compstate2" "Issuing">
<substate>
<states>
<state>
<atomicState "state2" "Pre-Issued"/>
</state>
<state>
<atomicState "state3" "Issued"/>
</state>
</states>
<transitions>
<transition "state2" "state3">
<WhenCondition "true">
<LogicalExpression "true">
<EvidenceAggregation/>
</LogicalExpression>
</WhenCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
<state>

Date: May 30, 2014
Page 108/197

<compositeState
<substate>
<states>
<state>
<atomicState
</state>
<state>
<atomicState
</state>
</states>
<transitions>
<transition
<GuardCondition
<LogicalExpression
<WhenAnomalySelected/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition
<GuardCondition
<LogicalExpression>
<WhenAnomalyResolved/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition
<GuardCondition
<LogicalExpression>
<UnresolvedAnoly/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition "state5"
<GuardCondition>
<LogicalExpression>
<WhenUnresolvedAnomaly/>
</LogicalExpression>
</GuardCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
<state>
<compositeState
<substate>
<states>
<state>
<atomicState
</state>
<state>
<atomicState
</state>
</states>
<transitions>
<transition
<GuardCondition
<LogicalExpression>
<WhenConflictSelected/>
</LogicalExpression>

"compstate3"

"state4" "AnomalySelection"/>

"stateS" "AnomalyInspection"/>

"state5">
"tl'ue">
"tl'ue”>

"state4"

"hstatel">
"tl'ue">

"state5"

"state4">
"false">

"state5"

"state8">

"compstate4">

""state6" "ConflictSelection"/>

"state7" "ConflictInspection"/>

"state7">
"tl'ue">

"state6"

Page 109/197

"Anomaly-Audit">

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

</GuardCondition>
</transition>
<transition
<GuardCondition
<WhenConflictResolved/>
</GuardCondition>
</transition>
<transition
<GuardCondition
<LogicalExpression>
<UnresolvedConflict/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition "state7"
<GuardCondition>
<LogicalExpression>
<WhenUnresolvedConflict/>
</LogicalExpression>
</GuardCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
</states>
<transitions>
<transition "compstate2"
<WhenCondition>
<Condition>
<Anomaly>
<Anomalies
</Anomaly>
</Condition>
</WhenCondition>
</transition>
<transition "compstate2"
<WhenCondition>
<Condition>
<conflictCondition>
<Conflict Id="1100"/>
</conflictCondition>
</Condition>
</WhenCondition>
</transition>
<transition "compstate2"
<WhenCondition>
<Condition>
<expirationCondition>
<ExpirationCondition
</expirationCondition>
</Condition>
</WhenCondition>
</transition><transition
<WhenCondition>
<Condition>
<expirationCondition>
<ExpirationCondition
</expirationCondition>
</Condition>

"hstatel">
"tl'l,le">

"state7"

"state6'">
"false">

"state7"

"state8">

"state4">

"2101"/>

"state6'">

"state]l">

l7987|1/>

"state4">

"compstate2"

l7987|1/>

Page 110/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

<Condition>
<Anomaly>
<Anomalies
</Anomaly>
</Condition>
</WhenCondition></transition>
</transitions>
</substate>
</compositeState>
</state>
<state>
<atomicState
</state>
</states>
<historyState
<transitions>
<transition "statel"
<WhenCondition>
<Condition>
<evidenceSufficiencyCondition>
<EvidenceSufficiencyCondition
</evidenceSufficiencyCondition>
</Condition>
</WhenCondition>
</transition>
</transitions>
</LifeCycleModel>

"2101"/>

"state8" "Revoked"/>

"hstate1" "compstate2"/>

"state2">

"1011"/>

Page 111/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

6. TC-based Certification Model

This section amends section 6 in D2.2. The amendment made to the TC-based CM is the addition of a
new model of TC support for certification.

As it was already explained in D2.2, the main innovation of CUMULUS project with regard to Trusted
Computing (TC) based certification will be to bridge the gap that exists between software certification and
hardware certification, in order to provide a comprehensive solution for system certification using
hardware technology.

We consider two main scenarios for TC-based certification. In the first scenario, the TC certification model
is not used as an independent model but it is rather leveraged to provide the trust that is needed for the
validation of the Monitoring and Test Based certification. This means that the TC is not employed to directly
certify a security property but instead used to increase the trust in other types of certifications. For
instance, in a test-based certificate it can be used to prove that the platform configuration at runtime is the
same as the one used for testing in a pre-production environment. In particular, the following section
explains how TC is applied in order to guarantee that the Testing and Monitoring Modules running on the
cloud can be trusted.

In the second scenario, the TC certification model will be used as an independent model to certify either
platforms or services that are running in cloud. We would like to remark that this second use case would
generalize the methodology already described for the first scenario in order to be able to cover more
heterogeneous platforms and services, instead of only the monitoring and testing agents that CUMULUS
intends to use.

In Section 6.1 we recall the TC-based CM as presented in D2.2, while in Section 6.2 we present a new model
of TC support for certification. This new work focuses on the first scenario, which we understand as crucial
for the reliability and acceptance of evidences gathered by monitoring and testing agents. We leave for
deliverable D2.4 the presentation and details of the final (refined) standalone TC-based certification model.

6.1. TC-based Certification Model XML Schema Description

This section corresponds to Section 6.1 in D2.2. There are no amendments to the XML schema of the
TC-based CM.

The initial TC certification model was proposed as follows (see Figure 57 and Table 6).

Date: May 30, 2014
Page 112/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Modelld ®
Type xs:integer

TCCertificateType ®
Type CUMULUS_TC_based_CertificateType

CASignature ®
Type CASignatureType

| [] TCBasedCertificationModelType |®—.1"°° @.

SecurityProperty ®
Type SecurityPropertyType

AssessmentScheme o
Type AssessmentSchemeType

ValidityTests ®
Type ValidityTestsType

EvidenceAggregation ®
Type EvidenceAggregationType

LifeCycleModel 5
Type lifeCycleModelType

FIGURE 57 — TC CERTIFICATION MODEL SCHEMA

Certification Model Type Type specification

field

Model_Id integer N/A

. . Typel = Standard_Attestation_Certificate
TCCertificateType CUMULUS_TC_based_CertifiicateTyp Type2 = Standard_Signature_Certificate
e Type 3 = Semantic_Signature_Certificate
Certificate_Optional_Parameter;
. . name="signatureType” type=String

CASignature CASignatureType name="signer" type=String

name="signature" type=String
) . name="Property_Category" type="xs:string"

SecurityProperty SecurityPropertyType complexType name="AssertionType"
name="EvidenceSufficiencyCondition"

AssessmentScheme AssessmentSchemeType type="EvidenceSufficiencyConditionType
name="ExpirationCondition"
type="ExpirationConditionType"
name="Conflict" type="ConflictType"

o L. External pre-condition: Parent of key loaded into

ValidityTests ValidityTestsType TC module receiver.
External pre-condition: Activated TC module on
receiver.

.) . . AggregatedResultsInfo

EvidenceAggregation EvidenceAggregationType EventSummary
AggregatedValue
IntermediateResults

. . name="InitialState" type="IndividualStateType"
LifeCycleModel LifeCycleModelType

name="transitions" type="TransitionsType"
name="FinalState" type="IndividualStateType"

Table 6 — TC Certification Model Schema

Page 113/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

In the following sub-sections we will describe the elements of the schema.

6.1.1. Model Id Element

This section corresponds to section 6.1.1 in D2.2. There are no amendments to this part.

Model_Id is the unique identifier of the certification model instance, compliant with the certification meta-
model in section 2.5.

6.1.2. TCCertificateType Element

This section corresponds to section 6.1.2 in D2.2. There are no amendments to this part.

TCCertificateType represents different kinds of TC-based Certification. For the type specification see
alsoTable 6.

6.1.3. CASignature Element

This section corresponds to section 6.1.3 in D2.2. There are no amendments to this part.

CASignature represents the signature of the certification authority that has defined the certification model.
The element is defined in accordance to the CUMULUS meta-model.

6.1.4. Security Property

This section corresponds to section 6.1.4 in D2.2. There are no amendments to this part.

SecurityProperty is the element in the schema that defines the security property that is to be certified by
the particular instance of the Certification Model. The format of this element is compliant with the one
described in Section 2.3.

6.1.5. AssessmentScheme Element

This section corresponds to section 6.1.5 in D2.2. There are no amendments to this part.

This element follows the same structure as the one defined in D2.2.

6.1.6. ValidityTests Element

This section corresponds to section 6.1.6 in D2.2. There are no amendments to this part.

A certification model may, in addition to the assessment scheme, define extra validity tests as
preconditions for issuing a certificate of a given type.

This element follows the same structure as the one described in D2.2.

6.1.7. EvidenceAggregation Element

This section corresponds to section 6.1.7 in D2.2. There are no amendments to this part.

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

This element follows the same structure as the one described in D2.2.

6.1.8. LifeCycleModel Element

This section corresponds to section 6.1.8 in D2.2. There are no amendments to this part.

This element follows the same structure as the one described in D2.2, and is defined in accordance to the
certification meta-model life-cycle element in section 2.5.

6.2. TC Support for Certification

This section has no corresponding section in D2.2. It describes a new model for providing TC support
for certifiction models.

In this section, we present a model for the use of TC in order to guarantee that the Testing and Monitoring
Modules deployed and running on the cloud are fully trusted. We will first introduce the basic concepts
related to TC support for certification, and how these relate to the schema of the TC support model.

6.2.1. TC Support Basics

This section has no corresponding section in D2.2.

Once the testing or monitoring agent is deployed on a cloud platform, in order to support software agent
integrity we need to bind the state of the agent in question to a state of the underlying platform. To
support the binding process we need to include TC-specific artefacts in the certification model schema. The
TC-specific artefacts and binding process are shown in Figure 58.

The TC binding process is based on the TPM technology. We will describe in details the concepts and
specific fields of TPM for a better understanding of the binding process and the defined TC support schema.

PCR
Monitoring
Agent Test Agent 0 Hash,
1 Hash,
Application 5 Hash,
Operating System : :
Boot L ' |
oot Loader i5 Hash,<
BIOS
16
BIOS Boot Block . . .
Server ' '
(Testing / Monitoring 23 Hashy;
Module)

FIGURE 58 — BINDING OF TESTING/MONITORING AGENT TO A PLATFORM STATE

TPM v1.2 chipsets have 24 Platform Configuration Registers (PCRs). The PCRs are series of 20-byte registers
that are used to store system measurements. This is the length since 20 bytes is the length of the output of

Date: May 30, 2014
Page 115/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

the SHA-1 algorithm’, and in most of the cases this operation is used to compute the checksum of a
component of the system. The PCRs are reset to a known value on every boot and they cannot be
overwritten®. The only way to add data to a PCR is with the Extend operation that combines the previous
value of a PCR with 20 new bytes of data using the SHA-1 algorithm. In that way, each new state stored in a
PCR is dependent on the value of the previous state. Thus, the PCRs can keep track of unlimited number of
measurements (Extend operation) and each PCR index has its own purpose®, described as following:

* BIOS, ROM, Memory Block Register [PCR index 0-4]
* OSloaders [PCR index 5-7]

* Operating System (OS) [PCR index 8-15]

* Debug [PCR index 16]

* Localities, Trusted OS [PCR index 17-22]

* Applications specific [PCR index 23]

The fundamental concept of binding software agent to a system (platform) state is the use of TPM
functionality of binding cryptographic keys to PCR values. This TPM functionality allows (administrative)
entities to request to a TPM, via defined APIs, to generate a key pair and seal the private key to a set of
PCRs’ values. The TPM chip generates keys internally and the private key, of a public/private key pair, is
bound to the selected set of PCRs. In that way, all operations using the private key of the key pair are
performed inside the TPM chip and only if the state of the PCRs has not changed (i.e., if the current values
of the PCRs are the same as those when the key was bound to). For example, if a software agent (on a
server platform) can sign a challenge message with the key this implies that the platform, to which the key
is bound to, remains in the same state. Another important aspect of the key binding process is that the key
bound to the TPM’s PCRs can only be used on the same TPM chip (in the same platform). This key is of type
of non-migratable keys of TPM™°.

Given the above functionality, we have the following two application binding possibilities:

* asoftware agent can be considered to be running on a valid platform state, if the agent can use a
cryptographic key already bound to a valid platform state (a set of PCR values).

* a software agent can be considered to be in a valid state if the agent can use a cryptographic key
already bound to both a valid platform state (a set of PCR values) and a valid software agent state
(stored in a specific PCR).

‘ 6.2.2. TC Support Model

This section has no corresponding section in D2.2.

This section describes the defined model providing TC support to any of the CUMULUS CMs, and an
explanation of the artefacts that compose it. The model is to be included (referenced) as an integral part of
any CUMULUS CM along with the artefacts defined by the model. Figure 59 shows a graphical
representation of the TC support model, while Appendix 10.5 shows the corresponding XML schema.

”In TPM v2.0 there is another PCR bank for SHA-256 with PCR length of 32 bytes.

8 We mean that PCR values cannot be set to specific values, but they can only be extended with new values. PCRs 16 and 23 can only be
reset (with zeros) if access to TPM is given for that.

? https://www.trustedcomputinggroup.org/files/static_page_files/ES5A303C-1A4B-B294-DO66E66A82DAE27D/TPM%20Main-
Part%202%20TPM%20Structures_v1.2_rev116_01032011.pdf

10https://www.trustedcomputinggroup.org/fiIes/static_page_fiIes/72C26ABS-1A4B-8294-DOOZBCOBSC062FF6/TPM%20Main-
Part%201%20Design%20Principles_v1.2_rev116_01032011.pdf
Date: May 30, 2014
Page 116/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

(TCSuppert]=—
TCS rtT EH EH PlatformState |B——
0] TCsupportType Jer—(+e=)e— Platformstate 3 Faemsarne)o—(=or[Hle
“~— PCRNumber
l..oa

_A licationState |E——
__ (I:I ApplicationStateType)

0..00

[oprcstonter Jo

~— StateBoundKey [B——
[StateBoundKeyType |& =) ds:KeyInfo

@ TPMKeyType

~— @ BoundTo

— @ TPMVersion

FIGURE 59 — TC-SUPPORT MODEL SCHEMA
The rationale of each field included in the TC-Support model schema is given bellow:
PlatformState

Specifies the state of the platform, it contains integrity measurements (checksums) of the platform stack
from the BIOS up to the OS level. This field does not include the state of the high level applications.

PlatformState.PCRNumber

PCR indexes used to store the measurements of the platform. For example, one can use PCR indexes 0-15.
A detailed explanation and rationale of which specific PCRs are used by the TC mechanisms will be given in
deliverable D3.2.

PlatformState.Hash

This hash value is the result of the computation of the platform components’ integrity values stored in the
selected PCRs.

ApplicationState

It specifies the state of the application that must have its integrity ensured, in this case the Testing and
Monitoring agent applications.

ApplicationState.ApplicationRef

Contains a list of the elements, application-specific files that compose the application whose integrity must
be ensured. Important: the list of application-specific files must be treated as an ordered list in order to
facilitate the integrity verification of the overall application.

ApplicationState.IntegrityMethod

Defines the method used to compute the integrity of the overall application as a single value. A possible
way of computing an application state is by iterating over the list of application-specific files in the given
order, where the integrity of each file is computed as a function of the integrity value computed on the
previous file in the list'.

" See for example linked timestaping (http://en.wikipedia.org/wiki/Linked_timestamping)
Date: May 30, 2014
Page 117/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

ApplicationState.PCRNumber

The PCR index used to store the integrity checksum of the application. For example, one can use PCR index
23 to store the integrity checksum.

ApplicationState.Hash

It is the result of the integrity measurement of the trusted application. If some components of the
application change the resulting value of the checksum will be different from this one.

StateBoundKey

The cryptographic key stored in the TPM that is bound to some PCR values. This means that if any of the
values of the associated PCRs have been modified, the key will not be accessible.

StateBoundKey.Keylnfo

It contains, among more general information, the public portion of the cryptographic key, including its
crypto schema type (RSA, DSA, etc). It is important to note that the Keylnfo element is defined as an
element referencing <ds:Keylnfo> element of the XML digital signature schema®, and as such a more
flexible key representation can be used, for example a X.509 public key certificate, which as a consequence
provides a more convenient way of handling key management at application-level.

StateBoundKey.BoundTo

Specifies two options: (i) if the key is bound to a valid platform state; or (ii) if the key is bound to both, a
valid platform state and a valid software agent state. This information is to be used by application-level
operations to determine what attestation verification is to be undertaken/accepted or not by the
CUMULUS platform.

In the following we describe some possible (application-specific) interpretations of the BoundTo element
values. According to the values we can have the following interpretations:

1. Restrictive: refers to option (ii) above. The key can only be used if the states of the platform and of
the application remain the same as at the time of key creation (certification).

Pros: It is not necessary to perform remote attestation on the integrity of the software agent
because such attestation is implicit by the use (binding) of the key.

Cons: Every time the application (agent) changes (updates) it is required to re-certify the integrity
of the application state, and create a new key bound to this new state.

2. Permisive: refers to option (i) above. Since the key is bound only to a valid platform state, a valid
application state must be referenced from a trusted source of information (e.g., internal CUMULUS
database with valid states of (CUMULUS) software components).

Pros: In case of updates on the application level, it is not necessary to re-certify the integrity of the
new application state but only to re-evaluate and update the trusted source of information with
the new state.

Cons: It requires periodical remote attestations to ensure the authenticity and integrity of the
application (CUMULUS components) current state.

StateBoundKey.TPMKeyType

Specifies if the key can be used out of the TPM (migratable key) or can only be used in the same TPM
where the key was created (non-migratable key). For the current implementation we have restricted this
value to non-migratable key.

12 http://www.w3.org/TR/xmldsig-core/#sec-Keylnfo
Date: May 30, 2014
Page 118/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

An illustrative example of the TC-Support for Certification is given in Figure 60:

<ns3:TCSupport "1.2"
"http://www.w3.0rg/2000/09/xmldsig#" "urn:cumulus:tcsupport'>
<PlatformState>
<Hash

"http://www.w3.0rg/2000/09/xmldsig#shal">LSymIVER7tScbbjZAENunWQhDGM=</Hash>
<PCRNumber>0</PCRNumber>
<PCRNumber>1</PCRNumber>
<PCRNumber>2</PCRNumber>

</PlatformState>

<ApplicationState "urn:cumulus:tesupport:integritymethod:linked-timestamping">
<Hash

"http://www.w3.0rg/2000/09/xmldsig#shal">rU6BBxN4h/0HqLMCNhJj7ZS3yMw=</Hash>
<PCRNumber>23</PCRNumber>
<ApplicationRef>
<ElementRef>cumulus:monitoringcomponent:monitor.jar</ElementRef>
<ElementRef>cumulus:monitoringcomponent:config:config.xml</ElementRef>
<ElementRef>cumulus:monitoringcomponent:lib:EventManager.jar</ElementRef>

</ApplicationRef>
</ApplicationState>
<StateBoundKey "PlatformAndApplicationState" "Non-MigratableKey">
<ns2:KeyInfo>
<ns2:KeyValue>
<ns2:RSAKeyValue>

<ns2:Modulus>6h6uowDilqSLAEyD3ghOdZcS9+VIwFeFwu+C9z4MRyunpeFK10nZ2qtE97LoxHfKB

a+LJsRGbLOeGxZcIw3me0VZzQI8LsrirbG+MvtkdeZkEQrF02tpC/zIMe30T4B0kpYkI91elpeMp/n1R
WzUH8+a/5¢WVUnHT80=</ns2:Modulus>
<ns2:Exponent>AQAB</ns2:Exponent>
</ns2:RSAKeyValue>
</ns2:KeyValue>
</ns2:KeyInfo>
</StateBoundKey>
</ns3:TCSupport>

FIGURE 60 — TC-SUPPORT FOR CERTIFICATION EXAMPLE

As we can see in the example, the platform state is calculated with the SHA-1 algorithm (<Hash
"http://www.w3.0rg/2000/09/xmldsig#shal">), the input of the algorithm is the content of the
PCRs 0, 1, 2... (<PCRNumber>). The application state is also obtained with the same algorithm, the hash is
iteratively obtained by calculating the SHA-1 of the elements that compose the application
(<ApplicationRef> <ElementRef>cumulus:monitoringcomponent:monitor.jar</ElementRef> ...).

The key is non-migratable and it is bound to the platform state and to the software agent state
(<StateBoundKey "PlatformAndApplicationState" "Non-MigratableKey">). It is a
RSA key and the public portion is contained in the modulus artefact (<ns2:Modulus>).

Date: May 30, 2014
Page 119/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

7. Advanced Certification Models

This section is new. There is no corresponding section in D2.2.

According to the Description of Work, the Incremental, Hybrid and Multi-layer versions of the Certification
Models are due in the last version of the deliverable (CUMULUS Consortium, D2.4 Final Certification
Models, 2015), nonetheless we give here a first overview of our approach.

7.1. Multi-layer certification

CUMULUS aims to provide a certification approach that addresses the multi-layer structure of cloud
environments. The cloud paradigm in fact offers a powerful approach to the provision of infrastructure,
platform, and software services that, on one side, increases performance, flexibility, and effectiveness,
while, on the other side, raises significant concerns regarding security at each cloud stack layer. In this
context, CUMULUS is developing an integrated framework of models and processes that support the
certification of security properties that insist on multiple levels of the cloud stack. Our multi-layer approach
is based on a single CM that specifies the security property to be certified on a given ToC involving different
levels of the cloud stack (e.g., SaaS-Paa$S or SaaS-laaS, SaaS-PaaS-laas).

7.1.1. Multi-layer Test-based certification

Focusing on test-based CMs, to accomplish multi-layer requirements, we refined the ToC perimeter using
ToTs (see Section 4.1.3). ToTs refer to mechanisms to be tested at different cloud layers to prove a given
property on a given ToC. The testing process models the interconnection between the mechanisms at
different layers allowing integration testing. The testing activities are performed by test-based collectors
instantiated with a specific configuration and different ToTs (see Section 4.1.3). The collector configuration
is tailored to the layer where the corresponding mechanism to be tested is deployed (e.g., it runs on a
specific cloud stack for testing confidentiality at rest, it runs on external and intercloud facilities for testing
confidentiality in transit).

A complete approach to multi-layer certification can consider two main scenarios: multi-layer certification
from scratch and incremental multi-layer certification. In the following, we briefly summarize the two
scenarios and discuss a test-based example of multi-layer certification from scratch.

1. Multi-layer certification from scratch assumes a scenario where all ToTs specified in the CM refers
to security mechanisms that are not certified. The certification authority starts a complete
certification process (similar to the one used for single-layer certification) evaluating (by monitoring
or testing) relevant security mechanisms with respect to corresponding ToTs, to the aim of
certifying the security property target of the multi-layer certification. As an example, let us consider
a cloud service provider that wants to certify its service for property data leakage prevention. Data
leakage prevention requires a multi-layer certification, where SaaS communications must be
encrypted and laaS data must be stored in an encrypted storage. In other words, the multi-layer
certification must first evaluate the mechanism implementing encrypted communication and then
evaluate the mechanism implementing the encrypted storage. We note that this is not the only
possible security configuration supporting data leakage prevention. As an example, a different CM
can specify an access control mechanism instead of an encrypted storage.

2. Incremental multi-layer certification mimics the incremental certification process in Section 7.1 to
provide an efficient multi-layer certification approach. In particular, like for incremental
certification, we aim at reusing certificates of single mechanisms involved in the multi-layer
certification to reduce the amount of certification requested in the CM. Certificates of single
mechanisms are then used to manage requirements on different layers of the cloud stack that

Date: May 30, 2014
Page 120/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

could affect the multi-layer certification process. More in detail, results stored in certificates of
single mechanisms are matched against requirements stated in the ToT of the CM that refers to
these mechanisms. If they are compatible, there is no need for testing/monitoring the security
mechanism under consideration®™. As a consequence we have three possible scenarios. Let us again
consider data leakage prevention and the two mechanisms (communication encryption for SaaS
and encrypted storage for laaS, respectively) at point 1. In the first scenario both mechanisms have
a certificate that matches requirements in the corresponding ToTs in the CM. In this case, no
additional certification is required. In the second case, one certificate matches requirements in the
corresponding ToT, while the second one matches only a subset of requirements in the
corresponding ToT. In this case, an incremental certification of the second mechanism is needed. In
the third scenario, both certificates violate the requirements in the corresponding ToTs. In this case
a multi-layer certification from scratch is needed.

Below we present a detailed example of test-based multi-layer certification from scratch considering
property data leakage prevention and mechanisms supporting encryption of communication channel and
encrypted storage.

Let us consider a service s that aims at certifying property data leakage prevention in a given cloud stack.
Service s needs a multi-layer Certification Model where the Target of Certification is both SaaS and laaS. In
fact, s must first guarantee confidentiality of data in transit through a secure channel implemented using an
encryption mechanism (SaaS layer). We note that property data leakage prevention could also require to
secure (if necessary) the internal channel from/to the server platform (PaaS layer) again with an encryption
mechanism. For simplicity, here, we assume a direct channel between SaaS and laaS. Also, data leakage
prevention requires an encrypted storage to guarantee the confidentiality of data at rest (laa$S layer).

Storage service

Web Service SGLS layer
1 \

|

hook O Storage N /‘745 layer

FIGURE 61 — STORAGE SERVICE TO BE CERTIFIED

As already discussed, we define a single Certification Model with a single security property, using different
mechanisms (encrypted channel and encrypted storage) that insist on different layers (SaaS and laaS).

The description of requirements on single mechanisms and corresponding test cases to be executed in the
multi-layer certification process can be specified in two different Abstract Collectors connected to two
ToTs. The first Abstract Collector describes the test cases to be executed against services (ToT)
implementing the secure channel. The abstract collector defines both test cases to be executed in a
laboratory environment and dynamic test cases to be executed only when the service is put in production.
Laboratory test cases can include both “static code review”, where the code is formally examined and
output is a passed/not passed check list, and more common functional test cases examining the correct
behaviour of the security mechanism. Dynamic test cases include conditions triggering their execution, that

'3 In some cases an integration test is required anyway, but all the independent tests are still valid, and the integration
testing can be obtained incrementally.
Date: May 30, 2014
Page 121/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

is, a “model control flow” that examine the functioning of the service, for example the real traffic received
and generated by it in a give time window.

The XML code that describes an example of the first abstract collector and corresponding ToTs of the multi-
layer CM is the following:

[...]
<Toc [d="ToC1">
<CloudLayer>SaaS </CloudLayer>
<CloudLayer>IaaS </CloudLayer>
<ConcreteToc>StorageService</ConcreteToc>
<TocDescription>Application</TocDescription>
<TocURI>10.0.0.155</TocURI>
<ToTs> [.....] </ToTs>
<OperativeCondition>
<TocTechnicalSpecifications>
<TocVendor>XYZ</TocVendor>
<TocRelease>1.0</TocRelease>
<TocDate>2014-09-24</TocDate>
</TocTechnicalSpecifications>
</OperativeCondition>

</Toc>
[...]
<SecurityProperty "Id102" ">
<sProperty "http://cumulus-project.eu/security-properties#DSI:data-leakage-control:data-leakage-

prevention">

[

<--- This Abstract Collector describes test cases to be executed against service s (ToC) implementing the secure
channel (test cases in laboratory environment and in dynamic environment) ---->

<Collectors>
<AbstractCollector "abstractCollector]l">
<Aggregator >
<ModelLink>http://www.cumulus-project.eu/Model55.html</ModelLink>
<TestMetric>

<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
[....]
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType>Static code review</TestType>
<TestDescription> Static code review/testing</TestDescription>
<TestGenerationModelLink>http://www.cumulus-project.eu/model55.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>checkList#1</ID>
<Description>https support check</Description>
<TestInstance "readCode">
<Preconditions/>
<HiddenCommunications/>
<Input></Input>
<ExpectedOutput>true</ExpectedOutput>
Date: May 30, 2014
Page 122/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<PostConditions></PostConditions>
</TestInstance>
</TestCase>
[... other test cases ...]
</TestCases>
</AbstractCollector>
[...]
<Collector "true" "coll">
<AbstractCollector>abstractCollector1</AbstractCollector>
</Collector>

[.]

The second Abstract Collector describes the test cases for the encrypted storage (ToT), and includes both
laboratory test cases and dynamic test cases done in production. In the latter case, the laaS layer must
provide a hook that allows CUMULUS framework to collect data on encrypted storage behaviour. As an
example, test type “input partitioning” can be used, that is, a set of pairs input/expected output are used to
test the laaS service through the hook. In particular, the input is sent to the service and the hook is used to
check directly on the file system whether the data chunk has been correctly encrypted (matching the
expected output).

The XML code that describes an example of the second abstract collector and corresponding ToT of the
multi-layer CM is the following:

[...]
<AbstractCollector Id="abstractCollector2">
<Aggregator >
<ModelLink>http://www.cumulus-project.eu/Model56.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
[....]
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType>Model control flow</TestType>
<TestDescription>Check service functioning</TestDescription>
<TestGenerationModelLink>http://www.cumulus-project.eu/model56.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description>Encryption Data check in the storage</Description>
<TestInstance "readData">
<Preconditions/>
<HiddenCommunications/>
<Input>Datalndex</Input>
<ExpectedOutput>DataChunk[Datalndex]</ExpectedOutput>
<PostConditions>Decryption(DataChunk[Datalndex]) = PlainText</PostConditions>
</TestInstance>
</TestCase>

Date: May 30, 2014
Page 123/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

[....]
</TestCases>
</AbstractCollector>
[...]
<Collector "true" "Collector3">
<AbstractCollector>abstractCollector2</AbstractCollector>

</Collector>
<Collector "false " "Collector3">

<ConditionForExecution>
<Event><Action> </Action>
<Condition> ConditionForExecution#2 </Condition>
<Value>1</Value>
</Event>
</ ConditionForExecution >
<AbstractCollector>abstractCollector2</AbstractCollector>
</Collector>
</Collectors>

[.]

In addition if required by the mechanisms or by the property to be certified, an additional abstract collector
can be implemented to specify integration testing activities. In this example, integration testing is not
considered because the two mechanisms are disjoint from a testing point of view. To conclude, the
Abstract collectors are instantiated in testing collectors configured for executing real testing activities
based on the ToTs, at different cloud layers.

Multi-layer certification of cloud services is a fundamental aspect of a cloud certification scheme. In the last
year of the project, WP2 will study and refine the above approaches providing a consistent solution to the
management of multi-layer certification, which also integrates with single-layer certification.

7.1.2. Multi-layer Monitoring-based certification

Monitoring-based certification is multi-layer if events come from different layers.

7.2. Incremental certification

Incremental certification models are used to manage changes at any layer of the cloud stack that could
affect certified security properties without the need to (re-)certify artefacts from scratch. It covers all
aspects related to the adaptation of an existing certificate through the possible reuse of a part of it.
Incremental certification is provided by considering evolutions of services and their interactions, and by
verifying the validity of previously verified properties following changes in the stack.

7.2.1. Incremental Test-based certification

In this section, we concentrate on the management of security certifications and corresponding issued
certificates upon a change in software/service/cloud change. Uncontrolled changes may in fact invalidate
the security certificate awarded to a given software/service/cloud. Traditional approaches to security
certification (Damiani, Ardagna, & loini, Open source systems security certification, 2009) (Anisetti,
Ardagna, & Damiani, Fine-grained modeling of web services for test-based security certification, 2011)
usually do not deal with evolving software/services and prescribe re-certification of software/services upon
the delivery of new versions. This approach results in high certification costs and overheads, since each
change to the service triggers a re-certification process from scratch, that is, for test-based scenario,
offline/static testing in a pre-production environment. Recertification from scratch is especially critical in
the cloud where services are subject to continuous changes, as for instance the one dictated by cloud
migration functionalities. For example in a Saa$S scenario, apply a re-certification process from scratch for

Date: May 30, 2014
Page 124/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

each service evolution is not an option, and the need of services that adapt to changing conditions is
related to the definition of cloud computing.

A first approach sketched in this section aims to address the above problem, by providing a solution for the
management of incremental certification of evolving software/services. Our solution responds to the need
of providing a low-cost certification scheme for evolving and cloud services, which does not prescribe re-
certification from scratch. We therefore define a preliminary scheme that re-uses existing certificates and
related evidence limiting the amount of new and additional certification activities. Our solution
concentrates on both test-based and monitoring-based evidence, and aims to minimize test generation and
monitoring activities for certifying evolving services.

An incremental certification process renews a certificate by re-using, as much as possible, the certification
evidence available from older certificates. An incremental certification process can reduce the costs and
overheads of the certification of evolving software services at any level of the stack, while providing a
similar level of assurance.

Our approach to the management of the incremental certification can be classified depending on the
required level of re-certification as follows.

* Certificate adaptation: an event, such as a change of the Target of Certification, occurs but there is
no need of re-certification, because there is no code modification and all the targets of tests are
not changed; in this case, testing activities (dynamic tests in a test-based scenario or monitoring
tests) still run and the certificate remains in the ISSUED state. For example, this happens when a
Web Service is moved within the Cloud.

* Partial re-certification: upon the release of a new version of a certified software service at Saas,
PaaS or laaS level, some of the Targets of Tests change, some are not valid anymore, others are
added in the new version. In this case, an incremental certification process is triggered: in a test-
based scenario the Certificate goes to the SUSPENDED state and only a portion of the test-based
evidence in the original certificate needs to be re-executed or substituted by new test cases.
Dynamic testing can then be used to verify that unchanged parts have not been affected by
changes in other software/services and behave as expected.

* Full re-certification: when there is a new version of a certified software service at SaaS, PaaS or laaS
level, the targets of tests change, and all the dynamic tests fail; in a test-based scenario the
certificate goes to the REVOKED state, a new certification process is applied from scratch and
restarts from the static/offline scenario.

Below, we illustrate the working of the above classes.

Certificate adaptation

A certificate adaptation typically occurs when some events, which could limit the validity of the certificate,
happen, but the dynamic certification process can go on since there are no significant changes in the
Targets of Tests. For example, an e-booking Web Service is moved within the Cloud (internal migration).
This operation affects the end points in our Certification Model and triggers an adaptation process.

In such a situation the Web Service code is the same, the Targets of Tests are not modified, the dynamic
tests still run and give the same level of assurance; in other words there is no need to reissue the certificate
or modify it, and the certificate remain in the ISSUED state.

We note that in case the original environment is restored (in our example the e-booking Web Service is
moved back to the first Cloud Provider), a new adaptation process is triggered.

Partial recertification

A partial re-certification is triggered by the release of a new version s’ of a certified service s, and aims at
re-using existing evidence included in the certificate awarded to s, to re-issue a new certificate that is valid
fors’.

Date: May 30, 2014
Page 125/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Static/offline recertification can be necessary only for some small changed parts. The two sets of Targets of
Tests, as defined in the Target of Certifications of s and s’, are used to manage partial re-certification
activities, including the specification and execution of additional test cases and/or the re-execution of
existing ones. If we define a set of Targets of Tests as test model, the first step in partial re-certification
compares the two test models to identify the parts of the models, which have been affected by service
changes.

We consider how partial re-certification is handled distinguishing between: i) test model extension, ii) test
model reduction, and iii) test model update.

For example, in a test-based scenario, a new version of an e-booking Web Service is released with new
functionalities: some old APIs are deprecated and some Targets of Tests change. In this situation, there is
the need to (re-)run some static tests. The Certificate then goes to the SUSPENDED state and only a portion
of the Test-based evidence in the original certificate needs to be re-executed or substituted by new test
cases. Once the tests are updated and run and if the new level of assurance is sufficient, the Certificate
goes back to the ISSUED state.

In case the original environment is restored, that is it is restored the old version of the e-booking Web
Service, the same partial re-certification process takes place again.

Also, dynamic testing can be used to verify that unchanged parts have not been affected by changes in the
new version of a software/service and behave as expected.

Full recertification

A full re-certification is triggered by a software/service update that affects all the targets of tests, making all
test cases invalid. A new certification process should be applied from scratch.

The full re-certification also applies when the certificate is either revoked (evidence goes below threshold)
or expired, as already defined in the Certification Life Cycle.

A particular case of full re-certification is when a certificate refers to two or three different Cloud layers, for
example SaaS and laaS, such a Web Service and its corresponding Virtual Machine. When the laaS
component changes (for example, the Virtual Machine is moved from a Cloud Provider to another one) the
full process must restart from the static/offline case.

7.2.2. Incremental Monitoring-based certification

Monitoring-based certification is incremental by definition.

7.3. Hybrid certification

This section has no corresponding section in D2.2. It describes a new category of advanced Certification
Models, which is the Hybrid Certification Models, that cross-check evidence gathered from Testing and
Monitoring.

The key concept underpinning a hybrid certification model is to cross-check evidence regarding a security
property that has been gathered from testing and monitoring and, provided that there is no conflict within
it, to combine it providing assurance for properties. Consider, for example, a scenario where the property
to be certified is cloud service availability. If availability is measured as the percentage of the calls to service
operations for which a response was produced with a given time period d, a monitoring check should verify
exactly this condition. However, the trace of service calls that has been examined by the monitoring
process might not cover all the operations in the service interface or the expected peak workload periods
of the underlying infrastructure. In such cases, before issuing a certificate for service availability, it would

Date: May 30, 2014
Page 126/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

be necessary to test any of the above service usage conditions that have not been covered yet. The
combination of monitoring and testing can be attempted in two basic modes:

(1) The dependent mode — In this mode, a security property is assessed for a TOC by a primary form of
assessment (monitoring or testing) which triggers the other (subordinate) form in order to confirm and/or
complete the evidence required for the assessment.

(2) The independent mode — In this mode, a security property is assessed for a TOC by both monitoring and
testing independently without any of these assessments being triggered by outcomes of the other. Then at
specific points defined by the evidence sufficiency conditions of the certification model the two bodies of
evidence are correlated and cross-checked to complete the hybrid assessment.

Beyond the elements of certification models that were overviewed in IlIl.A, a hybrid certification model
should also define: (a) the mode of hybrid certification; (b) the way of correlating monitoring and testing
evidence; (c) conditions for characterising these types of evidence as conflicting, and (d) the way in which a
final overall assessment of the property can be generated based on both types of evidence.

In the following, we give examples of hybrid certification models of both modes, formalise them in EC-
Assertion and use this formalisation to examine generic relationships that exist in hybrid models.

Example 1: Hybrid, dependent mode models

Our first example shows the use of a hybrid approach in certifying data integrity-at-rest. As defined in
(Consortium, 2013), this property expresses the ability to detect and report any alteration of stored data in
a target of certification (TOC).

To demonstrate the difference between monitoring and hybrid certification models, we first present the
monitoring certification model for data integrity-at-rest, expressed by the EC_Assertion monitoring rule R1
that is listed below. The specification of this rule as well as all models in the paper, assumes the following
agents and variables denoting them: service consumers (_sc), target of certification (_TOC), authentication
infrastructure (_Al), certification authority (_CA).

Rule R1: Happens(e(_el,_sc,_ TOC,REQ,_updOp(_cred,_data,_auth),_TOC),t1,[t1,t1]) »
Happens(e(_e2,_TOC,_AI,RES,_updOp(_cred,_data,_vCode),_TOC),t2,[t1,t1+d1]) A (_vCode # Nil) =
Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2])

According to R1 when a call of an update operation in a _TOC is detected at some time point t1 (see event
Happens(e(_e1,_sc, TOC,REQ,_updOp(_cred,_data,_auth),_TOC),t1,[t1,t1])) and a response to this call occurs after it (see event
Happens(e(_e2 ,_TOC, _Al, RES,_updOp(_cred, _data,_verCode),_TOC),t2,[t1,t2+d1])) indicating that the request has been granted
(see condition (_vcode # Nil) in the rule), the monitor should also check for the existence of another event
showing the call of an operation in some authorisation agent _A to notify the receipt and execution of the
update request (see Happens(e(_e3,_TOC,_CA, REQ,_notifO(_cred,_data,_auth,_h),_TOC),t3,[t2,t2+d2]))14. The above model has
two limitations in providing assurance for the integrity-at-rest property: (1) it cannot capture updates of
data that might have been carried out without using the update interface assumed of _toc (i.e.,
_updOp(_cred,_data,_vCode)), and (2) it cannot check that the operation _updop has checked authorisation rights
before updating data.

A hybrid model could be used in this case to overcome partially the first of these limitations. More
specifically, a hybrid model in this case could be based on periodic testing to detect if stored data have
been modified and monitor the periods between the tests that revealed data modifications to check if
appropriate notifications have also been sent. Data modifications could be detected by obtaining the hash
value of the relevant data file in the TOC periodically. Then, if across the execution of two consecutive
tests, the last retrieved hash value of the file is different from the previous hash value, a data modification
action can be deduced. In parallel with the execution of this periodic test, the hybrid model will also

% Note that the operation signatures used in the rule may change depending on _TOC without affecting the generality of the rule.
Date: May 30, 2014
Page 127/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

monitor the execution of notification operations. Hence, when a data modification action is detected by
two consecutive tests, the hybrid model could also check whether a correlated notification operation has
been executed within the period between the tests.

This hybrid model model can be expressed using the following monitoring rule and assumption:

Rule R2: Happens(e(_el,_CA,_TOC,EXC(T,.r), _getHash(_TOC,_file,_h1),_CA), t1, [t1,t1]) ~ HoldsAt(LastHash(_file,_h2,t2),t1) A (_h1 # _h2) =
Happens(e(_e3,_TOC,_CA,REQ,_notifO(_cred,_data, _auth,_h1),_TOC),t3,[t2,t1])

Assumption Al: Happens(e(_el, CA,_TOC,REQ, _getHash(_TOC,_file,_h1),_TOC),t1,[t1,t1]) » HoldsAt(LastHash(_file,_h2,t2),t1) » (_h1# _h2)=

Terminates(_el,LastHash(_file,_h2,t2),t1) A Initiates(_e1,LastHash(_file,_h1,t1),t1)

For readability purposes, we also provide the specification of the Rule R2 in the BNF syntax of SecurSLA*

below:

assertion {
agreedAt = n/a
effectiveFrom
effectiveUntil
templateId = urll

00

: 00 00 00
23

59 59 59

sla_template {
uuid = url2
sla _model version

sla at soi

sla model v1.0

/* ———— PARTY DESCRIPTIONS ————————— - mmmm e */
party {
id = in::id::c
role = in::toc
}
abstractparty {
id = in::id::a
role = in::certificationauthority
}
abstractparty {
id = in::id::b
role = in::serviceconsumer
}
abstractparty {
id = in::id::d
role = id::authenticationinfrastructure
}
/* ——-- TOC INTERFACE DECLARATIONS —----—-————————————— */
interfacedecl {
id = interface::id::c::1
providerref = in::id::c
interfacespec {
name = in::id::c::tocinterface
operation { name = exctestac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = tper
datatype = url
domain = (equals none)
auxiliary = true }

Date: May 30, 2014
Page 128/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation { name = rgsac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = updatehashbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = gethashac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
operation { name = comparehash
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
interfacedecl {
id = interface::id::a::1
providerref = in::id::a
interfacespec {
name = in::id::ainterface
operation { name = reqgca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = resca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = notifyalterationca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
1}
interfacedecl {
id = interface::id::d::1
providerref = in::id::d
interfacespec {

name

operation { name

nr::id::dinterface

rspcd

Date: May 30, 2014
Page 129/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = exctestad
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
operation { name = authorisead
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
}}
/* ——=—= VARIABLE DECLARATIONS— === == oo o */
exctestacv is (invocation [invoke { endpoint = cll1l
operation = exctestac
param { name = data value = testexecop} } 1)
rgsacv is (invocation [invoke { endpoint = c222
operation = rgsac
param { name = data value = requestop} }])
rgsbcv is (invocation [invoke { endpoint = c¢333
operation = rgsbc
param { name = data value = requestop} }])
updatehashbcv is (invocation [invoke { endpoint = c444
operation = updatehashbc
param { name = data value = updateop} } 1)
gethashacv is (invocation [invoke { endpoint = c¢555
operation = gethashac
param { name = data value = gethashop} }])
comparehashv is (invocation [invoke { endpoint = c666
operation = comparehash
param { name = data value = compareopop} } 1)
regcav 1is (invocation [invoke { endpoint = alll
operation = reqca
param { name = data value = requestop} }])
rescav is (invocation [invoke { endpoint = a222
operation = resca
param { name = data value = responseop} } 1)
notifyalterationcav is (invocation [invoke { endpoint = a333
operation = notifyalterationca
param { name = data value = notifyop} } 1)
rspcdv is (invocation [invoke { endpoint = dl1l1
operation = rspcd
param { name = data value = responseop} } 1)
exctestadv is (invocation [invoke { endpoint = d222
operation = exctestad
param { name = data value = testexecop} } 1)
authoriseadv is (invocation [invoke { endpoint = d333
operation = exctestad
param { name = data value = authoriseop} } 1)

Date: May 30, 2014
Page 130/197

exctestac::series is series (
invocation [invoke { endpoint
operation exctestac
param { name data value

clll

rgsac::series 1is series (
invocation [invoke { endpoint = c222
operation = rgsca
param { name = data value = requestop}
rgsbc::series 1is series (

invocation [invoke { endpoint = c¢333

operation = rgsbc

param { name = data value = requestop
updatehashbc::series is series (

invocation [invoke { endpoint = c444

operation = updatehashbc

param { name = data value = updateop}
gethashac::series is series (

invocation [invoke { endpoint = c¢555

operation = gethashac

param { name = data value = dethashop}
comparehash::series is series (

invocation [invoke { endpoint = c666

operation = comparehash

param { name data value = compareop}

reqca::series 1is series (
invocation [invoke { endpoint = alll
operation = reqca
param { name = data value = requestop}
resca::series is series (
invocation [invoke { endpoint = a222
operation = resca
param { name = data value = responseop}

notifyalterationca::series is series (
invocation [invoke { endpoint
operation notifyalterationca
param { name data value

a333

rspcd: :series 1s series (
invocation [invoke { endpoint = dl11
operation = rspcd

param { name data value

exctestad::series is series (
invocation [invoke { endpoint
operation exctestad
param { name data value

d222

authorisead::series is series (
invocation [invoke { endpoint
operation authorisead
param { name data value

d333

Guaranteed Terms
at::term::1

/* —_—

agreement term { id

precondition { count (periodic [
invoke { endpoint = c¢555
operation = gethashcv

param { name data value

invoke { endpoint c666

Page 131/197

testexecop}

}

responseop}

testexecop}

}

}

}

}

authoriseop}

}

}

}

}

}

]

]

]

]

}

]

]

]

]

]

)

)

)

)

]

)

)

)

)

)

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

notifyalterationop} } 1)

exctestac::series |

gethashop } }

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation = comparehash
param { name = data value = notsamehashvalues } }) }

guaranteedaction { id = agreement::term::1
actor = provider::id::a
policy = OPTIONAL
trigger = yes
invoke { endpoint = a333 operation = notifyalteration } } } } }

For readability purposes, we also provide the specification of the Assumption 1 in the BNF syntax of
SecurSLA* below:

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2
sla model version = sla at soi sla model v1.0

/* —=== PARTY DESCRIPTIONS ——————— oo oo */
party {
id = in::id::c
role = in::toc

}

abstractparty {
id = in::id::a
role = in::certificationauthority

}

abstractparty {
id = in::id::b
role = in::serviceconsumer

}

abstractparty {
id = in::id::d
role = id::authenticationinfrastructure

}
/* ——-- TOC INTERFACE DECLARATIONS ——-—--—-————————————— */
interfacedecl {
id = interface::id::c::1

providerref = in::id::c

interfacespec {

name = in::id::c::tocinterface
operation { name = exctestac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = tper
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsac
input { name = data

Date: May 30, 2014
Page 132/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = updatehashbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = gethashac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
operation { name = comparehash
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
interfacedecl {
id = interface::id::a::1
providerref = in::id::a
interfacespec {
name = in::id::ainterface
operation { name = reqgca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = resca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = notifyalterationca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
1}
interfacedecl {
id = interface::id::d::1
providerref = in::id::d
interfacespec {
name = nr::id::dinterface
operation { name = rspcd
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}

Date: May 30, 2014
Page 133/197

exctestacv is

updatehashbcv is

gethashacv is

comparehashv is

exctestadv is

authoriseadv is

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation { name = exctestad
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
operation { name = authorisead
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
}}
———— VARIABLE DECLARATIONS——=—— === == oo */
invocation [invoke { endpoint = clll
= exctestac
param { name = data value = testexecop} } 1)
invocation [invoke { endpoint = c222
= rgsac
param { name = data value = requestop} }])
invocation [invoke { endpoint = c333
= rgsbc
param { name = data value = requestop} }])
(invocation [invoke { endpoint = c444
= updatehashbc
param { name = data value = updateop} } 1)
invocation [invoke { endpoint = c¢555
= gethashac
param { name = data value = gethashop} }])
(invocation [invoke { endpoint = c666
= comparehash
param { name = data value = compareopop} } 1)
invocation [invoke { endpoint = alll
= reqgca
param { name = data value = requestop} }])
invocation [invoke { endpoint = a222
= resca
param { name = data value = responseop} } 1)
notifyalterationcav is (invocation [invoke { endpoint = a333
= notifyalterationca
param { name = data value = notifyop} } 1)
invocation [invoke { endpoint = dll1l
= rspcd
param { name = data value = responseop} } 1)
invocation [invoke { endpoint = d222
= exctestad
param { name = data value = testexecop} } 1)
(invocation [invoke { endpoint = d333
= exctestad
param { name = data value = authoriseop} } 1)

exctestac::series is series (

invocation [invoke { endpoint = cll1l
= exctestac
param { name = data value = testexecop} } 1)

Date: May 30, 2014
Page 134/197

rgsac::series 1is series
invocation [invoke { endpoint
operation = rgsca
param { name =

rgsbc::series 1is series
invocation [invoke { endpoint
operation = rgsbc
param { name =

updatehashbc::series is series
invocation [invoke { endpoint
operation = updatehashbc
param { name =

gethashac::series is series
invocation [invoke { endpoint
operation = gethashac
param { name =

comparehash::series is series
invocation [invoke { endpoint
operation = comparehash
param { name =

reqca::series 1is series
invocation [invoke { endpoint
operation = reqgca
param { name =

resca::series 1is series
invocation [invoke { endpoint
operation = resca
param { name =

notifyalterationca::series is series
invocation [invoke { endpoint
operation = notifyalterationca
param { name =

rspcd: :series 1is series
invocation [invoke { endpoint
operation = rspcd
param { name =

exctestad::series is series
invocation [invoke { endpoint
operation = exctestad
param { name =

authorisead::series is series
invoke { endpoint
operation = authorisead

param { name =

invocation [

/* === Guaranteed Terms

agreement term { id

precondition { count

invoke { endpoint
operation =
param { name
invoke { endpoint
operation =
param { name

guaranteedaction { id

data value

data value

data value

data value

data value

data value

data value

data value

data value

data value

data value

difference

= data value

comparehash
data value

= c222

requestop} } 1)

= c333

requestop } }]

= c444

updateop} } 1)

= c555

dethashop} } 1)

= C666

compareop} } 1)

= alll

requestop} } 1)

= az222

responseop} }]

(
= a333

= dll1l

responseop} }]

= d222

testexecop} } |

= d333

authoriseop} }]

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

notifyalterationop} } 1)

[gethashac::series , rgsacv] greater than 0)

gethashop } }

notsamehashvalues } }) }

agreement::term::1

Page 135/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

actor = provider::id::a

policy = OPTIONAL

trigger = none

invoke { endpoint = c444 operation = updatehash } } } } }

Rule R2 is “hybrid” as it includes normal monitoring events (i.e., REa and res events) and events that trigger
the execution of tests (i.e., exc events). R2 expresses a hybrid dependent mode model where evidence
arising from testing triggers the acquisition of monitoring evidence. Hence, testing is the primary form of
assessment. In particular, R2 forces the execution of the event Happens(e(_el, _CA, _TOC, EXC(Tper), _getHash(_TOC,
_file,_h1),_TOC), t1,[t1,t1]) periodically every Tper time units to invoke the operation _getHash in the testing
interface of _toc and obtain the current hash value (_h1) of the data file (_fie) of _TOC. If this value is different
from the hash value recorded by a previous test at some t2 (i.e., the value recorded in the fluent
LastHash(_file,_h2,t2),t1), rule R2 checks if an update notification has also occurred between t2 and tl, as
expressed by the monitoring event Happens(e(_e3,_TOC,_A,REQ,_notifO(_cred,_data,_auth,_h1),_TOC),t3,[t2,t1]). The hybrid
model uses also a monitoring assumption (i.e., Al). This assumption is used in the model to update the
hash value recorded in the fluent LastHash, if a test retrieves a hash value that is different from the last
recorded one.

Although the above model can capture data updates that have taken place without the invocation of the
file updating interface, it cannot guarantee that it can capture all possible updates that might have taken
place. In particular, it won't be able to detect if more than one updates have taken place between two
consecutive executions of the periodic test. Hence, it addresses the first of the limitations of the monitoring
problem (i.e., limitation (1)) only partially.

To address the second limitation of the monitoring model (i.e., limitation (2)), it is possible to construct a
different hybrid model. This model could rely on testing to ensure that every time that an agent that
requests a data alteration, it has the authorisation right to do the requested alteration. This model can be
expressed by the monitoring rule below:

Rule R3: Happens(e(_el,_sc, TOC,REQ,_updOp(_cred,_data, _auth),_TOC),t1,[t1,t1]) ~
Happens(e(_e2,_TOC,_AI,RES, updOp(_cred,_data,_vCodel),_TOC),t2,[t1,t1+d1]) A (_vCodel # Nil) =
Happens(e(_e3,_CA,_AIl,EXC,_authorO(_cred,_auth,_vCode2),_TOC),t3,[t2,t2+d2])*(_vCode2#=Nil)

For readability purposes, we also provide the specification of the Rule R3 in the BNF syntax of SecurSLA*
below:

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2
sla model version = sla at soi sla model v1.0

/* —=== PARTY DESCRIPTIONS ———— - oo oo */
party {
id = in::id::c
role = in::toc

}

abstractparty {
id = in::id::a
role = in::certificationauthority

}

abstractparty {
id = in::id::Db

Date: May 30, 2014
Page 136/197

/*

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

role = in::serviceconsumer

}

abstractparty {
id = in::id::d

role = id::authenticationinfrastructure
}
—-——— TOC INTERFACE DECLARATIONS —-—-—-—-—-—————————————— */
interfacedecl {
id = interface::id::c::1
providerref = in::id::c
interfacespec {
name = in::id::c::tocinterface
operation { name = exctestac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = tper
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsac
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

}

operation { name = rgsbc
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

}

operation { name = updatehashbc

input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

}

operation { name = gethashac
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

H}

operation { name = comparehash
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

H}

interfacedecl {
id = interface::id::a::1
providerref = in::id::a
interfacespec {
name = in::id::ainterface

Date: May 30, 2014
Page 137/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation { name = reqgca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = resca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = notifyalterationca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
}}
interfacedecl {
id = interface::id::d::1
providerref = in::id::d
interfacespec {
name = nr::id::dinterface
operation { name = rspcd
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = exctestad
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
operation { name = authorisead
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
}}
/* ——=—= VARIABLE DECLARATIONS— === == oo o */
exctestacv is (invocation [invoke { endpoint = clll
operation = exctestac
param { name = data value = testexecop} } 1)
rgsacv is (invocation [invoke { endpoint = c222
operation = rgsac
param { name = data value = requestop} }])
rgsbcv is (invocation [invoke { endpoint = c333
operation = rgsbc
param { name = data value = requestop} }])
updatehashbcv is (invocation [invoke { endpoint = c444
operation = updatehashbc
param { name = data value = updateop} } 1)
gethashacv is (invocation [invoke { endpoint = c¢555
operation = gethashac
param { name = data value = gethashop} }])
comparehashv is (invocation [invoke { endpoint = c666
operation = comparehash

Date: May 30, 2014
Page 138/197

param { name = data value =
regcav is (invocation [
operation = reqgca
param { name = data value =

rescav 1is (invocation [
operation = resca
param { name = data value =

notifyalterationcav is
operation =
param { name = data value =
rspcdv is (invocation [
operation = rspcd
param { name = data value =

invoke { endpoint =

invoke { endpoint =

(invocation [invoke { endpoint =
notifyalterationca
notifyop} } 1)

invoke { endpoint =

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

compareopop} } 1)

alll

requestop} } 1)

a222

responseop} } 1)

a333

dlil

responseop} } 1)

exctestadv is (invocation [invoke { endpoint = d222
operation = exctestad
param { name = data value = testexecop} } 1)
authoriseadv is (invocation [invoke { endpoint = d333
operation = exctestad

param { name = data value =

exctestac::series is series (
invocation [
operation =
param { name =

exctestac
data value =

rgsac::series 1is series (

invocation [invoke { endpoint
operation = rgsca
param { name = data value =

rgsbc::series 1is series (

invocation [invoke { endpoint
operation = rgsbc
param { name = data value =

updatehashbc::series is series (
invocation [
operation =
param { name =

updatehashbc
data value =

gethashac::series is series (
invocation [
operation =
param { name =

gethashac
data value =

comparehash::series is series (
invocation [
operation =
param { name =

comparehash
data value =

reqca::series 1is series (

invocation [invoke { endpoint
operation = reqca
param { name = data value =

resca::series is series (

invocation [invoke { endpoint
operation = resca
param { name = data value =

notifyalterationca::series is series
invocation [invoke

invoke { endpoint

invoke { endpoint

invoke { endpoint

invoke { endpoint

{ endpoint

authoriseop} } 1)

= clll

testexecop} } 1)

= c222

requestop} } 1)

= c333

requestop } } 1)

= c444

updateop} } 1)

= c555

dethashop} } 1)

= C666

compareop} } 1)

= alll

requestop} } 1)

= az222

responseop} } 1)

(
= a333

Date: May 30, 2014
Page 139/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation = notifyalterationca
param { name = data value = notifyalterationop} }])

rspcd: :series 1is series (

invocation [invoke { endpoint = dll1l
operation = rspcd
param { name = data value = responseop} }])

exctestad::series is series (

invocation [invoke { endpoint = d222
operation = exctestad
param { name = data value = testexecop} } 1)

authorisead::series is series (

invocation [invoke { endpoint = d333
operation = authorisead
param { name = data value = authoriseop} } 1)
/* == Guaranteed Terms = —————————-— */
agreement term { id = at::term::1
precondition { count (difference [rgsbc::series , rspcd] greater than 0)

invoke { endpoint = dll1l
operation = updatehashbc
param { name = data value = updateop } }

guaranteedaction { id = agreement::term::1
actor = provider::id::a
policy = OPTIONAL
trigger = reply [invoke { endpoint = d222
operation = exctestad
param { name = data value = testexecop]
invoke { endpoint = d333 operation = authorisead } }

Rule R3 monitors requests for updates of _TOC data through its normal updating interface. However, for
every such request that is granted by _TOC, it requests the execution of a test to check if the entity that
requested the update had indeed the authorisation to update data. This is expressed by the EXC event
Happens(e(_e3,_CA,_AI,EXC,_authorO(_cred,_auth, verCode2),_TOC),t3,[t2,t2+d2])) and the condition _vercode2 # Nil. In R3, the
monitoring evidence triggers the execution of tests. Hence, the rule expresses a dependent hybrid model
where monitoring is the primary form of assessment. Rules R2 and R3 are examples of general time
correlation structures that may arise in dependent hybrid certification model and which are shown in
Figure 62.

Part (a) of the figure shows dependent hybrid certification models where testing is the dominant form of
assessment. In such models, test plans each consisting of a series of tests (i.e., {Test,,,...,Test,.}) are executed
according to some periodic schedule. Assuming that the execution of a test plan starts at t.” and ends at
t." the hybrid model may also check for monitoring events that occurred within the interval [t"—d,, t."+d,]
in order to provide an assessment of the security property of interest. Note that the length of the execution
of each test plan and the monitoring events found within [t"—d,, t."+d,] may vary.

Date: May 30, 2014
Page 140/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Part (a) ({Test,,, .. Test,} {Test,,, .. Testy} ... {Tests,, ..., Testy}

-

t.00) tjfll gts(z) tj(z) nE tj(;) ! > Monitoring
t-d, tf+d, ts(;)— d, t/2+d, tP—d, t;(3)+d2
Part (b) = > Monitoring
' ' . > Testing

ay t Wed t.2) 7 tn?+d t (0 [ty7d

{Test,,, ..., Test, } {Test,,, ..., Test,} {Test,,, .., Test }

= executed test plan
® monitoring event

FIGURE 62 — DEPENDENT MODE HYBRID CERTIFICATION MODELS

Part (b) of the figure shows the timelines of evidence collection in dependent hybrid certification models
where monitoring is the dominant form of assessment. In such models following the collection of
monitoring evidence (events), tests plans are executed to cross-check/complete it. The execution of these
plans starts within the range [t t."+d] where t,," is the time of occurrence of the last event in a pattern
of events that should trigger the execution of the plan and d is a period set by the model. The length of the
execution of each test plan may vary.

Example 2: Hybrid, independent mode models

Our second example shows the use of a hybrid approach in certifying cloud service availability. As defined
in (CSA, D2.1 Development of security properties specification scheme and security dependency models,
2013) this property expresses the ability of a TOC to produce a non-faulty response within a certain period
of time and is measured by the percentage of calls that satisfy this condition over an assessment period. An
independent hybrid model for the certification of TOC availability could be based on collecting evidence
regarding the availability of a TOC through monitoring and testing independently (i.e., without any of these
activities being triggered by outcomes of the other) and then correlating and cross-checking the collected
pools of evidence to produce a hybrid assessment of the property. More specifically, the hybrid model
could include monitoring formulas to record instances of invocation of TOC operators where TOC produced
a response within the acceptable time limit and the instances where it did not, and keep a record of
counters of these instances from which an overall availability measure could be drawn. The formulas that
could be used to collect this monitoring evidence are as follows:

Assumption A2 (monitoring evidence):

Happens(e(_el,_CA,_TOC,REQ,_OP(_data),_TOC),t1,[t1,t1])* Happens(e(_e2,_TOC,_CA,RES,_OP(_data),_TOC), t2,[t1,t1+t,]) A
HoldsAt(MCounterA(_TOC,_MCA),t2)=

Terminates(_el,MCounterA(_TOC, _MCA), t2) A

Initiates(_e1,MCounterA(_TOC, _MCA+1), t2)»
Initiates(_e1,MAvail(_TOC,_OP(_data),t2-t1), t2)

Assumption A3 (monitoring evidence):

Happens(e(_el,_CA,_OC,REQ,_OP(_data),_TOC),t1,[t1,t1]) *=Happens(e(_e2, TOC,_CA,RES,_OP(_data),_TOC),t2,[t1,t1+t,]))*
HoldsAt(MCounterU(_TOC,_MCU), t2) =

Terminates(_el,MCounterU(_TOC,_MCU), t2)

Initiates(_e1,MCounterU(_TOC, _MCU+1), t2) »

Initiates(_e1,MUnav(_TOC,_OP(_data),t2-t1),t2)

Date: May 30, 2014
Page 141/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

For readability purposes, we also provide the specification of the Assumption A2 in the BNF syntax of
SecurSLA* below

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2
sla model version = sla at soi sla model v1.0

/* —=== PARTY DESCRIPTIONS ——————— oo oo */
party {
id = in::id::c
role = in::toc

}

abstractparty {
id = in::id::a
role = in::certificationauthority

}

abstractparty {
id = in::id::b
role = in::serviceconsumer

}

abstractparty {
id = in::id::d
role = id::authenticationinfrastructure

}

/* ——-— TOC INTERFACE DECLARATIONS —----—-————————————— */
interfacedecl {
id = interface::id::c::1

providerref = in::id::c

interfacespec {

name = in::id::c::tocinterface
operation { name = exctestac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = tper
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsac
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }

}

operation { name = rgsbc
input { name = data
datatype = url
Date: May 30, 2014
Page 142/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

domain = (equals none)
auxiliary = true }
}
operation { name = updatehashbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = gethashac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}}
operation { name = comparehash
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}}
interfacedecl {
id = interface::id::a::1
providerref = in::id::a
interfacespec {
name = in::id::ainterface
operation { name = reqgca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = resca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = notifyalterationca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
}}
interfacedecl {
id = interface::id::d::1
providerref = in::id::d
interfacespec {
name = nr::id::dinterface
operation { name = rspcd
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = exctestad
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
operation { name = authorisead
input { name = data
datatype = url

Date: May 30, 2014
Page 143/197

Document name: D2-3 Certification models v.2

domain = (equals none)
auxiliary = true } }
}}
/* ———— VARIABLE DECLARATIONS-—————————mm e */
exctestacv is (invocation [invoke { endpoint = clll
operation = exctestac
param { name = data value = testexecop} } 1)
rgsacv is (invocation [invoke { endpoint = c222
operation = rgsac
param { name = data value = requestop} }])
rgsbcv is (invocation [invoke { endpoint = c¢333
operation = rgsbc
param { name = data value = requestop} }])
updatehashbcv is (invocation [invoke { endpoint = c444
operation = updatehashbc
param { name = data value = updateop} } 1)
gethashacv is (invocation [invoke { endpoint = c¢555
operation = gethashac
param { name = data value = gethashop} }])
comparehashv is (invocation [invoke { endpoint = c666
operation = comparehash
param { name = data value = compareopop} } 1)
regcav is (invocation [invoke { endpoint = alll
operation = reqca
param { name = data value = requestop} }])
rescav is (invocation [invoke { endpoint = a222
operation = resca
param { name = data value = responseop} } 1)

notifyalterationcav is (invocation [invoke { endpoint = a333
operation = notifyalterationca

param { name = data value = notifyop} } 1)
rspcdv is (invocation [invoke { endpoint = dl1l1

operation = rspcd

param { name = data value = responseop} } 1)
exctestadv is (invocation [invoke { endpoint = d222

operation = exctestad

param { name = data value = testexecop} } 1)
authoriseadv is (invocation [invoke { endpoint = d333

operation = exctestad

param { name = data value = authoriseop} } 1)

exctestac::series is series (

invocation [invoke { endpoint = cll1l
operation = exctestac
param { name = data value = testexecop} } 1)

rgsac::series 1is series (

invocation [invoke { endpoint = c222
operation = rgsca
param { name = data value = requestop} }])

rgsbc::series 1is series (
invocation [invoke { endpoint = c¢333

Page 144/197

Version: 1.0
Security: public

Date: May 30, 2014

operation
param { name

rgsbc
data value

updatehashbc::series is series (

invocation [
operation
param { name

invoke { endpoint

updatehashbc

data value

gethashac::series is series (

invocation [
operation
param { name

comparehash: :series
invocation [
operation
param { name

series 1is se
invocation [
operation
param { name

reqgca::

series 1is se
invocation [
operation
param { name

resca::

notifyalterationca:
invocation [
operation
param { name

series 1is se
invocation [
operation
param { name

rspcd: :

exctestad: :series i
invocation [
operation
param { name

authorisead: :series
invocation [
operation
param { name

rsgac::counts is 11
rsgac::avail is 1lis

/* —-- G

agreement_term { id
precondition
count (

}

guaranteedstate { id
update (rsqgac_counts,

add (

update (rsqac_avail,

add (

difference [

invoke { endpoint

gethashac

data value

is series (
invoke { endpoint

comparehash

data value

ries (

invoke { endpoint

reqca

data value
ries (

invoke { endpoint

resca

data value

:series 1is series (
invoke { endpoint

notifyalterationca
notifyalterationop} }

data value

ries (
invoke { endpoint

rspcd

data value

s series (
invoke { endpoint

exctestad

data value

is series (
invoke { endpoint

authorisead

data value

index
index

st [
tl

request
request

uaranteed Terms

{

at::term::2

gstatel

1))

rsgac::counts,

1))

rsgac::avail,

’

rgsac: :series ,

Document name: D2-3 Certification models v.2

requestop } } 1)

c444

updateop} } 1)

c555

dethashop} } 1)

c666

compareop} } 1)

alll

requestop} } 1)

a222

responseop} } 1)

a333

dlll

responseop} } 1)

d222

testexecop} } 1)

d333

authoriseop} } 1)

, type(integer)]
type (integer)]

rgsacv::avail

Page 145/197

]

]

greater than t)

rsgac::counts::call equals rgsacv::data ,

rsgac::counts::call equals rgsacv::data ,

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

}

The first of the above monitoring formulas (i.e., assumption A2) monitors calls to any operation in a _TOC
and the responses to them (see events Happens(e(_el, _CA, _TOC, REQ, _OP(_data),_TOC), t1, R(t1,t1)) and Happens(e(_e2, _CA,
_TOC, RES, _OP(_data), _TOC), t2,[t1,t1+t,,])) and if a response is within the required period (t.), it updates the counter
of instances where _TOC was available and records the related call (in fluents mcountera(_TOC,_McA,t2) and
MAvail(_TOC,_OP(_data),t2-t1), respectively). The second formula (i.e., assumption A3) monitors calls to _TOC
operations that did not produce a response within the required time, and keeps an overall counter of
unavailability and the related calls in fluents mMcounteru(_Toc,_Mcu,t2) and MUnav(_TOC,_OP(_data),t2—t1)).

The hybrid model for the certification of availability could also incorporate a test-based availability
assessment sub-model. This sub-model can execute a randomly selected operation in the interface of _TOC
periodically to check its availability, and keep a record of instances of test-triggered invocations of
operations of TOC in which a response was produced within the required time period, and instances of
test-triggered invocations where it was not.

This sub-model is expressed by following formulas for collecting testing evidence:

Assumption A4 (testing evidence):

Happens(e(_el,_CA,_TOC, EXC(Te), _x=random(interface(_TOC)),_TOC),t1,[t1,t1]) ~
Happens(e(_e2,_TOC, _CARES,_x,_TOC),t2,[t1,t1+t,])
HoldsAt(TCounterA(_TOC,_TCA),t2)

=> Terminates(_e1,TCounterA(_TOC,_TCA),t2) »
Initiates(_e1,TCounterA(_TOC,_TCA+1),t2)?

Initiates(_e1,TAvail(_TOC,_x,t2-t1),t2)

Assumption A5 (testing evidence):

Happens(e(_el,_CA,_TOC, EXC(Ter), _x=random(interface(_TOC)),_TOC),t1,[t1,t1]) ~
- Happens(e(_e2,, _TOC, _CA, RES,_x,_TOC),t2, [t1,t1+t,,])* HoldsAt(TCounterU(_TOC,_TCU),t2) =
Terminates(_el1,TCounterU(_TOC,_TCU),t2) »
Initiates(_e1,TCounterU(_TOC,_TCU+1),t2)

Initiates(_e1,TUnav(_TOC,_x, t2-t1),t2)

For readability purposes, we also provide the specification of the Assumption A4 in the BNF syntax of
SecurSLA* below

assertion {
agreedAt = n/a
effectiveFrom = 00 : 00 : 00 : 00
effectiveUntil = 23 : 59 : 59 : 59
templateId = urll

sla_template {
uuid = url2
sla model version = sla at soi sla model v1.0

/* —=== PARTY DESCRIPTIONS ——————— oo oo */
party {
id = in::id::c
role = in::toc

}

abstractparty {
id = in::id::a
role = in::certificationauthority

}

abstractparty {
id = in::id::b
role = in::serviceconsumer

}

abstractparty {
id = in::id::d
Date: May 30, 2014
Page 146/197

/*

role =

}

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

id::authenticationinfrastructure

—-———- TOC INTERFACE DECLARATIONS —-—-——————————=——————— */
interfacedecl {
id = interface::id::c::1
providerref = in::id::c
interfacespec {
name = in::id::c::tocinterface
operation { name = exctestac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
input { name = tper
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = rgsbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = updatehashbc
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
}
operation { name = gethashac
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
operation { name = comparehash
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }
1}
interfacedecl {
id = interface::id::a::1
providerref = in::id::a
interfacespec {
name = in::id::ainterface
operation { name = reqgca
input { name = data
datatype = url
domain = (equals none)

Date: May 30, 2014
Page 147/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

auxiliary = true }}

operation { name = resca
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = notifyalterationca
input { name = data
datatype = url
domain = (equals none)

auxiliary = true }}

H}

interfacedecl {
id = interface::id::d::1
providerref = in::id::d
interfacespec {
name = nr::id::dinterface
operation { name = rspcd
input { name = data
datatype = url
domain = (equals none)
auxiliary = true }}
operation { name = exctestad
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
operation { name = authorisead
input { name = data
datatype = url
domain = (equals none)
auxiliary = true } }
}}
/* ——=—= VARIABLE DECLARATIONS— === == oo o */
exctestacv is (invocation [invoke { endpoint = clll
operation = exctestac
param { name = data value = testexecop} } 1)
rgsacv is (invocation [invoke { endpoint = c222
operation = rgsac
param { name = data value = requestop} }])
rgsbcv is (invocation [invoke { endpoint = c¢333
operation = rgsbc
param { name = data value = requestop} }])
updatehashbcv is (invocation [invoke { endpoint = c444
operation = updatehashbc
param { name = data value = updateop} } 1)
gethashacv is (invocation [invoke { endpoint = c¢555
operation = gethashac
param { name = data value = gethashop} }])
comparehashv is (invocation [invoke { endpoint = c666
operation = comparehash
param { name = data value = compareopop} } 1)
regcav 1is (invocation [invoke { endpoint = alll
operation = reqca
param { name = data value = requestop} }])

Date: May 30, 2014
Page 148/197

rescav 1is (invocation [
operation = resca
param { name = data

notifyalterationcav is
operation =

invoke { endpoint =

(invocation [invoke { endpoint =
notifyalterationca

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

a222

value = responseop} } 1)

a333

param { name = data value = notifyop} } 1)
rspcdv is (invocation [invoke { endpoint = dl1l1

operation = rspcd

param { name = data value = responseop} } 1)
exctestadv is (invocation [invoke { endpoint = d222

operation = exctestad

param { name = data value = testexecop} } 1)
authoriseadv is (invocation [invoke { endpoint = d333

operation = exctestad

param { name = data value = authoriseop} } 1)

exctestac::series is series (

invocation [invoke { endpoint = cll1l
operation = exctestac
param { name = data value = testexecop} } 1)

rgsac::series 1is series (

invocation [invoke
operation = rgsca
param { name = data

rgsbc::series 1is series (

invocation [invoke
operation = rgsbc
param { name = data

{ endpoint = c222

value = requestop} } 1)

{ endpoint = c333

value = requestop } } 1)

updatehashbc::series is series (

invocation [invoke { endpoint = c444
operation = updatehashbc
param { name = data value = updateop} }])

gethashac::series is series (

invocation [invoke { endpoint = c¢555
operation = gethashac
param { name = data value = dethashop} }])

comparehash::series is series (

invocation [invoke { endpoint = c666
operation = comparehash
param { name = data value = compareop} }])

reqgca::series 1is series (

invocation [invoke
operation = reqgca
param { name = data

resca::series is series (

invocation [invoke
operation = resca
param { name = data

{ endpoint = alll

value = requestop} } 1)

{ endpoint = az222

value = responseop} }])

notifyalterationca::series is series (

invocation [invoke
operation =
param { name = data

rspcd: :series 1s series (
invocation [invoke

{ endpoint = a333

notifyalterationca

value = notifyalterationop} }])

{ endpoint = dll11

Date: May 30, 2014
Page 149/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

operation = rspcd
param { name = data value = responseop} }])

exctestad::series is series (

invocation [invoke { endpoint = d222
operation = exctestad
param { name = data value = testexecop} } 1)

authorisead::series is series (

invocation [invoke { endpoint = d333

operation = authorisead

param { name = data value = authoriseop} } 1)
rsqgac_record is list[index = response , invocation [invoke { endpoint = alll operation =
regcav param { name = data value = testexec} }] , timeof [invocation [invoke { endpoint
= d222 operation = exvtestad param { name = data value = testexecop} }] 1 1
rescac::avail is list[index = request , type(integer)]
/* === Guaranteed Terms - -—-——-——————-— */

agreement_term { id = at::term::3

precondition {
count (difference [rgsac::series , rgsacv::avail] greater than t)

}

guaranteedstate { id = gstate3

insert (rsgac_record, rsqgac::record::id equals rsqgacv::data ,
rsgacv, timeof [rgstcv])

update (rescac::avail, rescac::counts::call equals rs rescac gacv::data ,
add (rescac::avail, 1))

}

A4 and A5 are similar to assumptions A2 and A3 respectively except that, instead of monitoring real
operation calls, they execute a randomly selected operation in the interface of _TOC periodically (see the
event Happens(e(_el,_CA,_TOC,EXC(T,e),_x=random(interface(_TOC)), _TOC)t1,[t1,t1])) to check its availability, and update
fluents recording the overall counters of availability and unavailability of _TOC and the test executions that
revealed them.

In the hybrid model, the assumption pairs (A2, A3), and (A4, A5) are used to collect evidence independently
without any monitoring events triggering tests or vice versa. However, it might still be desirable to
correlate the testing and monitoring evidence. For example:

a) The overall availability measure may be computed on the basis of both test and monitoring
evidence as A=(_MCA + _TCA)/(_MCA+ TCA+_MCU+ _TCU).

b) Testing events may be considered as valid evidence of TOC availability only if all real calls of TOC in
the range [tmon—d, tmon+d] produced responses within tav.

c) Monitored calls to TOC that produced a response within the maximum allowed period tav may be
disregarded in computing TOC's availability if the relevant responses were marginally below tav and
all testing events for the same TOC in the range [tmon—d,tmon+d] (tmon is the timestamp of a
monitored call) produced responses after the maximum allowed period tav.

d) An availability measure based on testing (monitoring) evidence will be used for issuing a certificate
only if the availability measure based on monitoring (testing) evidence over the same period is no
more than 1% different from it.

Date: May 30, 2014
Page 150/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Clearly, several other combinations of monitoring and testing evidence may be defined. In general, in an
independent hybrid certification model:

* individual (or groups of) instances of monitoring and testing evidence may be cross-validated
against each other before producing an overall assessment on the basis of any of these types of
evidence (see (b) and (c) above);

* aggregate assessments based on each type of evidence may be validated against an aggregate
assessment based on the other type before issuing a certificate (see (d) above);

* or an aggregate assessment may be formulated from both monitoring and testing evidence as in
case (a) above.

Compared to non-hybrid models for certifying availability, the hybrid model introduced above can produce
availability assessments of higher confidence as the monitoring and testing evidence can be cross-checked
before being used in an assessment (and certificate) and can both be included in a certificate depending on
the chosen validation checks. Hybrid models offer also a more extended pool of evidence and possibilities
to decide which data are relevant and of sufficient quality so that they can be taken into consideration for
issuing a hybrid certificate. Apart from increasing the confidence level of assessments, hybrid models are
also more customisable than traditional certification models since they offer the choice of deciding how
test and monitoring evidence should be correlated, cross-checked and used in assessments.

7.3.1. Comparison between hybrid and traditional certification models

This section has no corresponding section in DZ2.2. It contains a comparison between Hybrid
Certification Models and the traditional Certification Models used in the industry.

In this section we present a comparison between hybrid and traditional certification of cloud services.
Traditional approaches for certifying security properties rely on manual inspections and audits, proving to
be static, inflexible, non-automated and unable to realise the economic dimension that the Cloud entails
(Windhorst 1., 2013). As already stated, CSA has generated the STAR self-assessment certification
framework that allows cloud providers to submit self-assessment reports, when fully implemented (J.
Reavis, 2012). At the same time, CSA has generated the Cloud Controls Matrix (CCM) (CSA,
https://cloudsecurityalliance.org/research/ccm/), which provides a framework of controls that gives
detailed understanding of security concepts and principles that are aligned to the Cloud Security Alliance
guidance in 13 domains (CSA, https://cloudsecurityalliance.org/star/self-assessment/). CCM facilitates
regulatory compliance and provides organizations with the needed structure, detail and clarity relating to
information security tailored to the cloud industry. It is also specifically designed to provide fundamental
security principles to guide cloud vendors and to assist prospective cloud customers in assessing the overall
security risk of a cloud provider, integrating the ISO/IEC 27001 management systems standard (CSA,
https://cloudsecurityalliance.org/research/ccm/). However, CCM is human-process centric requiring from
the companies that adopt it to address the issues that they define critical concerning cloud security and to
pre-assess how mature their systems are (CSA, https://cloudsecurityalliance.org/research/ccm/) (J. Reavis,
2012). CCM enables the integration, monitoring and managing of cloud services through a framework that
can take care of the elementary issues regarding cloud security (CSA,
https://cloudsecurityalliance.org/research/ccm/), but it does not support certification as an automated
service in the cloud (Saxena, 2013).

Traditional certification models (i.e. ISO/IEC 27001, NIST) also require manual inspections and are unable to
provide the required level of assurance in cloud computing and to fit the dynamic nature of the cloud,
focusing on monolithic software components (S. Cimato, 2013) and failing to address on-demand self-
service, dynamic allocation of resources and multi-tenancy (Windhorst 1., 2013) (Kaliski B. Jr., 2010).

Additionally, traditional certification models lack in trust, transparency and accuracy, as they do not
Date: May 30, 2014
Page 151/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

support the constant provision of information about the security of cloud services, unlike our hybrid
approach that relies on incremental monitoring and automated testing and it is focused on cloud services.

IT audits have been widely used in providing security assurance. Security auditing approaches focus on
verifying the implementation of information security management process and then, evidence is collected
and evaluated. According to (Z. Chen, 2010) auditing approaches focus on verifying the application of
controls and best practices and are not automated. One more drawback is that they require that the
consumer relies on third-party auditors for security assurance. Common Criteria (CC) certification uses
Evaluation Technical Reports (Kaluvuri S.P., 2013). CC has also a human-centric approach, unlike our model,
which is not designed to support automated security certification, targeting static, monolithic systems and
requiring a large investment of resources (S. Cimato, 2013).

8. Conclusion

During the first year of CUMULUS project, the work in Work Package 2 has been focused on the
specifications of the three basic certificate categories for the definition of Test-based, Monitoring-based,
and TC-based certification models. To better integrate the different models of certification, soon emerged
the need of a common vocabulary of terms: the meta-model, proposed for version 1 of this deliverable,
tried to unify the different views and give a shared representation of the domain where all the conceptual
entities involved in the certification process can be defined. Also a new “TC Support” model has been
developed, which is not used as an independent model but is rather providing the trust that is needed for
the validation of the Monitoring and Test Based certification

During the second year of CUMULUS project, the three basic Certification Models have been further refined
to take into account some architectural changes and the security property vocabulary developed in Work
Package 2 (CSA, 2013) was fully integrated in the models.

Date: May 30, 2014
Page 152/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

9. References

(2012). Common Criteria v3.1 R4 Part 1.

Anisetti, A. & (2011). Fine-grained modeling of web services for test-based security
certification. Prec of SCC 2011, Washington DC, USA.

Anisetti, M., Ardagna, C., & Damiani, E. (2011). Fine-grained modeling of web services for test-
based security certification. In Proc. of the 8th International Conference on Service
Computing (SCC 2011).

Anisetti, M., Ardagna, C., & Damiani, E. (2011). Fine-grained modeling of web services for test-
based security certification. Washington, DC, USA: Proc. of SCC.

Chung, L., & Leite,]. (2009). Conceptual modeling. Foundations and applications., 363-379.

Chung, L., Nixon, B,, Yu, E., & Mylopoulos, J. (2000). Non-Functional Requirements in Software
Engineering,. 5.

CITY University. (2013). D3.1 Core Certification Mechanisms. CUMULUS project.

Consortium, C. (2013). Security-aware SLA specificaton language and cloud security
dependency model - Deliverable 2.1.

CSA. (n.d.). Retrieved from https://cloudsecurityalliance.org/star/self-assessment/.

CSA. (n.d.). Retrieved from https://cloudsecurityalliance.org/research/ccm/.

CSA. (2013). D2.1 Development of security properties specification scheme and security
dependency models. CUMULUS project.

CSA. (n.d.). https://cloudsecurityalliance.org/star/self-assessment/.

CUMULUS Consortium. (2012). DoW.

CUMULUS Consortium. (2015). D2.4 Final Certification Models.

Damiani, E., Anisetti, M., & Ardagna, C. (2011). Design and description of evidence-based
certificates artifacts for services. Assert4SOA.

Damiani, E., Ardagna, C., & Bezzi, M. (2012). Cluster Workshop on "Security Contracts". CSP EU
Forum 2012.

Damiani, E., Ardagna, C., & loini, N. (2009). Open source systems security certification.

E. Damiani, C. A. (2008). Open Source Systems Security Certification. Springer.

Feng,]. C. (2011). A Fair Multi-Party Non-Repudiation Scheme for Storage Clouds. In
Proceedings of the International Conference on Collaboration Technologies and Systems
(CTS), 457-465.

Gurgens, S. R. (2005). On the Security of Fair Non-Repudiation Protocols. International Journal
of Information Security, 253-262.

Irvine, C., & Levin, T. (1991). Toward a taxonomy and costing method for security services.
Proc. of the 15th Annual Conference on Computer Security Applications (ACSAC 1999).

J. Reavis, D. C. (2012, Aug). Open Certification Framework. Vision Statement, Cloud Security
Alliance.

Kaliski B. Jr., P. W. (2010). Toward Risk Assessment as a Service in Cloud Environments.
Proceeding HotCloud 10 Proceedings of the 2Znd USENIX conference on Hot topics in cloud
computing.

Kaluvuri S.P., K. H. (2013). Security Assurance of Services through Digital Security Certificates.
Proc. of the 20th IEEE International Conference on Web Services (ICWS 2013).

M. Anisetti, C. A. (2012). A Low-Cost Security Certification Scheme for Evolving Services. in
Proc. of the 19th IEEE International Conference on Web Services (ICWS 2012), Honolulu,
HI, USA.

M. Anisetti, C. A. (2013). A Test-based Security Certification Scheme for Web Services. ACM
Transactions on the Web.

Date: May 30, 2014
Page 153/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Ma., W. W. (2013). A TPA Based Efficient Non-Repudiation Scheme for Cloud Storage. In
Proceedings of the 2nd International Conference On Systems Engineering and Modeling
(ICSEM -13), 1630-1635.

Markowitch, O. a. (1999). Probabilistic Non-Repudiation without trusted third party. In
Second Conference on Security in Communication Networks ‘99, Italy.

Reavis J., C. D. (2012, Aug). “Cloud Security Alliance - Open Certification Framework Vision
Statement”.

S. Cimato, E. D. (2013). Towards the Certification of Cloud Services. IEEE 9th World Congress
on Services.

Saxena, S. (2013). Ensuring Cloud Security Using Cloud Control Matrix.

TrustedComputingGroup. (2011). TPM 1.2 Protection Profile. Retrieved 09 25, 2013, from
Trusted Computing Group: https://www.trustedcomputinggroup.org/

University of Milan. (2014). D3.2 Core Certification Mechanismes.

VV. AA. (2011). TCG Attestation PTS Protocol: Binding to TNC IF-M Specification Version 1.0
Revision 28;. Retrieved from www.trustedcomputinggroup.org

Windhorst I, S. A. (2013). Dynamic Certification of Cloud Services. Eighth International
Conference on Availability, Reliability and Security (ARES).

Z.Chen,]. Y. (2010). IT Auditing to assure a secure cloud computing. IEEE 6th World Congress
on Services.

Zhou, J. a. (1996). A Fair Non-Repudiation Protocol. In Proceedings of IEEE Symposium on
Security and Provacy, pp. 55-61, California.

Zhou, J. a. (1997). An Efficient Non-Repudiation Protocol. In Proceedings of the 10th Computer
Security Foundations Workshop, IEEE Computer, Okland, USA, 126-132.

Date: May 30, 2014
Page 154/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

10. Appendix

10.1. Test-based Certification Model generic schema (.xsd file)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" vc:maxVersion="1.1" ve:minVersion="1.0"
xmlns:ve="http://www.w3.0rg/2007/XMLSchema-versioning">
<xs:annotation>
<xs:documentation>Created with EditiX (http://www.editix.com) at Thu Feb 24 10:21:29 CET 201 1</xs:documentation>
</xs:annotation>
<xs:element name="TestBasedCertificationModel" type="testBasedCertificationModelType"> </xs:element>
<xs:complexType name="testBasedCertificationModelType">
<xs:sequence maxOccurs="1">
<xs:element name="CertificationModelld" type="certificationModelType" minOccurs="1"/>
<xs:element name="Collectors" type="collectorType"> </xs:element>
<xs:element name="LifeCycle" type="lifeCycleType"/>
<xs:element name="Toc" type="tocType" maxOccurs="1"/>
<xs:element name="SecurityProperty" type="securityPropertyType"/>
<xs:element name="Signature" type="testerType"/>
<xs:element name="Context" type="contextType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="certificationModel Type">
<xs:sequence>
<xs:element name="CmlId" type="xs:ID"/>
</xs:sequence>
</xs:complexType>
<xs:attribute name="AggregatorDescriptor">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="CHAINING"/>
<xs:enumeration value="MOST_RECENT"/>
<xs:enumeration value="MOST_CRITICAL"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:complexType name="agentConfigurationType">
<xs:sequence maxOccurs="1" minOccurs="0">
<xs:element name="AgentURI" type="xs:anyURI"/>
<xs:element name="AgentDesription" type="xs:string" minOccurs="0"/>
<xs:element name="AgentIntegrityProtection" type="TC _IntegrityProtectionType"/>
</xs:sequence>
<xs:attribute name="AgentIsPresent" type="xs:boolean" use="required"/>
<xs:attribute name="1d" type="xs:ID" use="required"/>
</xs:complexType>
<xs:complexType name="actionabilityType">
<xs:sequence>
<xs:element name="Description" type="xs:string"> </xs:element>
<xs:element name="Mechanism" type="xs:string"/>
<xs:element name="MechanismURI" type="xs:anyURI"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="aggregatorType">
<xs:sequence>
<xs:element name="ModelLink" type="xs:anyURI"/>
<xs:element name="TestMetric" type="testMetricsType"/>
<xs:element name="ElementForExtension" type="elementForExtensionType"/>
</xs:sequence>
<xs:attribute name="AggregatorDescription" type="xs:string"> </xs:attribute>
</xs:complexType>
<xs:complexType name="certificateInfoType">
<xs:sequence maxOccurs="1" minOccurs="1">
<xs:element name="CertificateType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Test-based"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CertificationDate" type="xs:dateTime"/>
<xs:element name="OnlineOfflineMode">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Offline/Static"/>
<xs:enumeration value="Online/Dynamic"/>
</xs:restriction>
</xs:simpleType>

—n

Date: May 30, 2014
Page 155/197

Document name

</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="contextType">
<xs:attribute name="ConfigurationDate" type="xs:date"/>
</xs:complexType>
<xs:complexType name="collectorType">
<xs:sequence>
<xs:element name="AbstractCollector" type
minOccurs="1"/>
<xs:element name="Collector" type="GeneralCollectorType" minOccurs="0"
maxOccurs="unbounded"> </xs:element>
<xs:element name="EventBusCollector" type
</xs:sequence>
</xs:complexType>
<xs:complexType name="capabilityType">
<xs:sequence maxOccurs="unbounded">
<xs:element name="Attacker" type="xs:string"> </xs:element>
<xs:element name="AttackName" type="xs:string"/>
<xs:element name="AttackerCapabilities">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="Capabilityld" type="xs:integer"/>
<xs:element name="AttackerCapability" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="conditionForSomministrationType">
<xs:choice>
<xs:element name="ThresholdTraffic" type="thresholdTrafficType"/>
<xs:element name="Event" type="eventType"/>
<xs:element name="OtherCondition" type="xs:string"/>
<xs:element name="DeltaTime" type="xs:time"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="GeneralCollectorType">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="AgentURI" type="xs:anyURI"/>
<xs:element name="ConditionForSomministration" type="conditionForSomministrationType"
maxOccurs="unbounded" minOccurs="0"> </xs:element>
<xs:element minOccurs="1" name="AbstractCollector" type="xs:string"/>
</xs:sequence>
<xs:attribute name="ExpirationTime" type="xs:gYearMonth" use
<xs:attribute name="Descriptor" type="xs:string"/>
<xs:attribute name="Id" type="xs:ID"/>
<xs:attribute name="isStatic" type="xs:boolean"/>
<xs:attribute name="toDeploy" type="xs:boolean"/>
</xs:complexType>
<xs:complexType name="eventBusCollectorType">
<xs:sequence maxOccurs="unbounded">

<xs:element name="Eventld" type="xs:ID"/>
<xs:element name="EventCode" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="eventType">
<xs:sequence>
<xs:element name="Action" type="xs:string"> </xs:element>
<xs:element name="Condition" type="xs:string"/>
<xs:element name="Value" type="xs:float"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="elementForExtensionType">
<xs:sequence>
<xs:element name="Environment"> </xs:element>
<xs:element name="TestingTool"/>
<!-- <xs:element name="KeyInfo" minOccurs="0"/> -->
<xs:element name="Code"/>
<xs:element name="Others"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="KeyInfoType" mixed="true">
<xs:choice maxOccurs="unbounded">
<xs:element name="KeyName"/>
<xs:element name="KeyValue"/>
<xs:element name="RetrievalMethod"/>
<xs:element name="X509Data"/>
<xs:element name="PGPData"/>
<xs:element name="SPKIData"/>

_n

abstracCollectorType" maxOccurs="unbounded"

eventBusCollectorType" minOccurs="0"/>

required"/>

Page 156/197

: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name

<xs:element name="MgmtData"/>
<xs:any processContents="lax" namespace="##other"/>
<!-- (1,1) elements from (0,unbounded) namespaces -->
</xs:choice>
</xs:complexType>
<xs:complexType name="lifeCycleType">
<xs:sequence>
<xs:element name="LifeCycleStates">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="LifeCycleld" type="xs:ID"/>
<xs:element name="LifeCycleState">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOT ISSUED"/>
<xs:enumeration value="ISSUED"/>
<xs:enumeration value="SUSPENDED"/>
<xs:enumeration value="REVOKED"/>
<xs:enumeration value="EXPIRED"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="LifeCycleTransitions">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="lifeCycleTransition"
type="lifeCycleTransitionType"> </xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="NumberOfStates" use="required" type="xs:integer"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="InitialState" use="required" type="xs:string" fixed="NOT ISSUED"/>
</xs:complexType>
<xs:complexType name="lifeCycleStateType">
<xs:sequence>
<xs:element name="LifeCycleTransition" type="lifeCycleTransitionType"/>
</xs:sequence>
<xs:attribute name="LifeCycle" type="xs:ID"/>
<xs:attribute name="LifeCycleStateName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOT_ISSUED"/>
<xs:enumeration value="ISSUED"/>
<xs:enumeration value="SUSPENDED"/>
<xs:enumeration value="REVOCKED"/>
<xs:enumeration value="EXPIRED"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="lifeCycleTransitionType">
<xs:sequence maxOccurs="1">
<xs:element name="FromState">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOT ISSUED"/>
<xs:enumeration value="ISSUED"/>
<xs:enumeration value="SUSPENDED"/>
<xs:enumeration value="REVOKED"/>
<xs:enumeration value="EXPIRED"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ToState">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOT ISSUED"/>
<xs:enumeration value="ISSUED"/>
<xs:enumeration value="SUSPENDED"/>
<xs:enumeration value="REVOKED"/>
<xs:enumeration value="EXPIRED"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ConditionForLifeCycleTransition" type="lifeCycleConditionType"/>
</xs:sequence>

Page 157/197

: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name

</xs:complexType>
<xs:complexType name="lifeCycleConditionType">
<xs:choice>
<xs:element name="EvidencelsValid" type="xs:boolean"/>

-1t

<xs:element name="EvidencelsNotValid" type="xs:boolean"/>
<xs:element name="EvidencelsQuestionable" type="xs:boolean"/>
<xs:element name="ValidityPeriodExpired" type="xs:boolean"/>
</xs:choice>
</xs:complexType>
<xs:attribute name="LifeCycleState">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="NOT_ISSUED"/>
<xs:enumeration value="ISSUED"/>
<xs:enumeration value="SUSPENDED"/>
<xs:enumeration value="REVOKED"/>
<xs:enumeration value="EXPIRED"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:complexType name="operativeConditionsType">
<xs:sequence>
<xs:element name="TocTechnicalSpecifications" type="tocTechSpecType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="property Type">
<xs:sequence>
<xs:element name="propertyPerformance">
<xs:complexType>
<xs:sequence>
<xs:element name="propertyPerformanceRow" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="propertyPerformanceCell" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:anySimpleType">
<xs:attribute name="name" type="xs:string"
use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="propertyParameterList">
<xs:complexType>
<xs:sequence>
<xs:element name="propertyParameter" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:anySimpleType">
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name
</xs:complexType>
<xs:element name="SecurityProperty" type="securityProperty Type"/>
<xs:complexType name="securityProperty Type">
<xs:sequence maxOccurs="1" minOccurs="1">

<xs:element name="sProperty" type="propertyType"/>
</xs:sequence>
<xs:attribute name="SecurityPropertyld" type="xs:string" use="required"/>
<xs:attribute name="SecurityPropertyDefinition" type="xs:string" use="required"/>

<xs:attribute name="Vocabulary" type="xs:string"/>
<xs:attribute name="ShortName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="signatureType">

—n o _n

class" type="xs:anyURI" use="required"/>

—n

Page 158/197

: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name

<xs:sequence>
<xs:element name="SignedInfo">
<xs:complexType>
<xs:sequence> </xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SignatureValue"/>
<xs:element name="KeyInfo" type="KeyInfoType"/>
<xs:element name="0bject" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="qualifiedType">
<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z][- a-zA-Z0-9]*:[a-zA-Z][- a-zA-Z0-9]*"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="tocTechSpecType">
<xs:sequence maxOccurs="1">
<xs:element name="TocVendor" type="xs:string"/>
<xs:element name="TocRelease" type="xs:string"/>
<xs:element name="TocDate" type="xs:date" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="testMetricsType">
<xs:sequence>
<xs:element name="OperationCoverage"> </xs:element>
<xs:element name="InputPartitionCoverage"/>
<xs:element name="BranchCoverage"/>
<xs:element name="ConditionCoverage"/>
<xs:element name="PathCoverage" type="xs:string"/>
<xs:element name="AttackCoverage"/>
<xs:element name="Other"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="tocType">
<xs:sequence>
<xs:element name="CloudLayer" maxOccurs="unbounded">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="SaaS"/>
<xs:enumeration value="PaaS"/>
<xs:enumeration value="IaaS"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ConcreteToc" type="xs:string"> </xs:element>
<xs:element name="TocDescription">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="WS"/>
<xs:enumeration value="Application"/>
<xs:enumeration value="DBMS"/>
<xs:enumeration value="WEBSERVER"/>
<xs:enumeration value="EMAIL"/>
<xs:enumeration value="CRM"/>
<xs:enumeration value="SDK"/>
<xs:enumeration value="VIRTUALMACHINE"/>
<xs:enumeration value="HD"/>
<xs:enumeration value="SWITCH"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="TocURI" type="xs:anyURI" default="http://www.cumulus-project.eu"/>
<xs:element name="ToTs" type="targetOfTestsType"/>
<xs:sequence maxOccurs="unbounded" minOccurs="1">
<xs:element name="OperativeCondition" type="operativeConditionsType"> </xs:element>
</xs:sequence>
</xs:sequence>
<xs:attribute name="Id" use="required" type="xs:ID"> </xs:attribute>
</xs:complexType>
<xs:complexType name="abstracCollectorType">
<xs:sequence>
<xs:element name="Aggregator" type
<xs:element name="TestCategory">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Functionality"/>
<xs:enumeration value="Robustness"/>
<xs:enumeration value="ResilienceToAttacks"/>
<xs:enumeration value="PenetrationTest"/>

aggregatorType"/>

Page 159/197

: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Actionability" type="actionabilityType" minOccurs="0"/>
<xs:element name="Capability" type="capabilityType" minOccurs="0"/>
<xs:element name="TestType" type="xs:string"/>
<xs:element name="TestDescription" type="xs:string"/>
<xs:element name="TestGenerationModelLink" type="xs:anyURI"
default="http://www.cumulus-project.eu"/>
<xs:element name="TestAttributes" maxOccurs="1" minOccurs="1">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="TestAttribute" type="testAttributeType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="TestCases">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="TestCase" type="testCaseType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use
</xs:complexType>
<xs:complexType name="testAttributeType">
<xs:sequence>
<xs:element name="ID" type="xs:integer"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Value" type="xs:anyType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="testCaseType">
<xs:sequence maxOccurs="1">
<xs:element name="ID" type="xs:integer"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="TestInstance" type="testInstanceType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="testInstanceType">
<xs:sequence>
<xs:element name="Preconditions" type="xs:string"/>
<xs:element name="HiddenCommunications" type="xs:string"/>
<xs:element name="Input" type="xs:string"/>
<xs:element name="ExpectedOutput" type="xs:string"/>
<xs:element name="PostConditions" type="xs:string"/>
</xs:sequence>
<xs:attribute name="Operation" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="targetOfTestsType">
<xs:sequence maxOccurs="unbounded">
<xs:element name="ToT" type="totType"> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="totType">
<xs:sequence maxOccurs="1">
<xs:element name="1d" type="xs:integer"> </xs:element>
<xs:element name="Target" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="testerType">
<xs:sequence maxOccurs="1">
<xs:element name="Name" type="xs:string"/>
<xs:element name="Role" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="TC_Hash" type="xs:hexBinary"/>
<xs:complexType name="TC_IntegrityProtectionType">
<xs:sequence>
<xs:element ref="TC_Hash"/>
<xs:element name="HashAlgorithm" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="thresholdTrafficType">

<xs:attribute name="TrafficType" type="xs:string" use="required"/>

<xs:attribute name="ThresholdUnit" type="xs:string" use="required"/>

<xs:attribute name="ThresholdValue" type="xs:float" use="required"/>
</xs:complexType>

</xs:schema>

_n

required"/>

Date: May 30, 2014
Page 160/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

10.2. Test-based Certification Model instance (.xml file)

<?xml version="1.0" encoding="UTF-8"7>
<TestBasedCertificationModel xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
"file:/Users/filippogaudenzi/Documents/workspace/CumulusTestManager/ XML Repository/Cert
ificationModelv3.xsd">
<CertificationModelld>
<CmlId>TEST000027</CmlId>
</CertificationModelld>
<Collectors>
<AbstractCollector Id="abstract1">
<Aggregator >
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType>Model Control Flow</TestType>
<TestDescription>Send user/pass (with malformed pass) to registerUser API. RegisterUser result must be
"fail".</TestDescription>
<TestGenerationModel Link>http://www.cumulus-project.eu/model005.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description>user generation</Description>
<Testlnstance "registerUser">
<Preconditions/>
<HiddenCommunications/>
<Input>username=fred; password="12345"</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector Id="abastract2">
<Aggregator>
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>

Date: May 30, 2014
Page 161/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType></TestType>
<TestDescription>Send user/pass (with wellformed pass) to registerUser API. Login result must be
"success".</TestDescription>
<TestGenerationModel Link>http://www.cumulus-project.eu/model006.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description>login</Description>
<Testlnstance "login">
<Preconditions>ACL with user/pass with password satisfying secret-levell-policy-correctness (n. of pairs =
1)</Preconditions>
<HiddenCommunications></HiddenCommunications>
<Input>username,password</Input>
<ExpectedOutput>success</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector Id="abstract3">
<Aggregator>
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType></TestType>
<TestDescription>Send user/pass (with wellformed pass) to login API for 100 times. Logins must fails. 100th login must
lockout user.</TestDescription>
<TestGenerationModelLink>http://www.cumulus-project.eu/model007.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>100</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description></Description>
<Testlnstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>

Date: May 30, 2014
Page 162/197

Document name: D2-3 Certification models v.2

<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>2</ID>
<Description></Description>
<Testlnstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>3</ID>
<Description></Description>
<Testlnstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>4</ID>
<Description></Description>
<Testlnstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>5</ID>
<Description></Description>
<Testlnstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>lockout</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector Id="abstract4">
<Aggregator>
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<Actionability>

Page 163/197

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Description>mechanism</Description>
<Mechanism>access control</Mechanism>
<MechanismURI>http://www.cumulus.eu/mechanism1033.html</MechanismURI>
</Actionability>
<Capability>
<Attacker>CloudProvider</Attacker>
<AttackName></AttackName>
<AttackerCapabilities>
<Capabilityld>1</Capabilityld>
<AttackerCapability>R</AttackerCapability>
<Capabilityld>2</Capabilityld>
<AttackerCapability>W</AttackerCapability>
<Capabilityld>3</Capabilityld>
<AttackerCapability>X</AttackerCapability>
</AttackerCapabilities>
<Attacker>Hacker</Attacker>
<AttackName></AttackName>
<AttackerCapabilities>
<Capabilityld>1</Capabilityld>
<AttackerCapability>R</AttackerCapability>
</AttackerCapabilities>
</Capability>
<TestType></TestType>
<TestDescription>Send user/pass (with malformed pass) to registerUser API. RegisterUser result must be
"fail".</TestDescription>
<TestGenerationModel Link>http://www.cumulus-project.eu/model005.html</TestGenerationModelLink>
<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description>user generation</Description>
<TestInstance "registerUser">
<Preconditions/>
<HiddenCommunications/>
<Input>username=fred; password="1234567"</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector Id="abstract5">
<Aggregator>
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType></TestType>
<TestDescription>Send user/pass (with wellformed pass) to registerUser API. Login result must be
"success".</TestDescription>
<TestGenerationModel Link>http://www.cumulus-project.eu/model006.html</TestGenerationModelLink>

Date: May 30, 2014
Page 164/197

Document name: D2-3 Certification models v.2

<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>1</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description>login</Description>
<TestInstance "login">
<Preconditions></Preconditions>
<HiddenCommunications></HiddenCommunications>
<Input>username,password</Input>
<ExpectedOutput>success</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<AbstractCollector Id="abstract6">
<Aggregator>
<ModelLink>http://www.cumulus-project.eu/Model005.html</ModelLink>
<TestMetric>
<OperationCoverage>1</OperationCoverage>
<InputPartitionCoverage/>
<BranchCoverage/>
<ConditionCoverage/>
<PathCoverage/>
<AttackCoverage/>
<Other> </Other>
</TestMetric>
<ElementForExtension>
<Environment/>
<TestingTool>no</TestingTool>
<Code/>
<Others/>
</ElementForExtension>
</Aggregator>
<TestCategory>Functionality</TestCategory>
<TestType></TestType>

Version: 1.0
Security: public

<TestDescription>Send user/pass (with wellformed pass) to login API for 100 times. Logins must fails. 100th login

must lockout user.</TestDescription>

<TestGenerationModelLink>http://www.cumulus-project.eu/model007.html</TestGenerationModelLink>

<TestAttributes>
<TestAttribute>
<ID>1</ID>
<Name>cardinality</Name>
<Value>100</Value>
</TestAttribute>
</TestAttributes>
<TestCases>
<TestCase>
<ID>1</ID>
<Description></Description>
<TestInstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>2</ID>
<Description></Description>
<TestInstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>

Page 165/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>3</ID>
<Description></Description>
<TestInstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>4</ID>
<Description></Description>
<TestInstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>fail</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
<TestCase>
<ID>101</ID>
<Description></Description>
<TestInstance "login">
<Preconditions>sleepTime="00:07:00.000"</Preconditions>
<HiddenCommunications/>
<Input>username,password</Input>
<ExpectedOutput>lockout</ExpectedOutput>
<PostConditions></PostConditions>
</TestInstance>
</TestCase>
</TestCases>
</AbstractCollector>
<Collector "2014-09" "true" "true" [d="col2">
<ConditionForSomministration><DeltaTime>12:00:00</DeltaTime></ConditionForSomministration>
<AbstractCollector>abstract] </AbstractCollector>

</Collector>
<Collector "2014-09" "true" "true" "coll">
<ConditionForSomministration>
<Event>

<Action>Login</Action>
<Condition> failed
</Condition>
<Value>100</Value>
</Event>
</ConditionForSomministration>
<AbstractCollector>abstract4</AbstractCollector>

</Collector>

</Collectors>

<LifeCycle "NOT_ISSUED">
<LifeCycleStates "5">

<LifeCycleld>ID1</LifeCycleld>
<LifeCycleState>NOT_ISSUED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>NOT_ISSUED</FromState>
<ToState>ISSUED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsValid>true</EvidencelsValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
<LifeCycleld>ID2</LifeCycleld>
<LifeCycleState>ISSUED</LifeCycleState>
<LifeCycleTransitions>

Date: May 30, 2014
Page 166/197

<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>EXPIRED</ToState>
<ConditionForLifeCycleTransition>
<ValidityPeriodExpired>true</ValidityPeriodExpired>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>SUSPENDED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsQuestionable>true</EvidencelsQuestionable>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>REVOKED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsNotValid>true</EvidencelsNotValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>ISSUED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsValid>true</EvidencelsValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
<LifeCycleld>ID3</LifeCycleld>
<LifeCycleState>SUSPENDED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>EXPIRED</ToState>
<ConditionForLifeCycleTransition>
<ValidityPeriodExpired>true</ValidityPeriodExpired>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>ISSUED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsValid>true</EvidencelsValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>REVOKED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsNotValid>true</EvidencelsNotValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>SUSPENDED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsQuestionable>true</EvidencelsQuestionable>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
<LifeCycleld>ID4</LifeCycleld>
<LifeCycleState>EXPIRED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>EXPIRED</ToState>
<ConditionForLifeCycleTransition>
<ValidityPeriodExpired>true</ValidityPeriodExpired>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>

Page 167/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>EXPIRED</ToState>
<ConditionForLifeCycleTransition>
<ValidityPeriodExpired>true</ValidityPeriodExpired>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
<LifeCycleld>ID5</LifeCycleld>
<LifeCycleState>REVOKED</LifeCycleState>
<LifeCycleTransitions>
<lifeCycleTransition>
<FromState>ISSUED</FromState>
<ToState>REVOKED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsNotValid>true</EvidencelsNotValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
<lifeCycleTransition>
<FromState>SUSPENDED</FromState>
<ToState>REVOKED</ToState>
<ConditionForLifeCycleTransition>
<EvidencelsNotValid>true</EvidencelsNotValid>
</ConditionForLifeCycleTransition>
</lifeCycleTransition>
</LifeCycleTransitions>
</LifeCycleStates>
</LifeCycle>
<Toc 1d="ID001">
<CloudLayer>SaaS</CloudLayer>
<ConcreteToc>e-health v1.0</ConcreteToc>
<TocDescription>Application</TocDescription>
<TocURI>10.0.0.155</TocURI>
<ToTs>
<ToT>
<Id>0</1d>
<Target>Target0</Target>
</ToT>
<ToT>
<Id>0</1d>
<Target>Target1</Target>
</ToT>
</ToTs>
<OperativeCondition>
<TocTechnicalSpecifications>
<TocVendor>ATOS</TocVendor>
<TocRelease>1.0</TocRelease>
<TocDate>2014-09-24</TocDate>
</TocTechnicalSpecifications>
</OperativeCondition>
</Toc>
<SecurityProperty "Id101" "This property measures the strength of the
mechanism used to authenticate a user, on a scale from 0 to 4, notably taking into account identity proofing, credential security
during transfer and storage.">
<sProperty "http://cumulus-project.eu/security-properties#] AM:identity-assurance:user-authentication-and-identity-
assurance-level">
<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell "level">1</propertyPerformanceCell>
</propertyPerformanceRow>
</propertyPerformance>
<propertyParameterList>
</propertyParameterList>
</sProperty>
</SecurityProperty>
<Signature>
<Name>SesarLab</Name>
Role>Laboratory</Role>
</Signature>
<Context/>
</TestBasedCertificationModel>

Date: May 30, 2014
Page 168/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

10.3. Monitoring-based Certification Model generic schema (.xsd file)

<?xml version="1.0" encoding="utf-16"?>
<xs:schema xmlns:slasoi="http://www.slaatsoi.eu/slamodel" elementFormDefault="qualified"
targetNamespace="http://www.slaatsoi.eu/slamodel" xmlIns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="SLATemplate">
<xs:complexType>
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="UUID" type="slasoi:UUIDType" />
<xs:element minOccurs="1" maxOccurs="1" name="ModelVersion" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="unbounded" name="Party" type="slasoi:AgreementPartyType" />
<xs:element minOccurs="1" maxOccurs="unbounded" name="InterfaceDeclr" type="slasoi:InterfaceDeclrType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="VariableDeclr" type="slasoi:VariableDeclrType" />
<xs:element minOccurs="1" maxOccurs="unbounded" name="AgreementTerm" type="slasoi:AgreementTermType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Assertion">
<xs:complexType>
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="UUID" type="slasoi:UUIDType" />
<xs:element minOccurs="1" maxOccurs="1" name="EffectiveFrom" type="slasoi:TimeType" />
<xs:element minOccurs="1" maxOccurs="1" name="EffectiveUntil" type="slasoi:TimeType" />
<xs:element minOccurs="1" maxOccurs="1" name="AgreedAt" type="slasoi:TimeType" />
<xs:element minOccurs="1" maxOccurs="unbounded" name="Party" type="slasoi:AgreementPartyType" />

<xs:element minOccurs="0" maxOccurs="unbounded" name="AbstractParty" typc="slasoi:AbstractParty Type" />
y" typ ylyp

<xs:element minOccurs="1" maxOccurs="unbounded" name="InterfaceDeclr" type="slasoi:InterfaceDeclr Type" />

<xs:element minOccurs="0" maxOccurs="unbounded" name="VariableDeclr" type="slasoi:VariableDeclr Type" />
<xs:element minOccurs="1" maxOccurs="unbounded" name="AgreementTerm" type="slasoi:AgreementTermType" />
</xs:sequence>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="AgreementPartyType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Operative" type="slasoi:OperativeType" />
<xs:element minOccurs="1" maxOccurs="1" name="Role" type="slasoi:STNDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="AbstractPartyType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Role" type="slasoi:STNDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="OperativeType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="VariableDeclrType">

Date: May 30, 2014
Page 169/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Var" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Expr" type="slasoi:ExprType" />
<xs:element minOccurs="0" maxOccurs=" slasoi:ValueExprType"></xs:element>
</xs:sequence>
<xs:element minOccurs="1" name="Customisable" type="slasoi:CustomisableType" />
<xs:element minOccurs="1" maxOccurs="1" name="serviceref" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="List" type="slasoi:ListVarType"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

"

unbounded" name="Initially" type=

<xs:complexType name="ListVarType">
<xs:sequence>
<xs:element name="Index" type="slasoi:IDType"></xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Value" type="slasoi:ValueExprType"></xs:element>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Domain" type="slasoi:DomainExprType"></xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="CustomisableType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Var" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="slasoi: CONSTType" />
<xs:element minOccurs="1" maxOccurs="1" name="Expr" type="slasoi:DomainExprType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Initially" type="slasoi:ValueExprType"></xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AgreementTermType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="1" name="Precondition" type="slasoi:ConstraintExprType" />
<xs:element minOccurs="0" maxOccurs="
<xs:element minOccurs="1" maxOccurs
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="GuaranteedType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:choice>
<xs:element minOccurs="1" maxOccurs="1" name="State" type="slasoi:GuaranteedStateType" />
<xs:element minOccurs="1" maxOccurs="1" name="Action" type="slasoi:GuaranteedActionType" />
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="GuaranteedState Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Priority" nillable="true" type="slasoi: CONSTType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Constraint" type="slasoi:ConstraintExprType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Precondition" type="slasoi:ConstraintExprType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="GuaranteedActionType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />

"

<xs:element minOccurs="1" maxOccurs="1" name="ActorRef" type="slasoi:IDType" />

_n

<xs:element minOccurs="1" maxOccurs="1" name="Policy" type="slasoi:STNDType" />
y" typ yp

<xs:element minOccurs="1" maxOccurs="1" name="Precondition" type="slasoi:EventExprType" />
slasoi:GuaranteedActionDefnType" />

unbounded" name="VariableDeclr" type="slasoi:VariableDeclrType" />

unbounded" name="Guaranteed" type="slasoi:GuaranteedType" />

<xs:element minOccurs="1" maxOccurs="1" name="Postcondition" type=
</xs:sequence>
</xs:complexType>
<xs:complexType name="GuaranteedActionDefnType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:choice>
o

<xs:element minOccurs="1" maxOccurs="1" name="Invocation_action" type="slasoi:InvocationActionType" />

Date: May 30, 2014
Page 170/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public
<xs:element minOccurs="1" maxOccurs="1" name="Var_update_action" type="
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="VarUpdateActionType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Expr" type
</xs:sequence>
</xs:complexType>

slasoi:VarUpdateActionType" />

slasoi:ValueExprType"/>

<xs:complexType name="InvocationActionType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Endpoint" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Operation" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="1" name="Parameters" type="slasoi:MapldValueExpr" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="InterfaceDeclrType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="ProviderRef" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Endpoint" type="slasoi:EndpointType" />
<xs:element minOccurs="1" maxOccurs="1" name="Interface" type="slasoi:InterfaceType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EndpointType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ID" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Location" type="slasoi:UUIDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Protocol" type="slasoi:STNDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="InterfaceType">
<xs:choice>
<xs:element minOccurs="1" maxOccurs="1" name="InterfaceRef" type="slasoi:InterfaceRefType" />
<xs:element minOccurs="1" maxOccurs="1" name="InterfaceSpec" type="slasoi:InterfaceSpecType" />
<xs:element minOccurs="1" maxOccurs="1" name="InterfaceResourceType" type="slasoi:InterfaceResourceTypeType" />
</xs:choice>
</xs:complexType>
<xs:complexType name="InterfaceRefType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element name="InterfaceLocation" type="slasoi:UUIDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="InterfaceResourceTypeType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Name" type="xs:string" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="InterfaceSpecType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Name" type="xs:string" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Extended" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Operation" type="slasoi:InterfaceOperationType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>

Date: May 30, 2014
Page 171/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</xs:complexType>
<xs:complexType name="InterfaceOperationType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Name" type="slasoi:IDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Input" type="slasoi:InterfaceOperationProperty Type" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Output" type="slasoi:InterfaceOperationProperty Type" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Related" type="slasoi:InterfaceOperationPropertyType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Fault" type="slasoi:STNDType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="InterfaceOperationProperty Type">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Name" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Auxiliary" type="xs:boolean" />
<xs:element minOccurs="0" maxOccurs="1" name="Datatype" type="slasoi:STNDType" />
<xs:element minOccurs="0" maxOccurs="1" name="Domain" type="slasoi:DomainExprType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ServiceRefType">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="InterfaceList" type="slasoi:IDListType" />
<xs:element minOccurs="0" maxOccurs="1" name="OperationList" type="slasoi:IDListType" />
<xs:element minOccurs="0" maxOccurs="1" name="EndpointList" type="slasoi:IDListType" />
</xs:sequence>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs
</xs:sequence>
</xs:choice>

_n

_n _n

unbounded" name="ServiceRef" type="slasoi:IDType"></xs:element>

</xs:complexType>
<xs:complexType name="IDListType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs
</xs:sequence>
</xs:complexType>
<xs:complexType name="AnnotatedType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Text" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="Properties" type="slasoi:MapStndAny" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="MapStndAny">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Entry" type="slasoi:Stnd AnyEntryType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="MapldValueExpr">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="Entry" type="slasoi:IdValueExprEntryType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="StndAnyEntryType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Key" type="slasoi:STNDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="xs:anyType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="IdValueExprEntry Type">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Key" type="slasoi:IDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="slasoi:ValueExprType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="ConstraintExprType">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="0" name="ID" type="slasoi:IDType"/>

_n

unbounded" name="ID" type="slasoi:IDType" />

Date: May 30, 2014
Page 172/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:element minOccurs="1" maxOccurs="1" name="ValueExpr" type="slasoi: ValueExprType" />
</xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="CountExpr" type="slasoi:CountExpr Type"/>
<xs:element minOccurs="1" maxOccurs="1" name="FuncExpr" type="slasoi:FuncExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="CompoundConstraintExpr" type="slasoi:CompoundConstraintExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="TypeConstraintExpr" type="slasoi:TypeConstraintExprType" />
</xs:choice>
</xs:complexType>
<xs:complexType name="CountExprType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="FuncExpr" type="
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="DomainExpr" type="slasoi:DomainExprType"></xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SeriesExprType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="FuncExpr" type="slasoi:FuncExprType"/>
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
="unbounded" name="CountExpr" type="slasoi:CountExprType"></xs:element>

slasoi:FuncExprType"/>

<xs:element minOccurs="0" maxOccurs
</xs:sequence>
</xs:complexType>
<xs:complexType name="SeriesVarType">
<xs:sequence>
<xs:element name="Series" type="
</xs:sequence>
</xs:complexType>
<xs:complexType name="TypeConstraintExprType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="slasoi:ValueExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="Domain" type="slasoi:DomainExprType" />
<xs:element minOccurs="0" maxOccurs="1" name="Error" type="slasoi: CONSTType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="CompoundConstraintExprType">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" name="Subexpression" type="slasoi:ConstraintExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="LogicalOp" type="slasoi:STNDType" />
</xs:sequence>
</xs:choice>
</xs:complexType>
<xs:complexType name="DomainExprType">
<xs:choice>
<xs:element minOccurs="1" maxOccurs="1" name="SimpleDomainExpr" type="slasoi:SimpleDomainExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="CompoundDomainExpr" type="slasoi:CompoundDomainExprType" />
<xs:element name="PrimitiveDomainExpr">
<xs:complexType>
<xs:attribute name="type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="integer" />
<xs:enumeration value="float" />
<xs:enumeration value="string" />
<xs:enumeration value="boolean" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
<xs:complexType name="SimpleDomainExprType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="ComparisonOp" type="slasoi:STNDType" />
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="slasoi:ValueExprType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="CompoundDomainExprType">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" name="Subexpression" type="slasoi:DomainExprType" />
<xs:element minOccurs="1" maxOccurs="1" name="LogicalOp" type="slasoi:STNDType" />
</xs:sequence>
</xs:choice>
</xs:complexType>

slasoi:SeriesExprType"/>

Date: May 30, 2014
Page 173/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:complexType name="EventExprType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:choice>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Operator" type="slasoi:STNDType" />
<xs:element minOccurs="0" maxOccurs="unbounded" name="Parameter" type="slasoi:ExprType" />
</xs:sequence>
<xs:choice>
<xs:element name="Specialisation" type="slasoi:SpecialisationType"/>
<xs:element name="Intersection" type="slasoi:IntersectionType"/>
<xs:element name="Union" type="slasoi:UnionType"/>
<xs:element name="Difference" type="slasoi:DifferenceType"/>
<xs:element name="CallEvent" type="slasoi:CallEventType"/>
<xs:element name="Periodic">
<xs:complexType>
<xs:attribute name
<xs:attribute name
</xs:complexType>
</xs:element>
<xs:element name="Schedule">
<xs:complexType>
<xs:attribute name="time" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="EventTime">
<xs:complexType>
<xs:attribute name="time" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="Fault" type="slasoi:ServiceRefType"/>
<xs:element name="Violated" type="slasoi:ConstraintExprType"/>
<xs:element name="Warned">
<xs:complexType>
<xs:sequence>
<xs:element name="Expr" type="slasoi:ConstraintExprType"/>
<xs:element name="Ration" type="xs:double"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Recovered" type="slasoi:ConstraintExprType"/>
<xs:element name="TimeOf" type="slasoi:TimeOfType"/>
<xs:element name="Reply" type="slasoi:ReplyEventType"></xs:element>
</xs:choice>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

_n o

value" type="xs:string"/>
unit" type="xs:string"/>

_n

<xs:complexType name="SpecialisationType">
<xs:choice>
<xs:sequence>
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
<xs:element name="ConstraintExpr" type="slasoi:ConstraintExprType"/>
</xs:sequence>
<xs:sequence>
<xs:element name
<xs:element name
</xs:sequence>
</xs:choice>
</xs:complexType>

ValueExpr" type="slasoi:ValueExprType"/>
ConstraintExpr" type="slasoi:ConstraintExprType"/>

<xs:complexType name="IntersectionType">
<xs:choice>

<xs:sequence>
<xs:element name="EventExprl" type="slasoi:EventExprType"/>
<xs:element name="EventExpr2" type="slasoi:EventExprType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
<xs:element name="EventExprVar" type="slasoi:EventExprVarType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="ValueExprl" type="slasoi:ValueExprType"/>
<xs:element name="ValueExpr2" type="slasoi:ValueExprType"/>

</xs:sequence>

Date: May 30, 2014
Page 174/197

Document name: D2-3 Certification models v.2

<xs:sequence>
<xs:element name="ValueExpr" type="slasoi:ValueExprType"/>
<xs:element name="EventExprVar" type="slasoi:EventExprVarType"/>
</xs:sequence>
</xs:choice>

</xs:complexType>

<xs:complexType name="UnionType">
<xs:choice>

<xs:sequence>
<xs:element name="EventExprl" type="slasoi:EventExprType"/>
<xs:element name="EventExpr2" type="slasoi:EventExprType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="EventExpr" ty slasoi:EventExprType"/>
<xs:element nam ‘*“EventExprVar type="slasoi:EventExprVarType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="ValueExprl" type="slasoi:ValueExprType"/>
<xs:element name="ValueExpr2" type="slasoi:ValueExprType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="ValueExpr" type="slasoi:ValueExprType"/>
<xs:element name="EventExprVar" type="slasoi:EventExprVarType"/>

</xs:sequence>

</xs:choice>
</xs:complexType>

e="

<xs:complexType name="DifferenceType">
<xs:choice>

<xs:sequence>
<xs:element name="EventExprl" type="slasoi:EventExprType"/>
<xs:element name="EventExpr2" type="slasoi:EventExprType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
<xs:element name="EventExprVar" type="slasoi:EventExprVarType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="ValueExprl" type="slasoi:ValueExprType"/>
<xs:element name="ValueExpr2" type="slasoi:ValueExprType"/>

</xs:sequence>

<xs:sequence>
<xs:element name="ValueExpr" type ‘*"slasoi'ValueExprType”/>
<xs:element name="EventExprVar" type="slasoi:EventExprVarType"/>

</xs:sequence>

</xs:choice>
</xs:complexType>

_n

<xs:complexType name="EventExprVarType">
<xs:sequence>
<xs:element name="ID" type="slasoi:EventExprType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="CallEventType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="InvocationRef" type="slasoi:InvocationRefType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ReplyEventType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs
</xs:sequence>
</xs:complexType>

_n

unbounded" name="InvocationRef" type="slasoi:InvocationRefType"/>

<xs:complexType name="TimeOfType">
<xs:choice>
<xs:element name="ValueExpr" type="slasoi:ValueExprType" />
<xs:element name="EventExpr" type="slasoi:EventExprType" />
</xs:choice>
</xs:complexType>

<xs:complexType name="InvocationRefType">
<xs:choice>

Version: 1.0
Security: public

Date: May 30, 2014

Page 175/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

—n

<xs:element name="Service" type="slasoi:ServiceRefType"/>
<xs:element name="Invocation" type="slasoi:InvocationActionType"/>
</xs:choice>

</xs:complexType>

<xs:complexType name="FuncExprType">
<xs:complexContent mixed="false">
<xs:extension base="slasoi:Annotated Type">
<xs:choice>
<xs:element name="FuncOp">
<xs:complexType>
<xs:choice>
<xs:element name="ID" type="slasoi:IDType"/>
<xs:element name="ArithmeticOp" type="slasoi:ArithmeticOpType"/>

<xs:element name="SetOp" type="slasoi:SetOpType"/>
<xs:element name="QosTerm" type="slasoi:QosTermType"/>
<xs:element name="ListOp" type="slasoi:ListOpType"/>
<xs:element name="TimeSeriesOp" type="slasoi:TimeSeriesOpType"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:sequence>
<xs:element name="Operator" type="slasoi:STNDType" />
<xs:element minOccurs="0" maxOccurs="
</xs:sequence>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>

unbounded" name="Parameter" type="slasoi:ValueExprType" />

<xs:complexType name="ArithmeticOpType">

<xs:choice>
<xs:element name="Add" type="slasoi:OrderedArithmeticOperators"/>
<xs:element name="Substract" type="slasoi:Ordered ArithmeticOperators"/>
<xs:element name="Multiply" type="slasoi:Ordered ArithmeticOperators"/>
<xs:element name="Divide" type="slasoi:Ordered ArithmeticOperators"/>
<xs:element name="Modulo" type="slasoi:Ordered ArithmeticOperators"/>
<xs:element name="Round" type="slasoi:Ordered ArithmeticOperators"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="OrderedArithmeticOperators'">
<xs:choice>
<xs:sequence>
<xs:element name="ValueExprl" type="slasoi:ValueExprType"/>
<xs:element name="ValueExpr2" type="slasoi:ValueExprType"/>
</xs:sequence>
<xs:sequence>
<xs:element name="ValueExpr" type="slasoi:ValueExprType"/>
<xs:element name="ArithmeticOp" type="slasoi:ArithmeticOpType"/>
</xs:sequence>
</xs:choice>
</xs:complexType>

<xs:complexType name="SetOpType">
<xs:choice>
<xs:element name="Sum" type="slasoi:OrderedSetOperatorType"/>
<xs:element name="Std" type="slasoi:OrderedSetOperatorType"/>
<xs:element name="Mean" type="slasoi:OrderedSetOperatorType"/>
<xs:element name="Mode" type="slasoi:OrderedSetOperatorType"/>
<xs:element name="Max" type="slasoi:OrderedSetOperatorType"/>
<xs:element name="Min" type="slasoi:OrderedSetOperatorType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="OrderedSetOperatorType">
<xs:sequence>
<xs:element name="SeriesVar" type="slasoi:SeriesVarType"/>
</xs:sequence>
</xs:complexType>

)

<xs:complexType name="TimeSeriesOpType">
<xs:choice>
<xs:element name="Series" type="
<xs:element name="SeriesValue">
<xs:complexType>
<xs:sequence>

slasoi:SeriesExprType"/>

Date: May 30, 2014
Page 176/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<xs:element name="FuncExpr" type="slasoi:FuncExprType"/>
<xs:element name="EventExpr" type="slasoi:EventExprType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

<xs:complexType name="ListOpType">
<xs:choice>
<xs:element name="Insert" type="slasoi:OrderedListOperatorType"/>
<xs:element name="Remove" type="slasoi:OrderedListOperatorType"/>
<xs:element name="Update" type="slasoi:OrderedListOperatorType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="OrderedListOperatorType">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" name="ID" type="slasoi:IDType"/>
<xs:element minOccurs="0" maxOccurs="unbounded" name="ListVar" type="slasoi:ListVarType"/>
<xs:element name="ConstraintExpr" type="slasoi:ConstraintExprType"/>
<xs:element name="ValueExpr" type="slasoi:ValueExprType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="QosTermType">
<xs:choice>
<xs:element name="Availability" type="slasoi:OrderedQoSTermType"/>
<xs:element name="NonRepudiation" type="slasoi:OrderedQoSTermType"/>
<xs:element name="ArrivalRate" type="slasoi:OrderedQoSTermType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="OrderedQoSTermType">
<xs:sequence>
<xs:element name="ServiceVar" type="slasoi:ServiceRefType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ExprType">
<xs:choice>
<xs:element name="ValueExpr" type="slasoi:ValueExprType" />
<xs:element name="ConstraintExpr" type="slasoi:ConstraintExprType" />
</xs:choice>
</xs:complexType>
<xs:complexType name="ValueExprType">
<xs:choice>
<xs:element name="ID" type="slasoi:IDType" />
<xs:element name="BOOL" type="slasoi:BoolType" />
<xs:element name="CONST" type="slasoi: CONSTType" />
<xs:element name="TIME" type="slasoi:TimeType" />
<xs:element name="PATH" type="slasoi:PathType" />
<xs:element name="UUID" type="slasoi: UUIDType" />
<xs:element name="STND" type="slasoi:STNDType" />
<xs:element name="FuncExpr" type="slasoi:FuncExprType" />
<xs:element name="EventExpr" type="slasoi:EventExprType" />
<xs:element name="DomainExpr" type="slasoi:DomainExprType" />
<xs:element name="ServiceRef" type="slasoi:ServiceRefType" />
<xs:element name="ListValueExpr" type="slasoi:ListValueExprType" />
</xs:choice>
</xs:complexType>
<xs:simpleType name="UUIDType">
<xs:union memberTypes="xs:anyURI" />
</xs:simpleType>
<xs:simpleType name="STNDType">
<xs:union memberTypes="slasoi:UUIDType" />
</xs:simpleType>
<xs:simpleType name="TimeType">
<xs:union memberTypes="xs:dateTime" />
</xs:simpleType>
<xs:simpleType name="BoolType">
<xs:union memberTypes="xs:boolean" />
</xs:simpleType>
<xs:simpleType name="IDType">
<xs:union memberTypes="slasoi:PathType slasoi:UUIDType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9\-. ~!$&"\(\)*\+,;=@%/?]*" />

<xs:whiteSpace value="collapse" />
Date: May 30, 2014
Page 177/197

Document name: D2-3 Certification models v.2

</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>
<xs:simpleType name="PathType">
<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9][A-Za-z0-9\-._~!$&"\\)*\+,;=:@%/?]*/|#[A-Za-z0-9][A-Za-z0-9\-
. ~1$&\(\)*¥\+,;=@%/?]*" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="CONSTType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="Value" type="xs:string" />
<xs:element minOccurs="0" maxOccurs="1" name="Datatype" type="slasoi:STNDType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="ListValueExprType">
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" name="Value" type
</xs:sequence>
</xs:complexType>
<xs:element name="Party" type="slasoi:AgreementParty Type" />
<xs:element name="ModelVersion" type="xs:string" />
<xs:element name="Annotated" type="slasoi:AnnotatedType" />
<xs:element name="InterfaceDeclr" type="slasoi:InterfaceDeclrType" />
<xs:element name="DomainExpr" type="slasoi:DomainExprType" />
<xs:element name="EventExpr" type="slasoi:EventExprType" />
<xs:element name="FuncExpr" type="slasoi:FuncExprType" />
<xs:element name="ConstraintExpr" type="slasoi:ConstraintExprType" />
<xs:element name="VariableDeclr" type="slasoi:VariableDeclrType" />
<xs:element name="AgreementTerm" type="slasoi:AgreementTermType" />
<xs:element name="InterfaceOperation" type="slasoi:InterfaceOperationType" />
<xs:element name="Related" type="slasoi:InterfaceOperationProperty Type" />
<xs:element name="EffectiveFrom" type="slasoi:TimeType" />
<xs:element name="EffectiveUntil" type="slasoi: TimeType" />
<xs:element name="TemplateId" type="slasoi:UUIDType" />
<xs:element name="AgreedAt" type="slasoi:TimeType" />
</xs:schema>

_n

slasoi:ValueExprType" />

Version: 1.0
Security: public

10.4.

Monitoring-based Certification Model instance (.xml file)

<?xml version="1.0" encoding="UTF-8"?>

<model:CertificationModel xmIns:sch="http://www.ascc.net/xml/schematron"
xmlns:ec="http://slasoi.org/monitoring/citymonitor/xmlrule"
xmlns:sla="http://www.slaatsoi.eu/slamodel"
xmlns:model="http://www.cumulus.org/certificate/model"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemal ocation="http://www.cumulus.org/certificate/model

file:/C:/Users/abfc152/Dropbox/Deliverables/schemas/CertificationModel XMLSchema v4.xsd">

<Model _Id>1001</Model Id>
<CASignature>CUMULUS_City</CASignature>

<TOC id="id">
<providesInterface>
<Text> </Text>
<Properties>
</Properties>
<ID>interface::id::c::1/</ID>
<ProviderRef>nr::id::c</ProviderRef>
<Endpoint>
<Text> </Text>
<Properties> </Properties>
<ID>c111</ID>
<Location>http://www.cumulus-project.eu</Location>
<Protocol> SOAP </Protocol>
</Endpoint>
<Interface>
<InterfaceSpec>
<Text> </Text>

Page 178/197

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Properties> </Properties>
<Name>nr::id::c::cloudinterface</Name>
<Operation>
<Text>rqsac</Text>
<Properties> </Properties>
<Name>data</Name>
</Operation>
</InterfaceSpec>
</Interface>
</providesInterface>
<requiresInterface>
<Text> </Text>
<Properties></Properties>
<ID> interface::id::d::1</ID>
<ProviderRef></ProviderRef>
<Endpoint>
<Text> </Text>
<Properties></Properties>
<ID>d111</ID>
<Location> http://www.cumulus-project.eu </Location>
<Protocol> SOAP</Protocol>
</Endpoint>
<Interface>
<InterfaceRef>
<Text> rqsbc</Text>
<Properties> </Properties>
<InterfaceLocation> http://www.cumulus-project.eu </InterfaceLocation>
</InterfaceRef>
</Interface>
</requiresInterface>

</TOC>

<SecurityProperty "AIS:non-repudiation:non-repudiation-of-origin”>
<Assertion>
<Text></Text>
<Properties>
</Properties>
<UUID>url2 </UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>c</ID>
<Role>cloudprovider</Role>
</AbstractParty>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>a</ID>
<Role>dataowner</Role>
</AbstractParty>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>
<ID>b</ID>
<Role>datauser</Role>
</AbstractParty>
<AbstractParty>
<Text></Text>
<Properties>
</Properties>

Date: May 30, 2014
Page 179/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<ID>t</ID>
<Role>trustedthirdparty</Role>
</AbstractParty>

<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>c1</ID>
<ProviderRef>c</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>cloudinterface</Name>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqsac</Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
<Input>
<Text></Text>
<Properties></Properties>
<Name>t</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqsbc </Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
<Operation>
<Text></Text>
<Properties></Properties>
<Name>rqstc </Name>
<Input>
<Name>data</Name>
<Auxiliary>true</Auxiliary>
<Datatype>url</Datatype>
<Domain>0</Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>al</ID>
<ProviderRef>a</ProviderRef>
<Interface>

Date: May 30, 2014
Page 180/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>ainterface</Name>
<Operation>
<Input>
< ></ Text>
< >
</ Properties>
< >RSPca</ Name>
< > true </ Auxiliary>
< >url</ Datatype>
<Domain></Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>b1</ID>
<ProviderRef>b</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>binterface</Name>
<Operation>
<Input>
< ></ Text>
< >
</ Properties>
< >RSPcb</ Name>
< > true </ Auxiliary>
< >url</ Datatype>
<Domain></Domain>
</Input>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<Text></Text>
<Properties>
</Properties>
<ID>t1</ID>
<ProviderRef>t</ProviderRef>
<Interface>
<InterfaceSpec>
<Text></Text>
<Properties>
</Properties>
<Name>tinterface</Name>
<Operation>
<Input>
< ></ Text>
< >
</ Properties>
< >RSPct</ Name>
< > true </ Auxiliary>
< >url</ Datatype>
<Domain></Domain>
</Input>

Date: May 30, 2014
Page 181/197

Document name: D2-3 Certification models v.2

</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>

<VariableDeclr>
<Text/>
<Properties/>
<Var>rgsacv</Var>
<Expr>
<ValueExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>invocation</Operator>
<Parameter>
<ValueExpr>
<ServiceRef>
<OperationList>
<ID>nroac</ID>
</OperationList>
<EndpointList>
<ID>cl11</ID>
</EndpointList>
</ServiceRef>
</ValueExpr>
</Parameter>
</EventExpr>
</ValueExpr>
</Expr>
</VariableDeclr>

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term1</ID>
<Precondition>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Difference>
<ValueExpr1>
<ListValueExpr>
<Value>rgsac</Value>
</ListValueExpr>
</ValueExpr1>
<ValueExpr2>
<ListValueExpr>
<Value>rgsacv</Value>
</ListValueExpr>
</ValueExpr2>
</Difference>
</EventExpr>
<DomainExpr></DomainExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate1</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#equals</Operator>

Page 182/197

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<Parameter>
<ID>rspcav</ID>
</Parameter>
<Parameter>
<ID>rgsacv</ID>
</Parameter>
</FuncExpr>
</Constraint>
<Constraint>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#less_than or_equal</Operator>
<Parameter>
<ConstraintExpr>
<CountExpr>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ID>rspca</ID>
</ValueExpr>
</TimeOf>
</EventExpr>
</CountExpr>
</ConstraintExpr>
</Parameter>
<Parameter>
<ConstraintExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Add>
<ValueExpr1>
<EventExpr>
<Text></Text>
<Properties></Properties>
<TimeOf>
<ValueExpr>
<ID>rgsacv</ID>
</ValueExpr>
</TimeOf>
</EventExpr>
</ValueExpr1>
<ValueExpr2>
<ID>t</ID>
</ValueExpr2>
</Add>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ConstraintExpr>
</Parameter>
</EventExpr>
</CountExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>
</Assertion>
</SecurityProperty>

<AssessmentScheme>

Date: May 30, 2014

Page 183/197

<EvidenceSufficiencyCondition [d="1011">
<MonitoringPeriodCondition

</EvidenceSufficiencyCondition>

<ExpirationCondition 1d="987">
<elapsedPeriod "

</ExpirationCondition>

<Conflict "1100"

"720"

"years'/>
"guaranteel"

<Anomalies>
<Assertion "2103">
<Text></Text>
<Properties>
</Properties>
<UUID>url1</UUID>
<EffectiveFrom>00:00:00:00</EffectiveFrom>
<EffectiveUntil>23:59:59:59</EffectiveUntil>
<AgreedAt></AgreedAt>
<AbstractParty>
[...]
</AbstractParty>
<InterfaceDeclr>
[...]
</InterfaceDeclr>
<VariableDeclr>
[...]
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>rqsac_ave</Var>
<Expr>
<ValueExpr>
<ListValueExpr>
<Value>0</Value>
</ListValueExpr>
</ValueExpr>
</Expr>
</VariableDeclr>
<VariableDeclr>
<Text></Text>
<Properties></Properties>
<Var>nofcalls</Var>
<Expr>
<ValueExpr>
<ListValueExpr>
<Value>0</Value>
</ListValueExpr>
</ValueExpr>
</Expr>
</VariableDeclr>

<AgreementTerm>
<Text></Text>
<Properties></Properties>
<ID>term4</ID>
<Precondition>
<CountExpr>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Divide>
<ValueExpr1>
<FuncExpr>
<Text></Text>
<Properties></Properties>

Page 184/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

"hours"/>

nqn ”month”/>

Date: May 30, 2014

Document name: D2-3 Certification models v.2

<FuncOp>
<ArithmeticOp>
<Add>
<ValueExpr1>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Multiply>
<ValueExprl1>
<ID>rgsac_ave</ID>
</ValueExpr1>
<ValueExpr2>
<ID>nofcalls</ID>
</ValueExpr2>
</Multiply>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr1>
<ValueExpr2>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Substract>
<ValueExpr1>
<ID>rgstcv</ID>
</ValueExpr1>
<ValueExpr2>
<CONST>
<Value>1</Value>
</CONST>
</ValueExpr2>
</Substract>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr2>
</Add>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr1>
<ValueExpr2>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<FuncOp>
<ArithmeticOp>
<Add>
<ValueExpr1>
<ID>nofcalls</ID>
</ValueExpr1>
<ValueExpr2>
<CONST>
<Value>1</Value>
</CONST>
</ValueExpr2>
</Add>
</ArithmeticOp>
</FuncOp>
</FuncExpr>
</ValueExpr2>
</Divide>

Page 185/197

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

</ArithmeticOp>
</FuncOp>
</FuncExpr>
</CountExpr>
</Precondition>
<Guaranteed>
<Text></Text>
<Properties></Properties>
<State>
<ID>gstate4</ID>
<Constraint>
<FuncExpr>
<Text></Text>
<Properties></Properties>
<Operator>http://www.slaatsoi.org/coremodel#less_than</Operator>
<Parameter>
<ID>rgsac_ave</ID>
</Parameter>
<Parameter>
<CONST>
<Value>30</Value>
</CONST>
</Parameter>
</FuncExpr>
</Constraint>
</State>
</Guaranteed>
</AgreementTerm>
</Assertion>
</Anomalies>
</AssessmentScheme>

<Validity Tests/>
<MonitoringConfigurations>
<MonitoringConfiguration [d="1d4">
<Component "REASONER">
<EndPoint>EndPoint0</EndPoint>
</Component>
<Component "REASONER">
<EndPoint>EndPoint1</EndPoint>
</Component>
<ConcreteProperty>
<formula "formulald0" "type2" "true" "false"
"false">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>varName(O</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<body>
<predicate "false" "false" "false" "false">
<initially>
<fluent "name0">
<variable "false" "true">
<varName>varName2</varName>
<varType>varTypeO</varType>
<value>value0</value>
</variable>
<variable "false" "true">
<varName>varName3</varName>
<varType>varTypel</varType>
<value>valuel</value>
</variable>
</fluent>
<timeVar>

Date: May 30, 2014
Page 186/197

<varName>varName4</varName>
<varType>TimeVariable</varType>
</timeVar>
</initially>
</predicate>
<operator>and</operator>
<predicate "false"
<initially>
<fluent "namel">
<variable "false"
<varName>varName5</varName>
<array>
<type>typed</type>
</array>
</variable>
<variable "false"
<varName>varName6</varName>
<array>
<type>typeS</type>
</array>
</variable>
</fluent>
<timeVar>
<varName>varName7</varName>
<varType>TimeVariable</varType>
</timeVar>
</initially>
</predicate>
<operator>and</operator>
<relationalPredicate>
<lessThanEqualTo>
<operand1>
<constant>
<name>name2</name>
<value>value2</value>
</constant>
</operand1>
<operand2>
<operationCall>
<name>name3</name>
</operationCall>
</operand2>
</lessThanEqualTo>
<timeVar>
<varName>varName8</varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalPredicate>
</body>
<head>
<relationalPredicate>
<notEqualTo>
<operand1>
<operationCall>
<name>name4</name>
</operationCall>
</operand1>
<operand2>
<expresion "false"
<varName>varName9</varName>
<varType>varType2</varType>
<value>value3</value>
</expresion>
</operand2>
</notEqualTo>
<timeVar>
<varName>varNamel0</varName>

"false"

Page 187/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

"false" "false">

"true">

"true'">

"true'">

Date: May 30, 2014

Document name: D2-3 Certification models v.2

<varType>TimeVariable</varType>
</timeVar>
</relationalPredicate>
<operator>and</operator>
<relationalPredicate>
<notEqualTo>
<operand1>
<operationCall>
<name>nameS</name>
</operationCall>
</operand1>
<operand2>
<operationCall>
<name>name6</name>
</operationCall>
</operand2>
</notEqualTo>
<timeVar>
<varName>varNamel 1 </varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalPredicate>
<operator>and</operator>
<timePredicate>
<timeLessThan>
<timeVarl>
<time>
<varName>varNamel2</varName>
<varType>TimeVariable</varType>
</time>
<minus>0</minus>
<plus>0</plus>
</timeVarl>
<timeVar2>
<time>
<varName>varNamel3</varName>
<varType>TimeVariable</varType>
</time>
<plus>0</plus>
<minus>0</minus>
</timeVar2>
</timeLessThan>
</timePredicate>
</head>
</formula>
</ConcreteProperty>
</MonitoringConfiguration>
</MonitoringConfigurations>

<EvidenceAggregation>

<StartDate>"2013-01-01"</StartDate>

<Intervals "720" "hours"/>
<Functional Aggregatorld>Boolean</Functional Aggregatorld>
<IntermediateResults>True</IntermediateResults>

</EvidenceAggregation>

<LifeCycleModel>

<states>
<state>
<atomicState "statel" "Activated"
</state>
<state>
<compositeState "compstate]"
<substate>
<states>
<state>
<compositeState "compstate2" "[ssuing">

"Initial State"/>

"ContinuousMonitoring">

Page 188/197

Version: 1.0
Security: public

Date: May 30, 2014

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<substate>
<states>
<state>
<atomicState "state2" "Pre-Issued"/>
</state>
<state>
<atomicState "state3" "Issued"/>
</state>
</states>
<transitions>
<transition "state2" ""state3">
<WhenCondition "true">
<LogicalExpression "true">
<EvidenceAggregation/>
</LogicalExpression>
</WhenCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
<state>
<compositeState "compstate3" "Anomaly-Audit">
<substate>
<states>
<state>
<atomicState "state4" "AnomalySelection"/>
</state>
<state>
<atomicState "state5" "Anomalylnspection"/>
</state>
</states>
<transitions>
<transition "state4" ""state5">
<GuardCondition "true">
<LogicalExpression "true">
<WhenAnomalySelected/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition "stateS5" "hstatel">
<GuardCondition "true">
<LogicalExpression>
<WhenAnomalyResolved/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition "stateS5" ""state4">
<GuardCondition "false">
<LogicalExpression>
<UnresolvedAnoly/>
</LogicalExpression>
</GuardCondition>
</transition>
<transition "stateS5" ""state8">
<GuardCondition>
<LogicalExpression>
<WhenUnresolvedAnomaly/>
</LogicalExpression>
</GuardCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
<state>
<compositeState "compstate4'">

Date: May 30, 2014

Page 189/197

<substate>
<states>
<state>
<atomicState "state6"
</state>
<state>
<atomicState "state7"
</state>
</states>
<transitions>

Document name: D2-3 Certification models v.2

"ConflictSelection"/>

"ConflictInspection"/>

<transition "state6" ""state7">

<GuardCondition "true'>

<LogicalExpression>
<WhenConflictSelected/>
</LogicalExpression>
</GuardCondition>
</transition>

<transition "state7" "hstatel">

<GuardCondition "true'>

<WhenConflictResolved/>
</GuardCondition>
</transition>

<transition "state7" ""state6'">

<GuardCondition "false">

<LogicalExpression>
<UnresolvedConflict/>
</LogicalExpression>
</GuardCondition>
</transition>

<transition "state7" ""state8">

<GuardCondition>
<LogicalExpression>

<WhenUnresolvedConflict/>

</LogicalExpression>
</GuardCondition>
</transition>
</transitions>
</substate>
</compositeState>
</state>
</states>
<transitions>

<transition "compstate2" "stated4">

<WhenCondition>
<Condition>
<Anomaly>
<Anomalies "2101"/>
</Anomaly>
</Condition>
</WhenCondition>
</transition>

<transition "compstate2" "state6">

<WhenCondition>
<Condition>
<conflictCondition>
<Conflict Id="1100"/>
</conflictCondition>
</Condition>
</WhenCondition>
</transition>

<transition "compstate2" "statel">

<WhenCondition>
<Condition>
<expirationCondition>
<ExpirationCondition [d="987"/>
</expirationCondition>
</Condition>

Page 190/197

Version: 1.0
Security: public

Date: May 30, 2014

</WhenCondition>
</transition><transition
<WhenCondition>
<Condition>
<expirationCondition>
<ExpirationCondition
</expirationCondition>
</Condition>
<Condition>
<Anomaly>
<Anomalies
</Anomaly>
</Condition>

"compstate2"

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

"state4">

H98’7"/>

"2101"/>

</WhenCondition></transition>

</transitions>
</substate>
</compositeState>
</state>
<state>
<atomicState
</state>
</states>
<historyState
<transitions>
<transition "statel"
<WhenCondition>
<Condition>
<evidenceSufficiencyCondition>
<EvidenceSufficiencyCondition
</evidenceSufficiencyCondition>
</Condition>
</WhenCondition>
</transition>
</transitions>
</LifeCycleModel>

"state8"

"hstate1"

"state2">

</model:CertificationModel>

"Revoked"/>

"compstate2"/>

"1011"/>

10.5. TC Support for Certification Schema (.xsd file)

<?xml version="1.0" encoding="UTF-8"?>
<schema "unqualified"
"unqualified"
"http://www.w3.0rg/2001/XMLSchema"
"http://www.w3.0rg/2001/XMLSchema"
"http://www.w3.0rg/2000/09/xmldsig#">

"substitution"
"urn:cumulus:tcsupport"
"urn:

cumulus:tcsupport"

"http:// www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd" />

"0" "unbounded"/>

"2

"unbounded"/>

<import "http://www.w3.0rg/2000/09/xmldsig#"
<element "TCSupport" "tc:TCSupportType" />
<complexType "TCSupportType">
<sequence>
<element "PlatformState" "tc:PlatformStateType" />
<element "ApplicationState" "tc:ApplicationState Type"
<element "StateBoundKey" "tc:StateBoundKeyType" />
</sequence>
<attribute "TPMVersion" "string" "required"
</complexType>
<complexType "PlatformStateType">
<sequence>
<element "Hash" "tc:DigestValueType"/>
<element "PCRNumber" "unsignedLong"
</sequence>
</complexType>

Date: May 30, 2014
Page 191/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

<complexType "ApplicationStateType">
<sequence>
<element "Hash" "tc:DigestValueType"/>
<element "PCRNumber" "unsignedLong"/>
<element "ApplicationRef" "tc:ApplicationRefType"/>
</sequence>
<attribute "IntegrityMethod" "anyURI" "required"/>
</complexType>
<complexType "ApplicationRefType">
<sequence>
<element "ElementRef" "anyURI" "unbounded"/>
</sequence>
</complexType>
<complexType "StateBoundKeyType">
<sequence>
<element "ds:KeyInfo"/>
</sequence>
<attribute "TPMKeyType" "tc:TPMKeyTypeType" "required"/>
<attribute "BoundTo" "tc:BoundToType" "required"/>
</complexType>
<simpleType "TPMKeyTypeType">
<restriction "string">
<enumeration "Non-MigratableKey" />
<enumeration " MigratableKey" />
</restriction>
</simpleType>
<simpleType "BoundToType">
<restriction "string">
<enumeration "PlatformState" />
<enumeration "PlatformAndApplicationState" />
</restriction>

</simpleType>

<complexType "DigestValueType">
<simpleContent>
<extension "base64Binary">
<attribute "AlgRef" "anyURI" "required"/>
</extension>
</simpleContent>
</complexType>
</schema>

10.6. Specification of the BNF grammar of SecureSLA*

//--- SLA Template ---

assertion : 'assertion { agreedAt = '(time | 'n/a') 'effectiveFrom =' time
'effectiveUntil =' time 'templateId =' id slatemplate '}';

slatemplate : 'sla template {' slatemplatecontent '}';

slatemplatecontent : 'uuid =' id 'sla model version = sla at soi sla model v1.0'

(agreementparty)+ (interfacedeclr)+ (variabledecl)* (agreementterm)+;

//--- Agreement Parties ---
agreementparty : 'party { id =' id 'role =' agreementrole (operative)* '}' |
'abstractparty { id = ' id 'role =' agreementrole '}';

//STANDARD TERMS - AGREEMENT ROLES
agreementrole : id;

operative : 'operative { id =' id '}';

//--- Interface Declarations ---

interfacedeclr : 'interfacedecl { id =' id 'providerref =' providerref
(endpoint) * choice '}' ;

choice : interfaceref | interfacespec | resourcetype;

providerref : (id) | 'provider' | 'customer';

Date: May 30, 2014
Page 192/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

endpoint : 'endpoint { id =' id 'location =' (id | 'customlocation') 'protocol
=' endpointstnd '}';

//STANDARD TERMS - PROTOCOLS

endpointstnd : 'TELEPHONE' | 'SOAP' | 'Email' | 'SMS' | 'REST' | 'XMPP' | 'HTTP'
| 'Post mail' | 'FAX' | 'SSH';

interfaceref : 'interface ref (' id '")';

resourcetype : 'resource type { name =' id '}';

//---Variable Declarations---

variabledecl

id 'is' (id)* ' (' valueexpr ')' ('initially' valueexpr)* (valueexpr)* |

id 'is' (id)* valueexpr ('initially' valueexpr)* (valueexpr)* | id 'is' '('
(id) * valueexpr ')' ('initially' valueexpr)* (valueexpr)* | id 'is' (id)* ' ('
domainexpr (consta)* ')' ('initially' valueexpr)* (valueexpr)* | id 'is' (id)*
'(' domainexpr (consta)* ')' ('and' | 'or')* '(' domainexpr (consta)* ')'
('initially' valueexpr)* (valueexpr)* | list var decl | service variable decl;
service variable decl : id 'is' serviceref;
list var decl : id 'is' 'list[index=' id ',' (valueexpr)* (domainexpr)* (','
valueexpr)* (',' domainexpr)* ']’

//--- Agreement Terms ---
agreementterm : 'agreement term { id =' id ('precondition {' constraintexpr
'}')* (variabledecl)* (guarantee)+ '}';
guarantee : (guaranteedstate | guaranteedaction);

//--- Guaranteed States ---
guaranteedstate : 'guaranteedstate { id =' id ('priority =' consta)*
('"precondition { ' constraintexpr '}')* (constraintexpr)* '}'

// —--- Guaranteed Actions ---
guaranteedaction : 'guaranteedaction { id =' id 'actor =' id 'policy ='
actionpolicy 'trigger =' (eventexpr | id) actionpostcondition '}';

actionpolicy : actionstnd ;

//STANDARD TERMS - ACTION POLICIES

actionstnd : 'MANDATORY' | 'OPTIONAL' | 'FORBIDDEN';

actionpostcondition : (invocation action | var update action);

//--- Invocation Actions ---

invocation_action : 'invoke { endpoint =' id 'operation =' id (invocationparam)*
l}l’.

invocationparam : 'param { name =' id 'value =' valueexpr '}';

extensionlist : 'extensionlist {'(id)+ '}';

//--- Variable Update Actions ---

var_update_ action:

id 'is'" '"(' valueexpr ')';

//--- Interface Specifications ---

interfacespec : 'interfacespec { name =' id (extensionlist)* (operation)* '}';
operation : 'operation { name =' id (input)* (output)* (related)* (faultlist)?*
l}l’.

input : 'input {' propertycontent '}';

output : 'output {' propertycontent '}';

related : 'related {' propertycontent '}';

Date: May 30, 2014
Page 193/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

propertycontent : 'name =' id 'datatype =' id 'domain = (' domainexpr ')'
'auxiliary ="' bool;

faultlist : 'faultlist {' (id)* '}';

bool : ('true') | ('false');

//--- Service References ---

serviceref : 'serviceref {' (id)+ '}';

//--- Constraint Expressions ---

constraintexpr : (id)* valueexpr | funcop |

valueexpr domainexpr |

comparisonop (' (')* (valueexpr)* (')')* |

domainexpr valueexpr |

valueexpr domainexpr consta |

'not' constraintexpr |

'(' constraintexpr 'and' constraintexpr ')' |

'(' constraintexpr 'or' constraintexpr ')' |

'(' constraintexpr ')' 'and' ' (' constraintexpr ')' |
'(' constraintexpr ')' 'or' '(' constraintexpr ')' | count ;

domainexpr : comparisonop ' (' valueexpr ')' |
comparisonop valueexpr |

'not' '(' domainexpr ')' |

'(' domainexpr 'and' domainexpr ')' |
'(' domainexpr 'or' domainexpr ')' |
comparisonop '(' valueexpr ')' |
primitivedomain;

primitivedomain : 'type(integer)' | 'type(float)' | 'type(string)' |
'type (boolean) ';

'equals' |'not equals' | 'less than' | 'less than or equal'
comparisonop : comparisonstnd;

comparisonstnd : 'identical to' |
'equals' |'not equals' | 'less than' | 'less than or equal' | 'greater than' |
'greater than or equal' | ' matches' | 'isa';

//--- Event Expressions ---

eventexpr : specialisation | intersection | union | difference | call event |
periodic | schedule | eventtime | fault | violated | warned | recovered | timeof
| reply event;

//STANDARD TERMS - EVENTS
//they will need to be defined as a restriction for the sub-element //Operator
in EventExprType in the XML schema

specialisation : 'specialisation [' eventexpr ',' constraintexpr ']' |
'specialisation [' valueexpr ',' constraintexpr ']';

intersection : 'intersection [' eventexpr ',' eventexpr ']' | 'intersection ['
eventexpr ',' eventexprvar ']' | 'intersection [' eventexpr ',' eventexprvar ']'
| 'intersection [' valueexpr ',' valueexpr ']' | 'intersection [' valueexpr ','
eventexprvar ']' | 'intersection [' eventexpr ',' valueexpr ']';

union : 'union [' eventexpr ',' eventexpr ']' | 'union [' eventexpr ','
eventexprvar ']' | 'union [' valueexpr ',' valueexpr ']' | 'union [' valueexpr
','" eventexprvar ']' | 'union [' eventexpr ',' valueexpr ']';

difference : 'difference [' eventexpr ',' eventexpr ']' | 'difference ['
eventexpr ',' eventexprvar ']' | 'difference [' valueexpr ',' valueexpr ']' |
'difference [' valueexpr ',' eventexprvar ']' | 'difference [' eventexpr ','
valueexpr '1';

call event : 'invocation [' (inv ref)* ']';

Date: May 30, 2014
Page 194/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

inv_ref : service variable decl | invocation action ;

periodic : 'periodic [' NUMBER duration ']' | 'periodic [' id ']'

(invocation action)* (',')* (invocation_ action)*;

schedule : 'schedule [' time (time)* ']';

eventtime : 'time [' NUMBER '-' NUMBER '-' NUMBER 'T' NUMBER ':' NUMBER 'UTC'
l]l’.

fault : 'fault [' service variable decl ']';

violated : 'violated [' constraintexpr ']';

warned : 'warned [' constraintexpr ',' warned ratio ']';

warned_ratio : NUMBER'.'NUMBER;

recovered : 'recovered [' constraintexpr ']';

reply event : 'reply [' (inv ref)* ']';

timeof : 'timeof [' eventexpr ']' | 'timeof [' valueexpr ']';

eventexprvar : id 'is' (id)* eventexpr;

//—--- Functional Expressions —---

funcexpr : funcop (',')*

(id | bool | consta | time | serviceref | eventexpr)* (consta)* | funcop (', '")*
'(' (id | bool | consta | time | serviceref | eventexpr)* ')' (consta)* |
funcop (',")* '(' (id | bool | consta | time | serviceref | eventexpr)* ','
('",")* (id | bool | consta | time | serviceref | eventexpr)* ')' (consta)* |
funcop (', ")* '(' (funcexpr ',')* funcexpr ')' (consta)* | funcop (','")* '('
funcexpr ',' (id | bool | consta | time | serviceref | eventexpr)* ')' (consta)*
| funcop (', ")* '(' (id | bool | consta | time | serviceref | eventexpr)* ','
funcexpr ')' (consta)* ;

funcop : id | arithmeticop | contextop | gosterm | setop | timeseriesop |
listop;

setop : sum | std | mean | median | modeoff | max | min;

listop : inserttolist | removefromlist | updateinlist;

inserttolist: 'insert (' (id)* (list var decl)*',' constraintexpr ',' valueexpr
l)l’.

removefromlist: 'remove (' (id)* (list var decl)*',' constraintexpr ',' valueexpr
l)l’.

updateinlist: 'update(' (id)* (list var decl)*',' constraintexpr ',' valueexpr

')".

//STANDARD TERMS - ARITHMETIC FUNCTIONS

add : ('add') '(' arithmeticop ',' arithmeticop '")' | ('add') '(' valueexpr ','
arithmeticop '")' | ('add') '(' arithmeticop ',' valueexpr ')' | ('add') ' ('
valueexpr ',' valueexpr ')';

substract : ('substract') '(' arithmeticop ',' arithmeticop ')' | ('substract')
'(' valueexpr ',' arithmeticop ')' | ('substract') '(' arithmeticop ',
valueexpr ')' | ('substract') ' (' valueexpr ',' valueexpr ')';

multiply : ('multiply') '(' arithmeticop ',' arithmeticop ')' | ('multiply') ' ('
valueexpr ',' arithmeticop '")' | ('multiply') '(' arithmeticop ',' valueexpr ')'
| ("multiply') '(' valueexpr ',' valueexpr ')';

divide : ('divide') ' (' arithmeticop ',' arithmeticop')' | ('divide') '('
valueexpr ',' arithmeticop ')' | ('divide') '(' arithmeticop ',' valueexpr ')'
('divide') '(' valueexpr ',' valueexpr ')';

modulo : ('modulo') '(' arithmeticop ',' arithmeticop '")' | ('modulo') ' ('
valueexpr ',' arithmeticop ')' | ('modulo') '(' arithmeticop ',' valueexpr ')' |
('modulo') '(' valueexpr ',' valueexpr ')';

round : ('round') '(' arithmeticop ',' arithmeticop '")' | ('round') '(
valueexpr ',' arithmeticop ')' | ('round') '(' arithmeticop ',' valueexpr ')'
('"round') '(' valueexpr ',' valueexpr ')';

Date: May 30, 2014
Page 195/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

contextop : contextstnd;
//STANDARD TERMS - CONTEXT FUNCTIONS

contextstnd : 'time is' time | 'day is' day | 'month is' month | 'year is'
NUMBER;

day : 'MONDAY' | 'TUESDAY' | 'WEDNESDAY' | 'THURSDAY' | 'FRIDAY' | 'SATURDAY' |
'SUNDAY';

month : 'JANUARY' | 'FEBRUARY' | 'MARCH' | 'APRIL' | 'MAY' | 'JUNE' | 'JULY' |
'AUGUST' | 'SEPTEMBER' | 'OCTOBER' | 'NOVEMBER' | 'DECEMBER' ;

//STANDARD TERMS - QOS TERMS

gosterm : gos availability | gos_accessibility | gos_arrivalrate |
gos_datavolume | gos_ throughput | gos completiontime | gos mttr | gos mttf |
gos mttv | gos reliability | gos_isolation | gos_accuracy | gos nonrepudiation |
gos_supportedstandards | gos_regulatory | gos integrity | gos_authentication |
gos_auditability | gos_authorisation | gos data encryption;

gos_availability : 'availability (' service variable decl ')';
gos_accessibility : 'gos accessibility (' service variable decl '")';
gos_arrivalrate : 'qos arrivalrate (' service variable decl '")';
gos_datavolume : 'gos datavolume (' service variable decl ')';

gos_throughput : 'gos throughput (' service variable decl ')';
gos_completiontime : 'gos completiontime (' service variable decl '")';
gos_mttr : 'gos mttr (' service variable decl ')';

gos_mttf : 'gos mttf (' service variable decl ')';

gos_mttv : 'gos mttv (' service variable decl ')';

gos_reliability : 'gos reliability (' service variable decl '")';
gos_isolation : 'gos isolation (' service variable decl ')';

gos_accuracy : 'qos_accuracy (' service variable decl ')';

gos_nonrepudiation : 'gos nonrepudiation (' service variable decl ')';
gos_supportedstandards : 'gos supportedstandards (' service variable decl ')';
gos_regulatory : 'gos regulatory (' service variable decl ')';

gos_integrity : 'gos integrity (' service variable decl ')';
gos_authentication : 'gos authentication (' service variable decl '")';
gos_auditability : 'gos auditability (' service variable decl '")';
gos_authorisation : 'gos authorisation (' service variable decl '")';
gos_data_encryption : 'qos data encryption (' service variable decl ')';

//STANDARD TERMS - AGGREGATE (SET) FUNCTIONS

sum : 'sum (' seriesvar ')';

std : 'std (' seriesvar ')';

mean : 'mean (' seriesvar ')';

median : 'median (' seriesvar ')';

modeoff : 'modeoff (' seriesvar ')';

max : 'max (' seriesvar ')';

min : 'min (' seriesvar ')';

seriesvar : id 'is' series ;

series : 'series (' (funcexpr ',')* eventexpr (',' count)* ')';
count : 'count (' (funcexpr ',')* eventexpr (domainexpr)* ')';

//STANDARD TERMS - TIME SERIES
timeseriesop : series | value;

value : 'series (' funcexpr ',' eventexpr ')';

//---Value Expressions---

valueexpr : id | consta | bool | time | serviceref | eventexpr | funcexpr;
expr : (constraintexpr) | (domainexpr) | (valueexpr);

consta : (',')* (NUMBER)+'.' (NUMBER)* metric;

id : PATH | UUID;

PATH : [a-z]+ ('::' [a-z]+)* ('::' NUMBER) *;

UUID : ([a-z]+) | (la-z]l+ [0-9]1+) ;

WS : [\t\r\nl+ -> skip ; // skip spaces, tabs, newlines

Date: May 30, 2014
Page 196/197

Document name: D2-3 Certification models v.2
Version: 1.0
Security: public

NUMBER [0-9]+ ;

time NUMBER ':' NUMBER ':' NUMBER ':' NUMBER;

//STANDARD TERMS - METRIC UNITS

metric area | datarate | datasize | energy length | frequency | ratio |
power | txrate | weight | currency | duration | unit;

area 'mm2' | 'um2';

datarate 'b per s' | 'Kb per s' | 'Mb per s';

datasize 'bit' | 'byte' | 'KB' | 'MB' | 'GB';

energy 'J' | 'KJ'" | '"Wh' | 'KWh' | 'mWh';

length 'm'" | 'em' | 'mm';

duration 's' | '"tick' | 'ms' | 'us' | 'minutes' | 'hrs' | 'day' | 'week' |
'month' | 'year';

frequency 'hz' | 'KHz' 'MHz' 'GHZ' 'rpm';

ratio 'percentage’';

power W' | "mW' | 'kW';

txrate 'tx per s' | 'tx per m' | 'tx per h';

weight 'g'" | 'mg' | 'kg';

currency 'EUR' | 'USD';

unit ‘units’;

Page 197/197

Date: May 30, 2014

