
Grant Agreement No.: 604590

Instrument: Large scale integrating project (IP)

Call Identifier: FP7-2012-ICT-FI

eXperimental Infrastructures for the Future Internet

D3.7: XIFI Infrastructure Network

Adaptation Mechanisms API v2

Work package WP 3

Task Task 3.1

Due date 31/12/2014

Submission date 09/03/2015

Deliverable lead Telefónica I+D (TID)

Authors Luis M. Contreras (TID), Giuseppe Cossu (CNET), Matteo Gerola

(CNET), José I. Aznar (I2CAT), Jose Gonzalez (UPM)

Reviewers Sean Murphy (ZHAW) , Sergio Morant (ILB)

Abstract This document updates the description enclosed in M12’s

Deliverable 3.4 with the latest developments for the XIFI Network

Controller.

Keywords Network Controller, Orchestrator, SDN, QoS

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 2 of 50

Document Revision History

Version Date Description of change List of contributor(s)

V1.0 16/02/2015 Document creation Luis M. Contreras (TID)

V1.1 09/03/2015 Internal revision Luis M. Contreras (TID), Jose

Gonzalez (UPM)

Disclaimer

This report contains material which is the copyright of certain XIFI Consortium Parties and may only

be reproduced or copied with permission in accordance with the XIFI consortium agreement.

All XIFI Consortium Parties have agreed to publication of this report, the content of which is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the XIFI Consortium Parties nor the European Union warrant that the information contained in

the report is capable of use, or that use of the information is free from risk, and accept no liability for

loss or damage suffered by any person using the information.

Copyright notice

© 2013 - 2015 XIFI Consortium

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Project co-funded by the European Commission in the 7
th

 Framework Programme (2007-2013)

Nature of the Deliverable: P (Prototype)

Dissemination Level

PU Public 

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to bodies determined by the XIFI project

CO Confidential to XIFI project and Commission Services

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 3 of 50

EXECUTIVE SUMMARY

Deliverable D3.7 updates and completes the description enclosed in M12’s Deliverable 3.4 [13] with

the latest advances related to the XIFI Network Controller. This controller is in charge of creating the

connectivity between the virtual resources deployed by the end user in the XIFI infrastructure

federation. This network controller orchestrates the required to provide end-to-end connection.

The different components that have been fulfilled within WP3’s Task 3.1 are detailed in this

documentation, providing the vision about basic functionality, usage and installation guidelines. Those

changes and enhancements with respect to the first version are reflected here, providing the basis for

future steps.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 4 of 50

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..3

TABLE OF CONTENTS ...4

LIST OF FIGURES ...7

LIST OF TABLES ...8

ABBREVIATIONS ..9

1 INTRODUCTION ..10

1.1 Scope...10

1.2 Intended audience ...10

1.3 Reading suggestions ...11

2 ABNO MODULE ..12

2.1 Summary ...12

2.2 Updates to ABNO Module from previous release ..12

2.2.1 VM of-ports in local OpenStack instance ...12

2.2.2 GRE tunnel of-ports in local OpenStack instance ..12

2.2.3 Integration in ABNO of the scripts to retrieve of-port information ..13

2.2.4 Main interactions ..13

2.3 Installation Manual ...15

2.3.1 Software Repository ...15

2.3.2 Setup Guidelines ...15

2.4 User Manual ..18

2.4.1 API Specification ..18

3 OPENNAAS MODULE ...20

3.1 Summary ...20

3.2 OpenNaaS enhancements for XIFI project ...21

3.2.1 Identified OpenNaaS limitations during XIFI project ..21

3.2.2 OpenNaaS general enhancements ...21

3.3 OpenNaaS interfaces development: ..22

3.3.1 OpenNaaS Northbound Interface: ..22

3.3.2 OpenNaaS Southbound Interface: ..23

3.3.3 OpenNaaS interface to XIFI monitoring module..23

4 RYU CONTROLLER ..25

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 5 of 50

4.1 Setup guidelines ..25

4.2 Ryu rules injection ..25

5 QOS MECHANISMS IN OPENSTACK NETWORKS ...26

5.1 Summary ...26

5.2 Component Responsible ...26

5.3 Design choices ..26

5.4 System Architecture ..28

5.5 QoS Neutron API ..30

5.6 QoS Neutron Database..31

5.7 Installation and configuration procedure ..32

6 SHORT TERM EVOLUTION ..34

6.1 Development of capabilities internal to the controller ..34

6.1.1 OpenNaaS integration ...34

6.2 Integration with elements external to the controller ...34

6.2.1 Connection to MD-VPN transport infrastructure ...34

6.2.2 GRE Tunnels ..35

7 CONCLUSIONS ...37

REFERENCES ...38

APPENDIX A INTERACTION WITH RYU AS LOCAL SDN CONTROLLER39

APPENDIX B MONITORING MODULES ...40

B.1 Summary ...40

B.2 Component Responsible ...40

B.3 Motivation ...41

B.4 User Stories Backlog ..41

B.5 Architecture Design ..42

B.5.1 The main component of OpenFlow controller (in ryu/controller subfolder):42

B.5.2 The Ryu libraries (in ryu/lib subfolder) provide: ..43

B.5.3 The Third party libraries (in ryu/contrib subfolder) are composed of:43

B.6 Basic actors ...44

B.7 Main interactions ..44

B.8 Release Plan ..46

B.9 Installation Manual ...46

B.9.1 Installation Requirements ...46

B.9.2 Software Repository ...46

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 6 of 50

B.9.3 Setup Guidelines ...46

B.10 User Manual ..48

B.10.1 API Specification ..49

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 7 of 50

LIST OF FIGURES

Figure 1: XIFI Network Controller architecture ..10

Figure 2: Workflow detailing ABNO components interactions ...13

Figure 3: Screenshot for point-to-point connectivity request ...19

Figure 4: Screenshot for point-to-point connectivity acknowledgment ...19

Figure 5: Communication between the XIFI Network Controller and the different nodes21

Figure 6: OpenStack Data Network ...28

Figure 7: Neutron Private Network ..29

Figure 8 - QoS policy applied per port ...29

Figure 9: Neutron and Ryu Plugin Cooperation ...30

Figure 10: QoS module’s new database tables ...32

Figure 10: GRE Tunnels ..35

Figure 11: Deployment of GRE tunnels ...36

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 8 of 50

LIST OF TABLES

Table 1: Component Responsible ..26

Table 2: QoS policies ...28

Table 3: New API calls added in Neutron to support Quality of Service ..31

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 9 of 50

ABBREVIATIONS

ABNO Application-Based Network Operations

API Application Program Interface

DC Data Centre

GE Generic Enabler

GRE Generic Routing Encapsulation

L2-VPN Layer 2 VPN

L3-VPN Layer 3 VPN

MAC Media Access Control address

MD-VPN Multi Domain Virtual Private Network

NaaS Network as a Service

NBI NorthBound Interface

NREN National Research and Education Network

OF Open Flow

PCE Path Computational Element

PCEP Path Computational Element Protocol

PN Programmable Network.

PoC Proof of Concept

QoS Quality of Service

REST Representational state transfer

SBI SouthBound Interface

SDN Software-Defined Networking

UC Use Case

VIF Virtual Network Interface

VM Virtual Machine

VPN Virtual Private Network

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 10 of 50

1 INTRODUCTION

1.1 Scope

This deliverable updates D3.4 [13] with regard to the XIFI Network Controller, including its main

components and the interfaces existing among them.

The XIFI Network Controller plays the role of a network orchestrator instructing local SDN controller

per domain in order to achieve end-to-end connectivity. Here it is briefly introduced for completeness.

The XIFI Network Controller has been designed combining both the ABNO (Application Based

Network Orchestration) [1] and OpenNaaS [7] architectures. Figure 1 presents the modular

architecture of the XIFI Network Controller including the NaaS component (green colour) and the

specific components of the ABNO framework (red colour) considered within the scope of XIFI. From

the whole set of functional components proposed in ABNO, only some of them are needed.

Figure 1: XIFI Network Controller architecture

1.2 Intended audience

The target audience of this deliverable is:

 The nodes of the XIFI federation (including original and new nodes).

 Experts and technical personnel providing deployment support and end-user support

activities. These activities will be fulfilled by the support entity of the XIFI federation.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 11 of 50

1.3 Reading suggestions

The document is divided into six chapters. They report the status of the XIFI Network Controller and

describe the APIs and the interfaces between the different software modules.

Chapter 1: Introduction

 Provides the information required to understand the rest of the document

Chapter 2: Update on ABNO module

 Update of the ABNO component pertaining to the XIFI Network Controller

Chapter 3: Update on NaaS module

 Update on the NaaS component used for the first public release of the XIFI Network

Controller

Chapter 4: QoS mechanisms

 Description of the QoS mechanisms implemented in the XIFI Network Controller

Chapter 5: Situation at M22

 Reports the status at M22 of the XIFI Network Controller.

Chapter 6: Test and use cases in progress

 Introduces the progress of the XIFI Network Controller in the short term for both the internal

development of the controller and the external integration with other components of XIFI.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 12 of 50

2 ABNO MODULE

2.1 Summary

This component composes the end-to-end connectivity by instructing local SDN controllers in each of

the XIFI nodes to populate forwarding rules on the OpenFlow (OF) [6] enable switches in a

coordinated way, thus setting up the connectivity path (stitching the local connectivity to the transport

capabilities in the WAN).

The XIFI project is a representative of an SDN controlled federation of distributed data centres. The

delivery of distributed cloud services implies the configuration of various capabilities across the

networks involved in the service (both in the distinct data centres and in the WAN domains connecting

them). Within a data centre, the configuration of a cloud service is done by using cloud management

software to create virtual machines (VMs). Once the VMs are created in each of the data centres and

are connected internally, a network connectivity service has to be invoked for connecting the overlay

networks through the WAN. The Open vSwitch (OVS) [5] routers to be controlled are those ones

deployed by OpenStack on the compute nodes within each infrastructure.

The architecture requires a logically centralized entity maintaining a comprehensive view of all the

network resources available in order to orchestrate them. The ABNO component plays such role.

2.2 Updates to ABNO Module from previous release

In order to obtain the specific ports on the Open vSwitch connecting each VM in each instance of

OpenStack (in the separated data centres) and the ports of the GRE Tunnel defined for end-to-end

connection via MD-VPN, some scripts has been developed to facilitate this work. The commands used

in these scripts will be explained below.

2.2.1 VM of-ports in local OpenStack instance

The first step is to know and to obtain the identifier of the VM from the VM name.

nova list | grep $VM_name | grep -o '\<[0-9a-z\.-]*\>' | head -1

With this VM identifier, it can be discovered the port identifier in which the VM is connected.

neutron port-list --device_id "$id_VM" | grep -o '\<[0-9a-z\]*\>' | head -3

| grep -o '\<........\>'

Then, it will be necessary this command line request in order to obtain the name of the correspondent

port.

ifconfig | grep "$id_port_VM" | grep qvo | grep -o '\<[0-9a-z\.-]*\>' |

head -1

Finally, with the previous “qvo_name” of the port, it can be found the port of the VM wanted.

sudo ovs-vsctl list Interface "$qvo_VM" | grep ofport | grep -o '\<[0-9]\>'

2.2.2 GRE tunnel of-ports in local OpenStack instance

Once we have VM ports, it is possible to obtain the GRE Tunnel port by the following command.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 13 of 50

sudo ovs-vsctl list Interface $GRE_name | grep ofport | grep -o '\<[0-9]\>'

2.2.3 Integration in ABNO of the scripts to retrieve of-port information

All this process to obtain the VM and GRE tunnel of-ports is integrated within the ABNO software;

more specifically affects the ABNO Controller module.

There is a specific workflow for this task which launch a ssh connection and execute the following

command in the remote machine in order to obtain the desired of-port identifier. The parameter

“param” refers to the VM o GRE tunnel for which the of-port is needed.

sudo ovs-vsctl list Interface "+param+"| grep ofport | head -1 | tr -d

[ofport] | tr -d [:punct:] | sed 's/[[:space:]]*$//' | sed

's/^[[:space:]]*//'

In the future the access to obtain the of-port identifier will require a token authentication obtained via

Keystone OpenStack [4] component in order to avoid the direct ssh connections.

2.2.4 Main interactions

The following diagram (Figure 2) presents the interactions between the actors of the ABNO

component. ABNO receives the request from OpenNaaS, and then process the request through the

different ABNO components and instructs the Ryu [11] rules as can be seen in the following figure.

Figure 2: Workflow detailing ABNO components interactions

The following steps are required to provision a point-to-point link using the ABNO:

 OpenNaaS sends the required information to the ABNO controller including the source and

destination regions, the source and destination MACs and id port of the VM through which the

hosts are attached to the switch.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 14 of 50

o This interface to the ABNO controller is, for example, assumed to be an HTTP/JSON

interface.

 When the ABNO controller receives the request, it obtains the information required through

configuration files. With this information establish a ssh connection in order to obtain the

OVS of-ports.

o The configuration files are source and destination regions.

o The command to obtain the of-ports is the mentioned in the of-ports integration in ABNO.

 ABNO asks the PCE [1] for a path between the two hosts.

o PCEP is used in this interface.

o Some extensions are required to the current protocol definitions so some information such

as the switch identifiers which are made of 10 bytes are coded into newly defined ERO

sub-objects.

 The PCE replies to the ABNO controller with a PCEP response.

o The PCEP protocol is extended in order to fill the PCEP response.

 The ABNO controller creates a PCEP initiate packet from the response and sends it to the

Provision Manager (PM).

o This step is done using PCEP.

o The ERO inside the Initiate is the same as the one inside the response so the PCEP

protocol is extended in the same way as in the previous step.

 The Provisioning Manager queries the Topology Module for the description of each node.

 Depending on the technology and configuration mode selects a different protocol to complete

the request. OF controller is queried.

o This time technology will always be OF but the configuration mode can vary from node to

node

 OF controller configures OF switches.

 Once the path has been established it notifies the ABNO controller.

o This interface is PCEP.

 Similarly, the ABNO controller advertises OpenNaaS if everything is correct or there is a

problem. ABNO also instructs Ryu flows.

o This interface is JSON.

o The answers to OpenNaaS follow these structures.

i. Code: 400. SC_BAD_REQUEST in case OpenNaaS sends incorrect parameters to

ABNO.

ii. Code: 500. SC_INTERNAL_SERVER_ERROR in case ABNO was not able to

establish the path or to instruct the Ryu flows. An example can be: “No Open

VSwitch available. Not possible to provide a path"

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 15 of 50

iii. Code: 200. SC_OK in case everything goes well.

The mentioned OF controller refers to the local SDN controller deployed in the XIFI node (Ryu

controller in XIFI).

2.3 Installation Manual

2.3.1 Software Repository

For the time being, the software will be delivered via a Google Drive file. It is foreseen to host the

software in a Git repository once the software is available as open source software.

A public Google Drive link has been created from where the component can be downloaded:

https://drive.google.com/file/d/0B3en-dR7u9UPd3VYYnRpRHdid0k/view?usp=sharing

2.3.2 Setup Guidelines

This documentation assumes the file README.md inside the root of the TID installation package has

also been read.

 Install Java JRE environment (mandatory to ensure proper installation):

http://www.liberiangeek.net/2012/04/install-oracle-java-runtime-jre-7-in-

ubuntu-12-04-precise-pangolin/

 OpenStack instances are supposed to be deployed via XIFI project resources, even though

Devstack deployment has been used for testing process.

An example of localrc file is shown for completeness:

SERVICE_HOST=10.0.35.1

HOST_IP=10.0.35.1

disable_service n-net

enable_service neutron q-svc q-agt q-l3 q-dhcp q-meta ryu n-cpu n-api

FLOATING_RANGE=10.0.35.0/24

PUBLIC_NETWORK_GATEWAY=10.0.35.1

#FIXED_RANGE=192.168.0.0/24

#FIXED_NETWORK_SIZE=256

Q_PLUGIN=ryu

#Q_AGENT_EXTRA_AGENT_OPTS=(tunnel_type=gre)

#Q_AGENT_EXTRA_OVS_OPTS=(tenant_network_type=gre)

#Q_SRV_EXTRA_OPTS=(tenant_network_type=gre)

ENABLE_TENANT_TUNNELS=True

https://drive.google.com/file/d/0B3en-dR7u9UPd3VYYnRpRHdid0k/view?usp=sharing
http://www.liberiangeek.net/2012/04/install-oracle-java-runtime-jre-7-in-ubuntu-12-04-precise-pangolin/
http://www.liberiangeek.net/2012/04/install-oracle-java-runtime-jre-7-in-ubuntu-12-04-precise-pangolin/

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 16 of 50

Q_HOST=$SERVICE_HOST

MYSQL_HOST=$SERVICE_HOST

RABBIT_HOST=$SERVICE_HOST

GLANCE_HOSTPORT=$SERVICE_HOST:9292

KEYSTONE_AUTH_HOST=$SERVICE_HOST

KEYSTONE_SERVICE_HOST=$SERVICE_HOST

RYU_API_HOST=$SERVICE_HOST

RYU_OFP_HOST=$SERVICE_HOST

MYSQL_PASSWORD=admin

RABBIT_PASSWORD=admin

SERVICE_TOKEN=admin

SERVICE_PASSWORD=admin

ADMIN_PASSWORD=admin

RYU_APPS=ryu.app.gre_tunnel,ryu.app.quantum_adapter,ryu.app.rest,ryu.app.re

st_conf_switch,ryu.app.rest_tunnel,ryu.app.tunnel_port_updater,ryu.app.rest

_quantum,ryu.app.qos_cn

Images

IMAGE_URLS+=",https://launchpad.net/cirros/trunk/0.3.0/+download/cirros-

0.3.0-i386-disk.img"

Branches

KEYSTONE_BRANCH=stable/icehouse

NOVA_BRANCH=stable/icehouse

GLANCE_BRANCH=stable/icehouse

CINDER_BRANCH=stable/icehouse

HORIZON_BRANCH=stable/icehouse

NEUTRON_BRANCH=stable/icehouse

NEUTRON_REPO=https://github.com/SmartInfrastructures/neutron

NEUTRON_BRANCH=stable/icehouse

RYU_REPO=https://github.com/SmartInfrastructures/ryu.git

RYU_BRANCH=qos

NEUTRONCLIENT_REPO=https://github.com/SmartInfrastructures/python-

neutronclient.git

NEUTRONCLIENT_BRANCH=qos

LIBS_FROM_GIT=python-neutronclient

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 17 of 50

The password should be replaced with the one you choose.

 Launch ABNO service

Run these commands:

./unstack.sh

./stack.sh

 Configure init_setup_2.sh, e.g.,

STACK_DIR=devstack

ABNO_DIR=ABNO

ASO_DIR=pip

PORT=eth0

LOG_FILE=setup.log

KILL_TAG=quantum-server

You should generally only need to change the PORT variable. This is the interface through which the

physical host will be connected to other OpenStack instances, not the management IP of the physical

host.

 Run Ryu service: run Ryu after configuring init_setup_2.sh, e.g.,

./init_setup_2.sh –RYU

 Checking of modules

And check if it is running and the IP of the controller with

ps aux | grep ryu

sudo ovs-vsctl get-controller br-int

 Configuration of local Open vSwitch instance to be controlled by local Ryu controller

sudo ovs-vsctl set-controller br-int tcp:127.0.0.1:663

If you want to see the output of Ryu execution visit the following file:

vi nohup.out

 Configuration files for ABNO

Before run ABNO, config files must be correctly configured. Be sure the files

ABNO/scenarios/XIFI_scenario/nodeConfig/regionX.xml

are correctly updated before installation with the appropriate information of the controllers in each

region, as well as GRE tunnel information. There will be a file per region following this structure:

<?xml version="1.0" encoding="UTF-8"?>

<Madrid>

 <Region>

 <ip>10.0.78.2</ip>

 <port>8080</port>

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 18 of 50

 <type>RYU</type>

 </Region>

 <Destination>

 <dest_region>Trento</dest_region>

 <tunnel>gre0</tunnel>

 </Destination>

</Madrid>

After that, you can run the ABNO:

./init_setup_2.sh –ABNO

2.4 User Manual

2.4.1 API Specification

Create unicast path

 URI

GET source_region=<?>&destination_region=<?>&source_mac=<?>&dest

_mac=<?>&source_interface=<?>&destination_interface=<?>&oper

ation_type=<?>&id_operation'

Action:

Creates a unicast unidirectional link between two hosts identified by their MAC addresses.

Parameter Description:

 Source and destination Region (mandatory). These variables contain the name of the regions

where Ryu controllers are.

 Source and destination MACs of the VMs (mandatory): the MACs from the VMs that are the

origin and the destination of the LSP.

 Source and destination interface (mandatory): are the id ports of the source and destination

VMs, necessary to correctly create the Ryu rules.

 Operation: this string is mapped to the operation that the ABNO has to execute to configure the

link. For this workflow the value is: “WLAN_PATH_PROVISIONING”.

 Operation_Type (mandatory): this string is mapped to the workflow that the ABNO controller

has to execute. For this workflow the value is: “XIFIWF”.

 ID_Operation (not mandatory): is the identifier for the specific operation in order to trace back

and reference this specific action in the network.

Response:

Returns a JSON containing the configuration parameters.

Normal Response Code: 200

Error Response Code: any other.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 19 of 50

Example:

A request could be done in the following way:

curl

"localhost:4445?source_region=Madrid&dest_region=Trento&source_mac=fa:16:3e

:a6:05:ab&dest_mac=fa:16:3e:ec:e2:cb&source_interface=b5a9b842-5262-4cff-

a051-e41fefce2132&destination_interface=de10aebe-ff6f-4532-935d-

25984554106e&operation=WLAN_PATH_PROVISIONING&Operation_Type=XIFIWF&ID_Oper

ation=1234"

And the response could be:

{

“ID_Operation”:”1234”

“Operation Type”:”XIFIWF”,

“Result”: “LINK_CONFIGURED”

“Error Code”: “NO_ERROR”

}

The following figure shows a query to the ABNO asking for this workflow to be executed.

Figure 3: Screenshot for point-to-point connectivity request

Additionally, the following capture shows a response from the ABNO where the point to point path

has been configured correctly.

Figure 4: Screenshot for point-to-point connectivity acknowledgment

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 20 of 50

3 OPENNAAS MODULE

The OpenNaaS module is required in the XIFI Network Controller to provide connectivity service

awareness across the federation. It is in charge of collecting and maintaining the information about the

resources committed to the end user from the connectivity point of view, either if the resources are

local to just one XIFI node or if they are spread in different nodes in the federation.

This module is used to maintain the notion of connectivity service end to end by associating VMs

located in separated data centres with the required network connection among them.

3.1 Summary

OpenNaaS [7] is an open-source service and network control and management platform which

provides with a suitable set of tools for the management and operation of XIFI network connectivity

services.

From a conceptual perspective OpenNaaS modules manage the service logic. This means that

OpenNaaS holds the service awareness abstracting the underlying network complexity. Upon users’

requests, this allows the possibility to easily deploy and operate provisioning network services

between XIFI federated nodes and guarantee the agreed service Quality of Service (QoS).

Thus, OpenNaaS module constitutes the entrance point of the XIFI Network Controller. It receives the

service requests and turns the requirements into network comprehensible parameters, so that the

ABNO is able to establish the E2E connection.

OpenNaaS as the module which maintains the service logic of the XIFI network controller: OpenNaaS

platform, as part of the service logic, enables to abstract the underlying network complexity allowing

the possibility to easily deploy and operate customized advanced provisioning network services

according upon requests. Service cares of handling end-user requests, organize the request inputs and

map them into a network request to be understood by the ABNO module. OpenNaaS monitors the

connectivity service and keeps the overall service performance with guaranteed QoS.

ABNO listens to E2E service connectivity requests from the OpenNaaS [3] by means of the north

bound interface and selects the appropriate workflow to follow in order to connect the required

network resources in within the XIFI nodes, matching the service logic.

ABNO as the module which maintains the network logic of the XIFI Network Controller: The ABNO

is responsible of the network logic orchestration for provisioning the connectivity service requests by

invoking the necessary components in the right order according to specific workflows. OpenNaaS

communicates with ABNO by means of a REST API.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 21 of 50

Figure 5: Communication between the XIFI Network Controller and the different nodes

The coordination between these two entities results crucial for a suitable implementation of the overall

XIFI connectivity service. Remaining XIFI network controller, SW components (OpenStack APIs) are

part of the network logic to achieve the network service provisioning.

3.2 OpenNaaS enhancements for XIFI project

3.2.1 Identified OpenNaaS limitations during XIFI project

In order to compose the XIFI Network Controller, several limitations were identified. Most relevant

ones comprise:

 The architecture of the core was not flexible enough to integrate with the other XIFI controller

SW modules.

 The authentication system is very limited. Role-based permission can only be assigned to

services represented in the API and has to be configured manually. This does not scale while

integrating with other SW modules and platforms which require authentication to share

information.

3.2.2 OpenNaaS general enhancements

 To minimize the time necessary when deploying a new feature and to enrich the management

possibilities of the platform, the core was completely redesigned using the main existing core

concepts.

 The interfaces a developers needs to implement to deploy new functionality are simplified and

enhanced. All automatable processing is taken over by the platform, without limiting the

development possibilities. This has eased the NBI and SBI OpenNaaS development.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 22 of 50

 Adaptation of the core’s resource tree and the capabilities offered by OpenNaaS to tailor the

platform exactly to the XIFI Network Controller needs.

 The network abstraction model has been enhanced as well in order to be able to keep the

overall service view and the topology map. Thus OpenNaaS framework enables to abstract the

underlying network complexity allowing the possibility for easily deploy and operate

customized advanced network services according to PaaS connectivity services requests.

These capabilities allow also the extension of Cloud management platforms (i.e. OpenStack)

to integrate IT and network environments.

3.3 OpenNaaS interfaces development:

OpenNaaS has implemented all required functionalities and interfaces for the XIFI Network

Controller.

3.3.1 OpenNaaS Northbound Interface:

The entry point of the PaaS manager to request a network connectivity service in the XIFI federation

is the northbound interface. OpenNaaS has enabled a REST API interface to collect the required

parameters that allows the XIFI Network Controller to establish the E2E path in the federation.

POST

http://{OpenNaaS_host}:{OpenNaaS_port}/OpenNaaS/XIFI/{XIFI_resource}/e2e/co

nnectEnds

where:

- {OpenNaaS_host} is the host where OpenNaaS instance is located (IP address or host name.

- {OpenNaaS_port} is the TCP port where OpenNaaS is listening. Typically 8888.

- {XIFI_resource} is the name of the OpenNaaS XIFI resource. For the use case it will be

'XIFI1'.

with this mandatory headers:

Content-Type: application/xml

Authorization: {auth}

where:

- {auth} is the HTTP Basic Authentication digest. In this case, the default user 'admin', with the

default password '123456' produces digest 'Basic YWRtaW46MTIzNDU2'.

With this mandatory body as XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<ns2:connectEndsRequest xmlns:ns2="OpenNaaS.api">

 <sourceInstance>{srcVM}</sourceInstance>

 <sourceRegion>{srcRegion}</sourceRegion>

 <destinationInstance>{dstVM}</destinationInstance>

 <destinationRegion>{dstRegion}</destinationRegion>

</ns2:connectEndsRequest>

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 23 of 50

where:

- {srcVM} is the source OpenStack instance name.

- {srcRegion} is the configured name for the source XIFI region.

- {dstVM} is the destination OpenStack instance name.

- {dstRegion} is the configured name for the destination XIFI region.

It would produce a '204 No content' response if it was processed successfully. Otherwise, it would fail

with a generic '500 Server error' response.

3.3.2 OpenNaaS Southbound Interface:

OpenNaaS southbound interface triggers the ABNO functionality so that it later establishes the

network connectivity. OpenNaaS retrieves the information from other Software modules (OpenStack

instances of the XIFI nodes, Network monitoring module and provides it to the ABNO by means of

this interface.

As OpenNaaS communicates with ABNO on its SBI, the SBI is defined by ABNO (as ABNO API).

3.3.3 OpenNaaS interface to XIFI monitoring module.

Within the OpenNaaS platform, it has also been implemented the required interfaces to integrate with

a monitoring module, which has been proposed in WP6 for the development of the showcases. The

monitoring module triggers an alarm to OpenNaaS when congestion in the provisioned E2E path is

detected so that the XIFI Network Controller is able to react accordingly to reduce congestion in the

path or move the provisioned service to other non-congested path. OpenNaaS implements the interface

to attack the following monitoring module REST API:

 To create an alarm:

 curl -X POST -d '{ "threshold":"10", "host":"192.168.122.201",

"port":"8080", "url_prefix":"/XIFI/raise_alarm

 where:

- threshold is the threshold of the alarm

- host is the host to send the alarm (it should be OpenNaaS host)

- port is the port of the REST API to send the alarm on OpenNaaS host

- url_prefix is the url of the REST API to send the alarm

- dpid is the datapath ID of the OpenVswitch of the monitored port

- port_no is the port number in the OVS of the monitored port

 To delete an alarm:

 curl -X DELETE

http://192.168.122.201:8080/XIFI/delete_alarm/{dpid}/{port_no}

 where:

- dpid is the datapath ID of the OpenVswitch of the monitored port

- port_no is the port number in the OVS of the monitored port

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 24 of 50

To use the monitoring module, here are the applications configured in my ryu.conf file:

app_lists=ryu.app.gre_tunnel,ryu.app.quantum_adapter,ryu.app.rest,ryu.app.r

est_conf_switch,ryu.app.rest_tunnel,ryu.app.tunnel_port_updater,ryu.app.res

t_quantum, ryu.app.ofctl_rest,ryu.app.XIFI

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 25 of 50

4 RYU CONTROLLER

This chapter describes how to configure RYU to be controlled by ABNO and hence OpenNaaS above.

Each data centre is considered to be an independent SDN domain. Every domain has its own

controller, with control responsibilities over physical and virtual network resources within the data

centre.

The deployed controller is Ryu [11]. Only the functionalities of pushing the forwarding rules and

discovering the topology information are used from the controller.

4.1 Setup guidelines

It is necessary to have installed Python 2.7 or higher.

There are two alternatives for the Ryu installation.

The first one is through the command pip.

sudo pip install ryu

The other way is through the Git Ryu reposition, executing the following command in the folder

wanted.

 git clone https://github.com/osrg/ryu.git

To check the installation has gone well and to see the connection is good

 ryu-manager --verbose

NOTE: File lldp.py located in the path: */ryu/ryu/lib/packet/ has been modified in order to avoid a

particular problem associated to an out of range issue. The changes were focused on changing the way

going through the loop and adding a counter.

4.2 Ryu rules injection

The way to introduce Ryu flows is very easy. In this example it can be seen how introduce a flow.

Where dpid parameter corresponds with the decimal dpid value of the ovs, and in_port and OUTPUT

parameters refer to the input and output ports, respectively, for flowing traffic.

Finally, in order to see the flows configured for the ovs we can execute the following command.

On the other hand, to delete Ryu flows it is only necessary the decimal ovs dpid as it can be seen

below.

curl -X POST -d '{"cookie": "1","dpid": "68831857340750", "match":

{"in_port":"10"}, "actions": [{"type": "OUTPUT", "port": "33"}]}'

http://$CONTROLLER_IP:8080/stats/flowentry/add

sudo ovs-ofctl dump-flows br-int

http://$CONTROLLER_IP:8080/stats/flowentry/delete/68831857340750

http://www.liberiangeek.net/2012/04/install-oracle-java-runtime-jre-7-in-ubuntu-12-04-precise-pangolin/

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 26 of 50

5 QOS MECHANISMS IN OPENSTACK NETWORKS

5.1 Summary

In packet switched networks, as the XIFI cloud infrastructure, Quality of Service (QoS) can be defined

as the ability to provide different priorities to different applications, users, or data flows, or to

guarantee a certain level of performance to a data flow. For example, a required bit-rate or delay may

be guaranteed. Quality of service guarantees are important if the network capacity is insufficient,

especially for real-time streaming applications such as Voice-over-IP (VoIP), online games and IP-

TV, since these often require fixed bit rate and are delay sensitive.

Currently, while it is possible for an OpenStack administrator to enforce some policies related to the

virtual machines (VMs), such as assigned virtual cores, amount of RAM and disk, there are no open-

source mechanisms to set and monitor the amount of traffic generated by a VM, and to configure a

specific priority to some flows crossing the core network. So, it’s possible for an user to flood the

cloud network with malicious traffic without any restriction, and to impair other applications running

in the same facility. For this main reason, and leveraging on the network architecture envisioned in

XIFI, we decided to introduce some mechanisms to enforce QoS policies in OpenStack, extending the

current open-source software suite (e.g. Neutron and Ryu OpenFlow controller) with new features.

5.2 Component Responsible

Developer Contact Partner

Matteo Gerola mgerola@create-net.org CNET

Giuseppe Cossu giuseppe.cossu@create-net.org CNET

Table 1: Component Responsible

5.3 Design choices

We defined these main requirements to be part of the QoS framework design:

● The user can change the running policy at runtime. Each customer can switch from a

policy to another available one at runtime, without rebooting the VM. The changes are then

applied by the framework in few milliseconds to the physical network.

● QoS is applied at the edge of the network. To ensure that each customer’s traffic is tagged

and shaped with the right rules, each policy is applied directly at the connection point between

the VM and the cloud network.

● Three QoS rules are supported, but the framework is easily extendible with more

constraints:

○ Maximum ingress bandwidth. The traffic going from the network to the VM (e.g.

downstream) is limited to an upper bound defined by the policy.

○ Maximum egress bandwidth. The traffic flow sent out by each VM (upstream) is

shaped to an upper limit defined by the network administrator and configured in the

policy.

mailto:mgerola@create-net.org
mailto:giuseppe.cossu@create-net.org

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 27 of 50

○ Differentiated Services Code Point (DSCP) tagging. Contextually with the rate

limiting, each traffic flow is tagged with a specific DSCP value, leveraging on the

IETF RFC 2474 standard,that defines the DiffService field in the IPv4 and IPv6

packet headers. All the switches and router (both SDN and standard) in the XIFI

network use this field to classify the packets in each port queue, thus prioritizing the

traffic with an higher DSCP value.

Two different stakeholders can benefit from this functionality:

● Network administrator: the admin is the main responsible for the QoS configuration and

management. He/she can:

○ Create/delete a new policy defined by a name, a description, and some rules that will

be associated to that policy (e.g. max-bandwidth-ingress, max-bandwidth-egress,

DSCP value).

○ Set the policy as default. The default policy (only one is allowed in the network) is

automatically associated to all the newly created virtual machines.

○ Set the policy as shared. In order to reduce the manual work, the administrator can

have a set of policies that are visible, and thus configurable, by all the users. These

policies (obviously the default one is part of this subset) are usually the ones with less

privileges, but with specific settings required by standard applications (e.g. web-

server, multimedia streaming server).

○ Associate a policy with specific users/tenants. For the policies that are not shared, the

administrator can manually configure each of them to be visible only by specific

users. Generally this operation is applied only to specific users that require stronger

Service Level Agreements.

● Cloud user (tenant): while the network administrator is the one responsible for the correct

configuration of the QoS, the users are the ones really affected by this feature. In order to

reduce the intricacy of the setup (we cannot assume that each user is aware of the implications

related to QoS), we let the admin to associate complex rules to user-friendly self-explained

QoS policies. For example, the policies in the following table can be good examples. All the

fields in white are visible by the users, while the real complex QoS rules are set by the

administrator and are visible only to him/her.

Name Description Default Shared DSCP Ingress-BW

(kbps)

Egress-BW

(kbps)

Bronze Default policy, to

be used will all

the client VMs

YES YES 15 50 100

Silver Policy optimized

for web-services

NO YES 30 100 200

Gold Policy for real-

time services

(e.g. video

streaming)

NO NO 45 1000 1000

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 28 of 50

Table 2: QoS policies

With the policies defined by the administrator, the user can:

○ List all the available policies. After starting a VM, a user can see the running QoS

policy, as well as the list of all the policies that are visible by him/her. Referring to the

previous table, all the users could see the Bronze and Silver ones, while the Gold

policy appears only to specific users.

○ Assign the preferred policy to a VM or a network. After looking at the list, each user

can then change at runtime the running policy with another one belonging to the list.

Moreover, he can apply the choice to a single VM or to the whole network to which

his/her VMs are attached. The change is processed by the system and applied in few

milliseconds.

5.4 System Architecture

OpenStack Neutron configures the “data network” in order to allow the communication between VMs.

The main process of Neutron is the so-called Neutron-server that exposes the API of the OpenStack

Networking part, while the Neutron-plugin is the component in charge of the back-end

implementation. Typically the plugin, such as Ryu, configures Open VSwicth (OVS) on all compute

and controller nodes in order to create virtual networks for each tenant.

Figure 6: OpenStack Data Network

In particular, all the VMs attach their Virtual InterFace (VIF) to a local OVS bridge called br-int. That

bridge is dynamically configured by the plugin using an agent process (e.g. Ryu-agent). The following

figure shows how a tenant private network is configured upon an OVS. For the sake of simplicity is

depicted one tenant private network on a single OVS switch.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 29 of 50

Figure 7: Neutron Private Network

Let us look into the Figure 7. Using the OpenStack Networking component each tenant can create his

own private network, that is an isolated layer-2 network, and define a specific subnet (such as

10.0.0.0/24). The VIFs are mapped in Neutron using a port: a virtual switch port that defines Fixed IP

and MAC address assigned to the VM interface. The tenant networks are created configuring OVS

switch in order to allow/deny traffic and create the tenant private network as explained before.

The QoS policies are applied per port (although they can be set for a network), that is the Neutron

resource attached to the VM virtual interface. In this way it is possible to control the

incoming/outcoming traffic from the tenant port as explained in the previous section.

Figure 8 - QoS policy applied per port

As already mentioned the Neutron ports are mapped in OVS that provides the mechanism to create the

private networks. As depicted above, the policies are applied updating the already present rules in the

OVS switch using OpenFlow rules and OVSDB protocol. In order to introduce the QoS in OpenStack,

therefore to apply the defined policies in Neutron, extensions have been developed in the following

components:

● Neutron Server

○ API and Database

● Ryu Plugin

○ Communication with Neutron Server, OVSDB and OpenFlow rules on OVS

● Neutron Client

○ Command Line Interface (CLI)

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 30 of 50

Figure 9: Neutron and Ryu Plugin Cooperation

First of all, QoS API and Data Model for MySQL have been defined (reported in the following

sections). These are been implemented as Neutron extensions: Neutron-server manages the QoS API

and exchanges all information Ryu-manager needs by means of Ryu-plugin.

In this way, the plugin can use different techniques and technologies to create isolated virtual

networks, such as SDN [13]. Ryu-manager acts as local SDN Controller and configures the OVS

switch using OVSDB Protocol.

Now we will describe what happens when a VM instance is created: Neutron port is created and then

OVS port as well (note: VIF creation in managed by OpenStack Nova [8]). Ryu-agent is in charge of

detect the port creation and to set up a first initialization (there are 2 steps of OVS initialization) with

the basic configuration. The information is retrieved through Ryu-Plugin from Neutron. If additional

configurations for OVS are needed, these are directly performed by Ryu-Manager as depicted in the

figure above. Here the QoS parameters are set up: Ryu-Manager has been extended in order to create

and update an OVS port with the QoS parameters defined above. In particular, the default QoS is set

up in the first initialization phase whereas the other QoS are set up when the Neutron port in updated

with a new QoS policy.

In order to use the developed extensions with the CLI, the Neutron-client has been modified in order

to accept the QoS parameters and to communicate with Neutron server using REST architectural style.

5.5 QoS Neutron API

The table below summarizes the new API calls added in Neutron to support Quality of Service. With

this northbound API, each OpenStack module (with the right privileges) can interact with Neutron to

monitor and set the QoS policies.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 31 of 50

QoS Neutron API call Parameters Mandatory Authorized Users

neutron qos-create

policies YES

Admin only

description NO

name YES

default NO

visible NO

neutron qos-list tenant_id NO Admin only

neutron qos-show id YES Admin only

neutron qos-delete id YES Admin only

neutron qos-update

id YES

Admin only

description NO

name NO

policies NO

default NO

visible NO

neutron qos-tenant-associate
id YES

Admin only
tenant_id YES

neutron qos-tenant-disassociate
id YES

Admin only
tenant_id YES

neutron port-update
port_id YES

Admin and tenant
qos NO

neutron network-update
network_id YES

Admin and tenant
qos NO

Table 3: New API calls added in Neutron to support Quality of Service

5.6 QoS Neutron Database

Similarly to the Neutron northbound API, the QoS framework needs some extensions also to the

Neutron database. The python QoS module add four new tables to the database, without modifying

existing tables, in order to be back compatible with standard deployment, and also to be enabled and

disabled on demand without modifying the behaviour of the other components. Two Neutron tables

(ports and tenant) are used as foreign keys to maintain relationship between the configured policies

and both ports and users.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 32 of 50

Figure 10: QoS module’s new database tables

The tables are:

● qos_main is the main table for QoS. Name and description are fields used to describe policy

itself. Default is false “by default”, and only one policy can be true at a certain time. Shared

states if the policy is visible to all the users or if the administrator intends to limit its visibility

only to specific customers.

● qos_policy defines the QoS rules associated to the policy. Having the rules in a separated

table allows adding easily new rules without changing the main QoS design. Regarding the

current supported rules:

○ Ingress_rate and egress_rate are expressed in bit per seconds (bps).

○ Dscp is the Type of Service value sets in the IP header that can be used to differentiate

the service. It has to be multiple of 4 and less than 65.

○ Burst_percent specifies the burst rate associated to the ingress_rate and egress_rate,

in percentage.

● qos_tenant_access stores the associations between policies and tenants (e.g. user’s projects).

● qos_mapping stores the current policy running on each port.

5.7 Installation and configuration procedure

The pieces of software involved in the QoS OpenStack extension are:

● Neutron: https://github.com/SmartInfrastructures/neutron

● Python-neutronclient: https://github.com/SmartInfrastructures/python-neutronclient

● Ryu OpenFlow Controller: https://github.com/SmartInfrastructures/ryu

https://github.com/SmartInfrastructures/neutron
https://github.com/SmartInfrastructures/python-neutronclient
https://github.com/SmartInfrastructures/ryu

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 33 of 50

These software bundles are forked from the community master branches:

● https://github.com/openstack (for Neutron and Python-neutronclient)

● https://github.com/osrg/ryu (for Ryu OpenFlow Controller)

Each repository has three main branches, with specific README.qos files (new features details, how-

to install and use the software):

● master: the original master branch updated every week with the upstream repositories

● qos: the main QoS branch, that should be used in every production environment

● qos-dev: new features development, testing and bug fixing, later merged in the qos branch

These requirements have to be met in order to correctly install and configure the software:

 use Icehouse version for all Openstack components

 use the same branch for all three software components (to guarantee same features database

and APIs)

 where ryu-manager runs load qos_cn app. Typically this is done in the configuration file

“/etc/ryu/ryu.conf”

 redeploy the machines

For installation details see section 2.3.

https://github.com/openstack
https://github.com/osrg/ryu

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 34 of 50

6 SHORT TERM EVOLUTION

This chapter introduces the current activities being carried out in Task 3.1 which will impose some

evolution steps for the XIFI Network Controller in the short term. Two types of actions are being

taken, one of them referred to the internal evolution of the Network Controller, and the other one

related to the external interaction with other components that are part of the XIFI Project.

6.1 Development of capabilities internal to the controller

The XIFI Network Controller is a modular software element. This fact permits that every specific

component can take its own independent evolutionary path, minimizing the impacts on the rest of the

components comprising the XIFI Network Controller. Additionally, new components can be

integrated in the overall XIFI Network Controller by defining integration interfaces with the rest of the

modules.

This section describes the modules and capabilities currently being developed and integrated in the

XIFI Network Controller.

6.1.1 OpenNaaS integration

OpenNaaS is one of the original software components considered in the XIFI Network Controller

design. Its capabilities were already reported in Deliverable 3.1 [12].

Essentially the OpenNaaS component will maintain the service awareness in the XIFI Network

Controller architecture. It will keep information related to the resources associated to tenants on a per

DC basis, including some identifiers that allow connectivity service tracking. For instance, data like

MAC addresses of the VMs, ports where the VMs are attached to the Open vSwitch virtual device,

local identifiers of the network in each DC assigned by the local instance of OpenStack, etc. Some

other data complements the local information obtained from the resources deployed in each DC, and it

is essential for the connectivity service, like the regions where the tenants have deployed their

resources, or proper identifiers of the end-to-end connectivity service.

OpenNaaS – ABNO integration has been tested. However the real integration of the complete system

is yet pending.

6.2 Integration with elements external to the controller

This section addresses the activities being currently done in the integration process with external

capabilities external to the XIFI Network Controller.

6.2.1 Connection to MD-VPN transport infrastructure

The XIFI deliverable 5.2 [14] reports the XIFI backbone implementation for the initial nodes of the

federation. The backbone connectivity is based on the MD-VPN transport service offered by the

GÉANT community. The purpose of the XIFI Network Controller is to provide an orchestrated

connectivity between the edges (i.e. the XIFI nodes or DCs) by stitching that local connectivity to the

XIFI backbone. The XIFI Network Controller will instruct the local SDN controllers to compose the

service by pushing the appropriate OF rules in the devices, either virtual (e.g. those created in the

servers by OpenStack) or physical (e.g. those acting as demarcation points before entering the NREN

infrastructure).

Then it is essential to integrate the local connectivity with the backbone transport. Due to the diversity

of topological options it is required to clearly identify the service requirements to find commonalties

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 35 of 50

and identify particularities for each of them.

6.2.2 GRE Tunnels

6.2.2.1 Installation Manual

The process to configure GRE Tunnels follows the steps detailed below, which must be repeated on

both servers in br-ex and br-int Open vSwitch virtual bridges created as result of OpenStack

installation.

Figure 11: GRE Tunnels

6.2.2.2 Configuring the GRE Tunnel Endpoint on br-ex

The GRE tunnel endpoint (TEP) will act as endpoint for the GRE tunnel on each end. This TEP will

be assigned with an IP address of the MD-VPN to allow connectivity to other data centers in the

federation.

To create the internal interface, use this command:

ovs-vsctl add-port br-ex tep0 -- set interface tep0 type=internal

Note.- A planning of the IDs (e.g., tep0, tep1, etc) to be assigned to the TEPs should be defined for the

whole federation.

Once the internal path is established, assign it with an IP address of the MD-VPN using ifconfig or ip,

whichever you prefer.

Note.- Separated IP ranges of the MD-VPN should be identified for inter-DC communication.

Note.- The IP address to be assigned should be different from the one assigned to the physical NIC on

the server.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 36 of 50

Then:

ifconfig tep0 192.168.100.2 netmask 255.255.255.0

Once it is established the GRE tunnel endpoint on each server, test connectivity between the endpoints

using ping or a similar tool.

6.2.2.3 Establishing the GRE Tunnel

Use this command to add a GRE interface to the br-int on each server:

ovs-vsctl add-port br-int gre0 -- set interface gre0 type=gre

options:remote_ip=<GRE tunnel endpoint on other hypervisor>

Once a service is deployed in separate data centres, the traffic to be interchanged between VMs

residing in each data centre will be forwarded through it.

6.2.2.4 Deployment of GRE Tunnels in XIFI infrastructure.

Up to now, three potential cases have been identified, as shown in the figure below.

Figure 12: Deployment of GRE tunnels

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 37 of 50

7 CONCLUSIONS

This deliverable provides the second software release of the XIFI Network Controller described in the

framework of WP3. The outcomes enclosed in this document define the basis of Task 3.1 - Networks

and virtual networks Infrastructure Adaptation mechanisms.

Although some activities are still being performed at the time of writing, especially in terms of

deployment and validation, the documentation provided remarks the innovation overcome by the

project in the field of federated network management.

Meaningful outcomes have been fulfilled with the release and/or integration of the following software

modules:

 Real implementation of the reference architecture based on the ABNO principles

 Integration with the system for Network-as-a-Service OpenNaaS, enabling a full-fledged

solution

 Installation and configuration procedures of the industry-based network controller Ryu

 Innovative mechanisms to manage the Quality-of-Service in OpenStack environments

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 38 of 50

REFERENCES

[1] D. King, A. Farrel, “A PCE-based Architecture for Application-based Network Operations”,

draft-farrkingel-pce-abno-architecture-07 (work in progress), February 2014.

[2] I. Bueno, J.I. Aznar, E. Escalona, J. Ferrer, J.A. García-Espín, “ An OpenNaaSOpenNaaS based

SDN Framework for Dynamic QoS control,” SDN for Future Networks and Services

(SDN4FNS), (November 2013)

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6702533

[3] J.I. Aznar, .; Jara, M., ; Rosello, A., ; Wilson, D., ; Figuerola, S.,” OpenNaaSOpenNaaS Based

Management Solution for Inter-data Centres Connectivity, “ IEEE 5th International Conference

on Cloud Computing Technology and Science (CloudCom), December, 2013.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6735399

[4] Keystone OpenStack. http://docs.openstack.org/developer/keystone/

[5] Open vSwitch. http://openvswitch.org/

[6] OpenFlow - Open Networking Foundation. https://www.opennetworking.org/sdn-

resources/openflow

[7] OpenNaaSOpenNaaS. : http://opennaas.org/http://opennaas.org/

[8] OpenStack Nova. https://wiki.openstack.org/wiki/Nova

[9] QoS in Neutron OpenStack. https://github.com/SmartInfrastructures/neutron/wiki

[10] Ryu 3.18 Documentation. http://ryu.readthedocs.org/en/latest/index.html

[11] Ryu OpenFlow Network Controller. http://osrg.github.io/ryu/

[12] XIFI Deliverable D3.1 XIFI infrastructure adaptation components API open specification",

http://wiki.fi-XIFI.eu/Public:D3.1https://bscw.fi-XIFI.eu/pub/bscw.cgi/d44705/XIFI-D3.1-

XIFI_infrastructure_adaptation_components_API_open_specification.pdf

[13] XIFI Deliverable D3.4 "XIFI infrastructure network adaptation mechanisms API",

https://bscw.fi-XIFI.eu/pub/bscw.cgi/d64447/XIFI-D3.4-

XIFI_Infrastructure_Network_Adaptation_Mechanisms_API.pdf

[14] XIFI Deliverable D5.2 “Report on XIFI Core Backbone Deployment”, https://bscw.fi-

XIFI.eu/pub/bscw.cgi/d64414/XIFI-D5.2-XIFI_Core_Backbone.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6702533
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6735399
http://docs.openstack.org/developer/keystone/
http://openvswitch.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://opennaas.org/
http://opennaas.org/
https://wiki.openstack.org/wiki/Nova
https://github.com/SmartInfrastructures/neutron/wiki
http://ryu.readthedocs.org/en/latest/index.html
http://osrg.github.io/ryu/
http://wiki.fi-xifi.eu/Public:D3.1
http://wiki.fi-xifi.eu/Public:D3.1
https://bscw.fi-xifi.eu/pub/bscw.cgi/d44705/XIFI-D3.1-XIFI_infrastructure_adaptation_components_API_open_specification.pdf
https://bscw.fi-xifi.eu/pub/bscw.cgi/d64447/XIFI-D3.4-XIFI_Infrastructure_Network_Adaptation_Mechanisms_API.pdf
https://bscw.fi-xifi.eu/pub/bscw.cgi/d64447/XIFI-D3.4-XIFI_Infrastructure_Network_Adaptation_Mechanisms_API.pdf
https://bscw.fi-xifi.eu/pub/bscw.cgi/d64414/XIFI-D5.2-XIFI_Core_Backbone.pdf
https://bscw.fi-xifi.eu/pub/bscw.cgi/d64414/XIFI-D5.2-XIFI_Core_Backbone.pdf

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 39 of 50

Appendix A Interaction With RYU As Local SDN Controller

The XIFI Network Controller orchestrates local SDN controllers, one per each XIFI node. The reason

for that is because each XIFI node forms a separated SDN domain.

The Ryu OpenFlow controller [11] has been considered as the local SDN controller for the new

release of the XIFI Network Controller. This Annex collects a number of queries/interactions used for

the communication between the XIFI Network Controller (the Provisioning Manager module in the

ABNO component) and the Ryu controller. Ryu API is documented in [11].

Some useful queries are the following:

 Get the list of all switches:

curl http://$CONTROLLER_IP:8080/stats/switches

 Retrieve topology:

curl http://$CONTROLLER_IP:8080/v1.0/topology/links

 Clear switch rules:

curl -X DELETE

http://10.0.78.2:8080/stats/flowentry/clear/$SWITCH_DPID

 Push a flow

curl -X POST -d '{"cookie": "0","dpid": "68831857340750", "match":

{"in_port":"10"}, "actions": [{"type": "OUTPUT", "port": "33"}]}'

http://$CONTROLLER_IP:8080/stats/flowentry/add

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 40 of 50

Appendix B Monitoring Modules

The monitoring modules described in this section have been specifically developed to fit the use case

scenario of the XIFI Network Controller. This means, these modules are not integrated in the XIFI

Federation Architecture, and do not follow the same means.

B.1 Summary

Le monitoring is a component is an additional function developed inside the RYU SDN controller

chosen to control the internal XIFI node network. It allow to monitor the network traffic using the

OpenFlow protocol to communicate with the OpenFlow switches and provide an external API to

register alarm function of the network real time QoS. In particular, it is used to monitor the bandwidth

between the XIFI nodes in order to trigger a new bandwidth allocation action by OpenNaaS

component.

Reference

Scenarios

MG2(old UC6 SDN Traffic engineering)

Reference

Stakeholders

Users: those who request a connected infrastructure

comprising one or more XIFI nodes.

Infrastructure owners and operators: those who want to

connect resources to the XIFI federation.

Type of

Ownership
Development and extension

Original tool
Ryu

Planned OS

license

None at the moment

Reference OS

Community
None at the moment

B.2 Component Responsible

Developer Contact Partner

Bruno

VIDALENC

Bruno.vidalenc@thalesgroup.com TCS

Mathieu BOUET Mathieu.bouet@thalesgroup.com TCS

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 41 of 50

B.3 Motivation

The monitoring module has been developed to improve Quality of Service in cloud network. Indeed

SDN network present in cloud networks allow more flexibility, adaptability in order to better react

function of network state in order to provide the best Quality of service possible. The network central

SDN controller is able to continuously modify the OpenFlow rules deployed in the switches in order to

maintain the QoS. But the first step in this process is to know with precision the state of the network.

That is for what the monitoring modules has been developed. Observe the network stats and in

particular its QoS parameters (bandwidth, latency, etc...), and trigger a reaction to maintain a certain

QoS. For that purpose, the monitoring module, provide an external API to register an alarm on a

specific QoS parameter (for example QoS) in order to be notified when the QoS is degraded.

Intra-datacenter networks are currently often overprovisioned, and so, more rarely subject to

congestion or degraded, even if this problem will surely occur when datacenter will become even more

complex that today. But for a federation, network QoS is a critical part for its success. Indeed, the

interconnections between XIFI nodes have a limited capacity, and it is very important to exploit them

finely. For the XIFI success, it is important that VM distributed across multiple XIFI nodes must be

transparent to the user, as its VMs were in the same datacenter. For that purpose, the weak link is the

interconnection between XIFI nodes, and the management of its link.

Fortunately, the GEANT network and its NREN network interlinking the XIFI nodes, provides some

features that allow to dynamically managing its interconnection like the Bandwidth and Demand

feature. Thanks to the BoD service, it is possible to modify in real time the QoS and in particular the

bandwidth of the inter-XIFI nodes connection. Combined with the flexibility, adaptability of

OpenFlow network, the BoD service, the monitoring module allow to build a federation of cloud like

the XIFI federation with network performance close to a unique (gigantesque) cloud.

Following the SDN principle, the monitoring module is instantiated in the SDN controller, i.e. in each

XIFI nodes. The XIFI SDN controller choice being Ryu, the implementation has been done as a tiers

application in this application. We will describe in the following section how the monitoring module is

architectured and implemented into Ryu.

B.4 User Stories Backlog

Id User Story Name Actors Description

1 Connect dispersed

infrastructure

Infrastructure

owners

The infrastructure owners provide

infrastructure (computing and

network) resources to the federation to

interconnect them

2 Connect VMs User The user creates a VM in one or more

XIFI nodes

3 Add new VMs to an existing

service

User The user deploys additional VMs in a

different XIFI node

4 Total service removal User The user removes all the deployed

VMs, and the connectivity

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 42 of 50

B.5 Architecture Design

The monitoring module is part of the RYU controller. The following figure tries to represent the main

component of the RYU SDN controller.

The central management of Ryu applications (in ryu/base subfolder):

 Load Ryu applications

 Provide contexts to Ryu applications

 Route messages among Ryu applications

B.5.1 The main component of OpenFlow controller (in ryu/controller subfolder):

 Handle connections from switches

 Generate and route events to appropriate entities like RYU applications

 Manage switches. (Planned to be replaced by a new module for switch and link discovery

from ryu/topology).

 OpenFlow event definitions.

 Basic OpenFlow handling including negotiation

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 43 of 50

 A. (in ryu/topology subfolder)

B.5.2 The Ryu libraries (in ryu/lib subfolder) provide:

 The Ryu packet library.

 Decoder/Encoder implementations of popular protocols like TCP/IP

 ovsdb interaction library.

 OF-Config implementation.

B.5.3 The Third party libraries (in ryu/contrib subfolder) are composed of:

 Open vSwitch python binding. Used by ryu.lib.ovs.

 Oslo configuration library. Used for ryu-manager’s command-line options and configuration

files

 Python library for NETCONF client. Used by ryu.lib.of_config.

The OpenFlow wire protocol encoder and decoder (in ryu/ofproto subfolder) are responsible of :

 OpenFlow definitions

 Decoder/Encoder implementations of OpenFlow.

The built-in applications (in ryu/app subfolder) include:

 Application for openflow switches management (ofctl)

 An OpenFlow L2 learning switch implementation (simple_switch)

 Application for Openstack integration. Listen OpenFlow port status change notifications from

switches. Consult ovsdb to retrieve the corresponding port uuid. Notify relevant parties,

including quantum (via Ryu plug-in) and Ryu applications. (via Ryu Events)

(quantum_adapter)

 A set of REST API used for Openstack integration like network registration and end-point

port management (rest); switch configuration (rest_conf_switch); for Interface registration and

maintaining interface association to a network (rest_quantum).

The monitoring module has been developed inside this in architecture, relying on the RYU tools and

libraries. The monitoring module is composed of two part represented on the following figure.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 44 of 50

On part is responsible of exposing the REST API to the outside and recording of deleting the alarms.

The alarms are stored in a unique database in order to be available for the second subcomponent that is

responsible of the monitoring. This component is an autonomous thread that periodically request

OpenFlow statistics to the switches functions of the alarms that are active at the moment.

If it detects that the real-time bandwidth is higher that the threshold of the alarm, it sends an HTTP

request to the REST API defined by the alarm.

The alarms that can be recorded with the monitoring modules are currently focused on the bandwidth

of one virtual port. Consequently an alarm is identified by the switch ID (datapath ID) and the port

number in this switch. To retrieve this information, the ofctl application and its REST API provided by

RYU are required. The other components present in the architecture are the module required to

Openstack and Neutron to create the internal network.

B.6 Basic actors

The basic actors are the IaaS, the OpenNaaS component, the ABNO controller, the Ryu SDN

controllers in each XIFI nodes and the OpenFlow switches.

In this overall mechanism OpenNaaS acts as orchestrator to request bandwidth between the different

XIFI nodes. Its action is mainly triggered by the IaaS. The ABNO controller is responsible of the

inter-XIFI node connectivity. The Ryu SDN Controller in collaboration with Openstack/neutron are

responsible of the intra-XIFI node communication.

B.7 Main interactions

The monitoring module is a feature added to the network central controller to monitor the traffic in

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 45 of 50

real time.

This function periodically send OpenFlow request to the network element in charge of carrying the

traffic. The goal of this function is to collect the traffic statistics and aggregate them to have the status

of the network bandwidth. The monitoring module is instantiated inside the RYU controller. It can

monitor the traffic of both the intra and inter XIFI node communication

Leveraging on this knowledge, the monitoring module provides an external REST API to other

components such as OpenNaaS in order to register bandwidth alarms. These bandwidth alarms are

raised if the traffic in more important that a specific threshold. Each alarm is specific to one port and

one OpenFlow switches. Once the alarm activated, the monitoring module will send an alarm

containing the affected tuple switch/interface to OpenNaaS, only if the traffic become higher that the

registered threshold.

Although this functionality can be exploited on any port of any switches, its main purpose is to

monitor the output link toward the other XIFI nodes, in order to trigger the action of increasing the

inter-XIFI node bandwidth.

Indeed, OpenNaaS can request and configure more bandwidth between the XIFI nodes if necessary.

But this operation must rely on the real time network usage, that only the monitoring module is aware.

The REST API, allow OpenNaaS to register an alarm that is send when the inter-XIFI nodes

communication are close to the maximum allocated bandwidth. With this alarm the OpenNaaS

component can request more bandwidth between the XIFI nodes in order to provide to the users the

bandwidth function of their needs. This feature is the trigger, of the action of adapting the bandwidth

to the users’ usage, without which it will be impossible to decide or not to request bandwidth to the

BoD service. The following figure represents the different actor and their interactions.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 46 of 50

B.8 Release Plan

The features have been partially implemented into the former XIFI SDN controller Floodlight, and

then have been reimplemented and completed into the final XIFI SDN controller: RYU.

Version ID Milestone

1.0 M12

2.0 M24

B.9 Installation Manual

B.9.1 Installation Requirements

Here is the software that have been tested and validated with the monitoring module.

 OS: Ubuntu 14.04 LTS with kernel 3.13.0-24-generic x86_64 into a vm executed in kvm

 Openstack: icehouse branch with Devstack icehouse branch (commit

1921be9226315b175ad135f07aeb0a715aaffb24)

 Neutron icehouse branch (commit 7f13cbca1c007623313025ecfeb8e7cae9e7e365)

 Ryu: 3.14 (commit 5aa14c61a1f31ca277cdc7e978cd45c7f4b9cbe4)

 Open vSwitch 2.0.2

 KVM: QEMU emulator version 2.0.0

B.9.2 Software Repository

Currently the software has been delivered via email. It is foreseen to push the software along with the

RYU software used in the XIFI project.

B.9.3 Setup Guidelines

The monitoring modules has been developed as a separate component, as a not intrusive manner.

It uses the internal Ryu API as well as the functionality bringed by the ofctl application. Moreover, the

alarm registration is identified by the datapath ID and the Port number. These ID can be retrieved

through the ofctl rest API application of RYU. We recommend running the ofct_rest application in

conjunction with our monitoring module.

The monitoring module is implemented in a single python file call XIFI.py. This file must be placed in

the Ryu folder into the application folder. In general, this folder is in /opt/ryu/ryu/app/

The monitoring module, must be started with RYU, either by adding the XIFI.py file in the command

line or adding the ryu.app.XIFI application into the configuration file.

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 47 of 50

Using the command line, if you use mininet with only the ofctl application and without your

monitoring module, we used to start Ryu with the following command line:

Cd /opt/ryu && bin/ryu-manager --verbose --observe-links ryu/app/ofctl_rest.py ryu/app/simple_switch.py

To start RYU with the monitoring module, just add the XIFI.py as an additional file to start:

Cd /opt/ryu && bin/ryu-manager --verbose --observe-links ryu/app/ofctl_rest.py ryu/app/XIFI.py

ryu/app/simple_switch.py

If you prefer to use a configuration file (/etc/ryu.conf), you have to add the application in the list of

application to start. If we take the example of the configuration file used to work in an

openstack/neutron use case. Without the monitoring module, the configuration file should look like

this:

cat /etc/ryu/ryu.conf

[DEFAULT]

app_lists=ryu.app.gre_tunnel,ryu.app.quantum_adapter,ryu.app.rest,ryu.app.rest_conf_switch,ryu.app.rest_tunne

l,ryu.app.tunnel_port_updater,ryu.app.rest_quantum

wsapi_host=192.168.122.201

wsapi_port=8080

ofp_listen_host=192.168.122.201

ofp_tcp_listen_port=6633

neutron_url=http://192.168.122.201:9696

neutron_admin_username=neutron

neutron_admin_password=password

neutron_admin_tenant_name=service

neutron_admin_auth_url=http://192.168.122.201:35357/v2.0

neutron_auth_strategy=keystone

neutron_controller_addr=tcp:192.168.122.201:6633

To use the monitoring module, you must add the XIFI application and we also recommend to add the

ofctl_rest api in order to easily retrieve the datapath ID required by the alarm registration. In

consequence, the new ryu.conf file sould look like this:

cat /etc/ryu/ryu.conf

[DEFAULT]

app_lists=ryu.app.gre_tunnel,ryu.app.quantum_adapter,ryu.app.rest,ryu.app.rest_conf_switch,ryu.app.rest_tunne

l,ryu.app.tunnel_port_updater,ryu.app.rest_quantum,ryu.app.ofctl_rest,ryu.app.XIFI

wsapi_host=192.168.122.201

wsapi_port=8080

ofp_listen_host=192.168.122.201

ofp_tcp_listen_port=6633

neutron_url=http://192.168.122.201:9696

neutron_admin_username=neutron

neutron_admin_password=password

neutron_admin_tenant_name=service

neutron_admin_auth_url=http://192.168.122.201:35357/v2.0

http://192.168.122.201:9696/
http://192.168.122.201:35357/v2.0
http://192.168.122.201:6633/
http://192.168.122.201:9696/
http://192.168.122.201:35357/v2.0

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 48 of 50

neutron_auth_strategy=keystone

neutron_controller_addr=tcp:192.168.122.201:6633

B.10 User Manual

The monitoring module must be loaded with RYU. To start it, add the monitoring module (XIFI.py

file) with ryu. Here is an example where the monitoring module is run along the simple L2 application

built-in RYU.

i2cat:(master)~/tid/ryu$ bin/ryu-manager --verbose --observe-links ryu/app/ofctl_rest.py ryu/app/XIFI.py

ryu/app/simple_switch.py

loading app ryu/app/ofctl_rest.py

loading app ryu/app/XIFI.py

loading app ryu/app/simple_switch.py

loading app ryu.controller.ofp_handler

instantiating app None of DPSet

creating context dpset

creating context wsgi

instantiating app ryu/app/XIFI.py of RestXIFIAPI

instantiating app ryu.controller.ofp_handler of OFPHandler

instantiating app ryu/app/ofctl_rest.py of RestStatsApi

instantiating app ryu/app/simple_switch.py of SimpleSwitch

 (19581) wsgi starting up on http://0.0.0.0:8080/

To test the monitoring module, the easiest way is to create a virtual network using mininet. Here is an

example to build an simple OpenFlow network with three switches in line and attach them to RYU.

i2cat:~$ sudo mn --topo linear,3 --mac --controller=remote,ip=127.0.0.1 --switch ovsk

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2 h3

*** Adding switches:

s1 s2 s3

*** Adding links:

(h1, s1) (h2, s2) (h3, s3) (s1, s2) (s2, s3)

*** Configuring hosts

h1 h2 h3

*** Starting controller

*** Starting 3 switches

s1 s2 s3

*** Starting CLI:

To monitor an interface you need to know the datapath ID of the OVS instance concerned by the

http://192.168.122.201:6633/

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 49 of 50

monitoring and its port number. For that, you can rely on the REST API provided by the ofctl built-in

application of RYU.

If we want send traffic from h1 to h2 and monitor the output traffic of the first switch, here is an

example to retrieve this information using the RYU REST API:

 i2cat:(master)~/tid/ryu/ryu/app$ curl -X GET 127.0.0.1:8080/stats/switches

[1, 2, 3]11:42:24

i2cat:(master)~/tid/ryu/ryu/app$ curl -X GET 127.0.0.1:8080/stats/port/1

{"1": [{"tx_dropped": 0, "rx_packets": 7, "rx_crc_err": 0, "tx_bytes": 3906, "rx_dropped": 0, "port_no": 1,

"rx_over_err": 0, "rx_frame_err": 0, "rx_bytes": 558, "tx_errors": 0, "collisions": 0, "rx_errors": 0, "tx_packets":

49}, {"tx_dropped": 0, "rx_packets": 42, "rx_crc_err": 0, "tx_bytes": 1116, "rx_dropped": 0, "port_no": 2,

"rx_over_err": 0, "rx_frame_err": 0, "rx_bytes": 3348, "tx_errors": 0, "collisions": 0, "rx_errors": 0,

"tx_packets": 14}, {"tx_dropped": 0, "rx_packets": 8, "rx_crc_err": 0, "tx_bytes": 3906, "rx_dropped": 0,

"port_no": 65534, "rx_over_err": 0, "rx_frame_err": 0, "rx_bytes": 648, "tx_errors": 0, "collisions": 0,

"rx_errors": 0, "tx_packets": 49}]}

Knowing the dapapath ID is 1 and the port number 2, we can register the alarm in the monitoring

modules. Please refer to the API section for more information.

If we want to define a threshold of 200000 bytes/s, (i.e. between 1Mbites/s and 2Mbites/s) and

assume that opennaas is running on the same computer (127.0.0.1 on port 8080), Here is the command

line to register an alarm:

curl -X POST -d '{ "threshold":"200000", "host":"127.0.0.1", "port":"8080", "url_prefix":"/opennaas/test_alarm"

}' http://127.0.0.1:8080/XIFI/register_alarm/1/2

If the RYU log is activated, you must see the following output:

127.0.0.1 - - [29/Jan/2015 11:46:02] "POST /XIFI/register_alarm/1/2 HTTP/1.1" 200 115 0.001919

To test the module, use iperf to generate traffic with mininet. If we generate only 1Mbits/ of traffic

from H1 to H2, there is no alarm:

mininet> h1 iperf -c 10.0.0.2 -u -b 1M -t 10

But if we generate 2Mbits/s of traffic from H1 to H2, an alarm is sent by the monitoring module:

mininet> h1 iperf -c 10.0.0.2 -u -b 2M -t 10

If the logs are activated, a message displaying the alarm is present:

127.0.0.1 - - [29/Jan/2015 11:48:55] "POST /opennaas/test_alarm/1/2 HTTP/1.1" 200 115 0.000531

alarm sent for port 2 on datapath ID 1 with current bandwidth at 257457.494282

The alarm will be periodically sent until the traffic become lower than the defined threshold or the

alarm deleted with the following command:

i2cat:(master)~/tid/ryu/ryu/app$ curl -X DELETE http://127.0.0.1:8080/XIFI/delete_alarm/1/2

B.10.1 API Specification

Request to create an alarm:

 Threshold is the threshold of the alarm in bytes/seconds

 Host is the host to send the alarm, so, in our case the, OpenNaaS location

http://127.0.0.1:8080/xifi/delete_alarm/1/2

 D3.7: XIFI Infrastructure Network Adaptation Mechanisms API v2

© 2013 - 2015 XIFI Consortium Parties Page 50 of 50

 Port is the tcp port where the OpenNaaS Rest API is located

 Url_prefix is the url where OpenNaaS Rest API is located

 Dpid is the datapath ID of the OVS instance where the virtual port will be monitored (this ID

is easily available with the openflow REST API provided by Ryu)

 Port_no is the port number in the ovs instance (in our case br-int) of the virtual port you want

to monitor (also available with the ofctl rest api of Ryu)

 All field are mandatory and of string type

Example:

curl -X POST -d '{

"threshold":"10",

"host":"192.168.122.201",

"port":"8080",

"url_prefix":"/XIFI/raise_alarm/"

}‘ http://RyuIP:8080/XIFI/register_alarm/{dpid}/{port_no}

The alarm will be well registered if the return HTTP value is 200.

To update an alarm, you have to do exactly like creating an alarm register an alarm. If an alarm

already exists, it will be updated with the new value.

When an alarm is raise a POST message is send to the url:

http://host:port/XIFI/url_prefix/{dpid}/{port_no}.

This request will be done with the same period that the monitoring module use to poll the statistics

until the bandwidth will become lower than the threshold of the alarm, or until the alarm is deleted, or

updated with a different threshold value.

Request to delete an alarm:

curl -X DELETE http://192.168.122.201:8080/XIFI/delete_alarm/{dpid}/{port_no}

To delete an alarm, you need to identify it with the tuple dpid and port_no:

 Dpid is the datapath ID of the OVS instance concerned by you alarm

 Port_no is the port number in this OVS instance where you want to remove the alarm.

http://ryuip:8080/xifi/register_alarm/%7bdpid%7d/%7bport_no%7d
http://host:port/xifi/url_prefix/%7bdpid%7d/%7bport_no%7d
http://192.168.122.201:8080/xifi/delete_alarm/%7bdpid%7d/%7bport_no%7d

