Media in Context

Deliverable D6.2.2: Platform: Refined Version - November 2015

Platform
Refined Version

Deliverable Nr
Title:

Deliverable D6.2.2
Platform: Refined Version

Delivery Date:

November 2015

Author(s):

Horst Stadler (Salzburg Research)
Patrick Aichroth (Fraunhofer IDMT)

Publication Level:

Public

Copyright MICO Consortium 1/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Table of Contents

Table of Contents
Documentation Information
Executive Summary
Introduction
System Architecture
Components
Service Orchestration
Extractors
Messaging
Persistence API
Linked Data Platform

File Storage
Recommendation

Endpoints
Implementation and Integration
Endpoints for data ingestion and result retrieval
Animal detection endpoint
Text analysis endpoint

Storage layer

Requirements
Comparison of available remote storage systems

Execution plan configuration
Development Infrastructure
Distribution
Debian package repository
Maven repository
Virtual Machine
Docker
Demo servers for use-case partners
Source code
Continuous Integration
Loggin
Content provenance and Trust

Copyright MICO Consortium 2/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Documentation Information

Item Value
Identifier D6.2.2
Author(s) Horst Stadler (Salzburg Research)

Patrick Aichroth (Fraunhofer IDMT)

Document Title

Platform: Refined Version

Actual Distribution
Level

Public

Document Context Information

Project (Title/Number)

MICO - “Media in Context” (610480)

Work Package / Task

Work Package 6: Framework Implementation and Integration

Responsible person
and project partner

Horst Stadler (Salzburg Research)

Quality Assurance / Review

Name / Partner / QA
Control /

Thomas Kollmer (Fraunhofer IDMT)
Thomas Kurz (Salzburg Research)

Copyright MICO Consortium 3/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Copyright

This document contains material, which is the copyright of certain MICO consortium parties, and
may not be reproduced or copied without permission. The commercial use of any information
contained in this document may require a license from the proprietor of that information. Neither
the MICO consortium as a whole, nor a certain party of the MICO consortium warrant that the
information contained in this document is capable of use, nor that use of the information is free
from risk, and accepts no liability for loss or damage suffered by any person using this
information.

Neither the European Commission, nor any person acting on behalf of the Commission, is
responsible for any use which might be made of the information in this document.

The views expressed in this document are those of the authors and do not necessarily reflect
the policies of the European Commission.

Copyright MICO Consortium 4/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Executive Summary

This deliverable contains the refined version of the MICO platform and integration of the current
enabling technology components from work packages 2-5. It provides an implementation of the
initial architecture proposed in D6.1.1", as well as the early evolution of some aspects within the
project.

Introduction

This deliverable contains an overview of the current MICO platform architecture and outlines the
major extensions and adaptations that are planned in the final year of the project regarding work
package 6.

A lot of the implementation documentation is available online to make access easier for
developers:

e C++/JAVA AP| documentation:http://mico-project.bitbucket.org/api/1.2/

e Source code: https://bitbucket.org/mico-project/platform

The target audience of this document are mainly technical people interested in working with the
MICO platform. At this stage of the project developers in the consortium. The foundations of
many aspects are omitted to make this concise and useful document for that target group.

' MICO project deliverable D6.1.1 System Architecture and Development Guidelines, Sebastian Schaffert
and Sergio Fernandez, 2014

Copyright MICO Consortium 5/29

http://mico-project.bitbucket.org/api/1.2/
https://bitbucket.org/mico-project/platform

Deliverable D6.2.2: Platform: Refined Version - November 2015

System Architecture

The initial approach of the MICO system architecture was defined in D6.1.1. The first
adaptations to this approach are specified in D6.2.12 and an overview is given in the Linked
Media workshop paper®. This section will provide a summary of the system architecture that will
be the basis for the final evaluation. It is based on the initial architecture and addresses
shortcomings that showed up in the first evaluation phase and will be addressed in the
upcoming platform version 2.0. The adoptions and new requirements are mainly caused by the
extended broker design and are specified in the combined deliverable D2.2.2*.

Components

Figure 1:MICO architecture

2 MICO project deliverable D6.2.1 Platform: Initial Version, Sebastian Schaffert and Sergio Fernandez, 2014
3 3 International Workshop for Linked Media LIME, MICO - Towards Contextual Media Analysis, Sebastian
Schaffert, Sergio Fernandez and Thomas Kurz, 2015
(http://www.www2015.it/documents/proceedings/companion/p735.pdf)

4 MICO project combined deliverable D2.2.2/D3.2.2/D4.2.2/D5.2.2 Specifications and Models for
Cross-Media Extraction, Metadata Publishing, Querying and Recommendations: Final Version, Patrick
Aichroth, Johanna Bjérklund, Kai Schlegel, Thomas Kurz and Thomas Kélimer, 2015

Copyright MICO Consortium 6/29

http://www.www2015.it/documents/proceedings/companion/p735.pdf

Deliverable D6.2.2: Platform: Refined Version - November 2015

Service Orchestration

One of the main components of the MICO platform is the service orchestration. It provides a
range of functions:

Data ingestion: The starting point to trigger an analysis is to ingest the content that gets
analyzed and to inform the broker, which is the name of the module that handles the
service orchestration, that new content is available and needs to be processed. An user
has several several ways to ingest content and trigger processing:

o The broker provides an REST API to upload new content.

o Custom endpoints provide a use case specific way to deal with it.

o Using the command line tool mico-inject. This is mainly used for development.

Triggering extractors: The orchestration service is responsible to distribute the
processing tasks to the specific extractors in the correct order. The order is specified by
an execution plan, which depends on the given input and requested output. To achieve
this, the broker has to manage the execution plans as well as the running extractors. The
intermediate and final results are stored on the linked data platform and file storage.

The first version of the broker had several limitations specifying execution plans, as each
extractor was only able to consume one type of input (defined as MIME type) and
produce one output type. The extractors were chained together if an output type
matches the input type of another extractor. This is quite inflexible if an extractor outputs
different results or multiple inputs are required. The approach for the extended version of
the broker to overcome this and other drawbacks are specified in the combined
deliverable D2.2.2. This will also lead to some minor adaptations of the platform
architecture.

Registration of extractors: As the platform is designed as a distributed system, the broker
provides a mechanism where extractors can register and unregister, so the broker can
trigger their execution with the specific input and is able to take care of the next step
according to the execution plan, regardless where the extractors run.

For the next iteration, multiple instances of the same extractor can be run, to support
load distribution.

Central configuration: All components that need to fetch input or store output can do this
using the persistence API or can access the linked data platform and file storage directly
(e.g. extractors, clients like custom endpoints). Therefore they need to know how to
connect to the linked data service and storage service. As we have a distributed
architecture, it is not a good idea to have a central point as intermediate station. Each
client needs to directly access the relevant service. Configuring each client (extractor,
custom endpoint, ...) separately is very expensive and error prone. Therefore the broker
as a central component also distributes the needed configuration to the components

Copyright MICO Consortium 7/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

during registration.
For now the configuration parameters include:

o Storage base URI

o Marmotta base URI
The only information a component needs to access the platform is the name (and port, if
it differs from the default) of the RabbitMQ server. This allows to send configuration
messages and receive configuration replies.

e Status and debugging interface: For debugging purposes the broker provides a simple
user interface giving some information about the current configuration, status of the
broker and requests. It also allows to inject new content and inspect existing content.
One of the shortcomings that came up during the evaluation phase is, that the provided
capabilities enabled by the registered extractors and configured execution plans can not
be easily found out by feeder systems.

vcoh

Service Registry

[Language feracs il e Frosddes eghiranien Sae
TR AT e T e T T (=2 TN A T TR TR A Y R IT - R T YT RE T W T R T Hohy o ITERE RN SN 1T SRR
 imsareasr-aaiad e ST Cis AT TP SR T KN K- Te - 52 BT et seaimpd mediciaa BN DT] SR ATED

o e R [T LR BLEAARS IR LT DA e

Service Dependency Graph

==
e aaare g e B g P
1
]
b ol e BB il
Content Items
um . Peghiraian e
L R T ErrTE
T . e S i
r = ot = D01 G AT | Saidec |
: = i ~ e =TT
LT [e]
a e EETTE
- TS [i |
T EFrr I L T T2 EETTTE
ST MM | ke |

Figura 2: MICO broker user interface

Copyright MICO Consortium 8/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Extractors

The extractors are the components that do the actual data processing. Each extractor needs a
defined set of input data and outputs a defined set of intermediate and final results. To enable
the use case partners to configure the required execution plan, we set up a simple user
interface to start the required execution plans:

Mico Platform Configurations

Stams

cnfiguration currently actiwve

Available Configurations

animal-detection(image-blanks) | i start selected configuration |
anirnal-detection{image blanks

sarengeti-nentext)

temporahidecsagmentation]videac)

kaldi-speech-to-text(video, NER)

face-detection{image)

face-detection{video-keyframes)

face-detection|video-steps)

in-tlemo-showcase-all{vidan)

animal-detaction(i i

Figure 3: Execution plan configuration

The evaluation phase brought up some limitations that will be addressed in the upcoming
platform:

e Especially for analyses it is necessary to get feedback about the progress and current
state.

e At the moment there are no mechanisms to report problems or errors to feeder systems
or the user.

e For feeder systems, like custom endpoints, it is not easy to find out which extractors and
execution plans are available and if a requested output can be provided. Moreover the
updated platform should set up required extractors just by defining the input type(s) and
requested output type(s).

Copyright MICO Consortium 9/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Messaging

The messaging follows an event based approach. Therefore the Advanced Message Queuing
Protocol (AMQP) is used. As a platform and language independent middleware that
implements AMQP, we rely on RabbitMQ°® as message and event exchanges. In the MICO
platform we use one-to-one messaging, where a publisher writes messages into a queue that is
red by a consumer, as well as one-to-many messaging, where a single or a set of consumers
can register to a queue for specific messages, and producers send the message to these
consumers.

The entire message routing is done with RabbitMQ. As AMQP does not define a message
interchange format we use Protocol Buffers’ for that. It allows a language independent format
definition of messages that gets compiled into a highly efficient binary representation.

The following message types are currently used:

e Registration event: Allows an extractor to register or unregister by providing its service
identifier and input queue name.

e Analysis event: The broker sends this type of message to an extractor to trigger
processing of a content item. The extractor replies using this message to inform the
broker about new (intermediate) results.

e Content event: Informs the broker about a new content item, so it gets registered and
prepared for the upcoming analysis.

Discovery event: Allows a broker to request a registration of available extractors.
Configuration discover event: Used by extractors to get the configuration for the linked
data storage and binary storage. This is also used by brokers to check if there is another
broker available and adopt its configuration values.

e Configuration event: Reply to the configuration discover event, sent by the broker.

This set of messages will be extended to enable extractors progress information, error reporting,
etc.

Persistence API

The persistence API provides feasible access to content parts, content items and metadata.
Content Items are a collection of media resources together with their context in the MICO
platform. A context covers all other resources that are directly related to the main object. For
example, an HTML document might contain images and videos — the content item would in this
case be the HTML document itself, as well as all images and videos it contains. Each resource
within a content item is called Content Part. Both types also may have additional metadata like

5 http://www.amgp.org
6 https://www.rabbitmg.com
7 https://developers.google.com/protocol-buffers/

Copyright MICO Consortium 10/29

http://www.amqp.org/
https://www.rabbitmq.com/
https://developers.google.com/protocol-buffers/

Deliverable D6.2.2: Platform: Refined Version - November 2015

provenance, creation, format, etc. Intermediate or final results of the analysis process are stored
as content items and content parts, too.

The API handles all the communication with the broker via the message bus, saves and loads
files from the file storage and stores and retrieves linked media data. It is available for for JAVA
and C++.

Linked Data Platform

Apache Marmotta® is used as metadata storage. It allows to access to the metadata using
LDPath® web service or SPARQL . Moreover the SPARQL implementation is extended by
SPARQL-MM™" to enable multimedia querying functions by introducing spatio-temporal filter and
aggregation functions to handle media resources and fragments that follow the W3C standard
for Media Fragment URIs'. Marmotta also supports access (with some restrictions') to store
and fetch RDF data according the Linked Data Platform specification™.

As backend for Apache Marmotta the KiWi Triplestore’ is used, that in turn utilizes
PostrgreSQL" as its relational database storage.

File Storage

Depending on the respective application purpose, different types of file storage systems are
suitable. One of main objectives of the MICO platform is to provide a distributed system. It is
quite evident that the file storage has to fit to the needs of a distributed system too. So we
decided to use the Hadoop File System'” (HDFS) as our distributed storage (see section
Storage layer to have a more detailed overview of requirements and available solutions).
Nevertheless powerful systems, like HDFS, are very complex and the a proper setup can be
very time-consuming, especially in environments where the user won’t benefit from the
additional functions. Therefore we also support storage systems that are simpler to set up, like
the

File Transfer Protocol'® (FTP), as it was chosen as the first storage type to go with. Additionally
we will support simple local filesystems for development purposes.

8 http://marmotta.apache.org

% https://marmotta.apache.org/ldpath/language.html

10 http://www.w3.org/TR/spargl11-overview/

" https://github.com/tkurz/spargl-mm

12 http://www.w3.org/TR/media-frags/

13 https://marmotta.apache.org/platform/Idp-module.html
4 http://www.w3.org/TR/Idp/

15 https://marmotta.apache.org/kiwi/triplestore.html

16 http://www.postgresql.org/

7 https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html#Overview
'8 https://tools.ietf.org/html/rfc959

Copyright MICO Consortium 11/29

http://marmotta.apache.org/
https://marmotta.apache.org/ldpath/language.html
http://www.w3.org/TR/sparql11-overview/
https://github.com/tkurz/sparql-mm
http://www.w3.org/TR/media-frags/
https://marmotta.apache.org/platform/ldp-module.html
http://www.w3.org/TR/ldp/
https://marmotta.apache.org/kiwi/triplestore.html
http://www.postgresql.org/
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html#Overview
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html#Overview
https://tools.ietf.org/html/rfc959

Deliverable D6.2.2: Platform: Refined Version - November 2015

Recommendation

The recommendation functionalities will be driven by an engine providing basic functionalities
and custom recommendation modules addressing user story specific modules. For collaborative
filtering tasks following a machine-learning approach, Prediction.IO™ will be used. Data storage
and querying will be provided by the file storage layer and the linked data layer.

Endpoints

To provide additional benefit for a typical platform user, it is important to have easy-to-use
interfaces, so a user does not need to worry about the details or internals of the MICO platform
or one of its components (like extractors). From a user perspective a valuable interface has to
provide the following functions:

e Content ingestion: The content that has to be analyzed needs to be provided to the
platform. This might also be just a location (e.g. an URI) where the content lives, so the
endpoint can fetch it for analysis. To reference the content the caller might get its
platform specific IDs.

e (Auto-)Configuration of extractors: To perform the analysis the proper extractors have to
be in place. So it has to be ensured that the request can be processed.

e Start analysis: In most cases the processing should start as soon the content is
provided. Anyway there might be situations where this event has to be triggered
explicitly. The client in turn needs to get notified, if the processing finishes or is
interested in progress updates. This can be achieved by registering callbacks. Otherwise
a regular polling for results is necessary.

e Providing results: One of the main reasons to have a custom endpoint is to provide the
requested analysis results, without any intermediate or unneeded results, in a proper
data format.

These functions may be combined in a single request or split up among multiple request,
depending on the needs.

As an endpoint needs to be customizable to fit on the needs of a specific user story, we will
provide a template for developing endpoints, that is capable of the major basic functionalities
without extra effort, but can easily be extended to fit custom needs.This is important especially
regarding the format of the results and the data format an endpoint provides.

We plan to go with the Apache Maven Archtypes? plugin, which is a project templating toolkit,
for the JAVA part. For extractors written in C++ we have a template and a howto that will be
extended and get released to the public as soon this is mature.

'8 https://prediction.io
20 hitps://maven.apache.org/quides/introduction/introduction-to-archetypes.html

Copyright MICO Consortium 12/29

https://prediction.io/
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Deliverable D6.2.2: Platform: Refined Version - November 2015

As first exemplary custom endpoints a web service for the text analysis and animal (blank)
detection got implemented. The interface is described in section Endpoints for data ingestion
and result retrieval. These will be used as a foundation to develop the templates.

Implementation and Integration

This section contains details of selected implementation tasks.

Endpoints for data ingestion and result retrieval

The platform itself provides all the necessary interfaces to ingest content, start the processing
and fetch results.

For example the broker provides an REST API to upload new content and trigger its analysis:

First step:
Action: Create a new content item
Path: /broker/inject/create

Request method: | POST

Responses 200 application/json

{

A\Y

}

uri”: URI of the created content item as String

500 Error
Second step:
Action: Upload new content part
Path: /broker/inject/add

Request method: | POST

Parameters: ci URI of content item

type MIME type of the content type

name Name of the content type

Copyright MICO Consortium 13/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Payload: Data to store as the content part
Responses 200 application/json
{
“uri”: URI of the created content item as String
}
500 Error
Third step:
Action: Trigger the analysis process
Path: /broker/inject/submit
Request method: | POST
Parameters: ci URI of content item
Responses 200 OK
500 Error

The results can be queried by using the SPARQL-MM service or, depending on the extractors
used, fetch the (intermediate) results from the file storage.

As described in section Endpoints, there are several reasons for the need of a custom endpoint.
We implemented the following two for the evaluation phase.

Animal detection endpoint

The analysis of a new JPEG image can be started by:

Action:

Analyze JPEG image by providing the image

Path:

/broker/zooniverse/animaldetection

Request method:

POST

Payload:

The image to analyze.

Responses

200 application/json

Copyright MICO Consortium 14/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

{
“id”: ID of the created content part as String
“status”: “submitted”

}

500 Error

or providing the URL

of an image:

Action: Analyze JPEG image by providing the URL of the image
Path: /broker/inject/add

Request method: | PUT

Parameters: url HTTP URL to fetch the image from

Responses 200 application/json

{
“id”: ID of the created content part as String
“status”: “submitted”

}

500 Error

The result can be fetched by:

Action:

Fetch result of the animal detection

Path:

/broker/zooniverse/animaldetection/<content part ID>

Request method:

GET

Responses

200 application/json

{
“status”: “inProgress” or “finished”
“processingBegin”: Start of processing as DateTime

The following fields are only available if status is finished:
“processingEnd” : End of processing as DateTime
“objectsFound”: Total number of identified animals as
Integer
“objects”: [Array of identified animals.
{
“algorithmVersion” : Algorithm identifier as String
“confidence” : Identification confidence level as Float

Copyright MICO Consortium 15/29

Deliverable D6.2.2: Platform: Refined Version -

Integer
Integer
Integer
Integer

brow]
}

November 2015

“animal”: Name of the species as String
“x” : x axis of rectangle marking the animal in pixels as

“y” :y axis of rectangle marking the animal in pixels as
“w” :width of rectangle marking the animal in pixels as

“h” : height of rectangle marking the animal in pixels as

404 A content part with the given ID could not be found.

500 Error

Example of an animal detection result:

i

"status": "finished",

"orocessingBegin®™: "2015-11-03T11:359:372",

"objectsFound™: 20,

"objecta": [
™y 190,
"algorithmVersicn": "0l-vsBlank-ROG-CLASS™,
"oconfidence": "3.261539336065674",
"h": 270,
Ty 0,
wan. 487,
"animal": "wildebeest"

by

{
w87,
"algorithmVersicon™: "0Ol-vsBlank-HOG-CLASS™,
"oconfidence": "2.1107393463653564",
"h": 124,
ar IEI “'. 3':"
e —4G,
"animal": "wildebeest"

by

ls

"processingEnd": "2015=11=03T10:39:402™

!

Copyright MICO Consortium

16/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Text analysis endpoint

The Serengeti comments analysis services can is triggered by

Action: Analyze comment

Path: /broker/zooniverse/textanalysis

Request method: | POST

Payload: application/json
{
“comment”: The comment to analyze as String.
}

Responses 200 application/json

{
“id”: ID of the created content item as String
“status”: “submitted”

}

503 Service is unavailable. This indicates, that the required extractors

are not available.

500 Error

The result can be fetched with

Action:

Fetch result of the comment analysis

Path:

/broker/zooniverse/textanalysis/<content item ID>

Request method:

GET

Responses

200 application/json

{
“id”: Contentitem ID as String
“status”: “inProgress” or “finished”

The following fields are only available if status is finished:

“sentiment”: The sentiment value as Float
“topics”: [Array of identified topics
{

Copyright MICO Consortium 17/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

“label”: Topic label as String

String
browo]

“entities”: [Array of identified entities
{

“label” :Entity label as String

String
brow]
}

“confidence” : Identification confidence level as Float
“uri”: Link to DBPedia knowledge base about topic as

“uri” :Link to DBPedia knowledge base about entity as

404 A content part with the given ID could not be found.

500 Error

Example of a text analysis result:

i

Mid™: "2B0197d7-4a27-43c2-8e84-T73567T79T71e2T",
"status": "finished"”,

"gentiment™:

"topics": |

0.31810995529111=22,

["labal": "Sport", "confidence"™: 0.358322492E379059,

"uri*: "http://dbpedia.crg/resource/Sport” 1},

["label™: "Environment", "confidence™: 0.248B0B32433700562,
"uri*: "http://dbpedia.crg/resource/Environment™ 1},

["label"™: "Beligion", "confidence": 0.35286931828250885,
"uri*: "http://dbpedia.org/resource/Religion™ }

"entities

[

{ "labhel": "running",
"uri": "http:/S/dbpedia.ocrgfresource/Running” 1},
{ "lahel™: "lionz=",
"uri": "http://dbpedia.orgfresource/Lion™ 1},
["label™: "Sarangeti",
"uri*: "http://dbpedia.ocrgfresource/Serengeti®” 1},
{ "label™: "love",
"uri": "http://dbpedia.ocrg/resource/Romance {lovel™ },
{ "label™: "lions", "uri":

"http://www.mico-project.eu/ns/cv/serengetidlion” |},
{ "label™: "through",

ura

"http://dbpedia.erg/resource/Ford (cressing)™ |

Copyright MICO Consortium 18/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

Storage layer

In the first version of the MICO platform we decided to use the FTP as content storage protocol.
In order to benefit from the advantages of the distributed approach, the platform has to support

a distributed storage system as well. Therefore we defined requirements that are relevant in the
context of the MICO platform and compared available distributed storage systems with respect

to these requirements.

Requirements

R- Data Data is not required to be moved to a Medium
Distribution central storage (geographic distribution of
the storage servers)

FR-3 Pseudo-Streami Skipping data fragments or retrieval of Medium
ng specific fragments.

e FR-6 Native transport = Protect data transferred over the network. Medium

Rtequireme encryption Related for both FR-4 and FR-5.
nts
FR-7 Data integrity Check the integrity of information to Low /
detect data corruption. Medium
FR-8 Replication Protect from component failure and Low

minimize latency.

NFR-1 Maturity The system should be mature and High
preferably easy to install.
NFR-2 License An open license for the allows to provide High
easy to set up platform installation
packages.
Non-Functi
S NFR-3 Supported Availability and portability across different High
nts platforms software (and hardware) platforms.
NFR-6 Scalability Easy way to adapt to the needs of the High

resources currently required.

NFR-7 Access API Simple integration into the platform: The High
data storage system should fit into the

Copyright MICO Consortium 19/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

- API and existing parts of platform.

Another aspect that might require future work in commercial applications, especially in
commercial scenarios, is access control for storage: In some application scenarios, it will be
necessary to limit access to content provided, e.g. based on certain roles and groups. This
requires provenance tracking, as described above, and two more additions to the system:
Storage of respective limitation in the model, and enforcement of access control constraints
especially in the storage domain. While the former is relatively easy to add to the existing MICO
model, and will be provided in year 3 in an interaction between T6.4 and work package 3, the
latter requires support of access control within storage itself, which is more effort. As HDFS
provides support for POSIX conform Access Control Lists, a respective storage layer could be
included in the future.

Comparison of available remote storage systems

Based on the requirements we had a look at available remote storage systems and did an
evaluation of them regarding the prioritized requirements. Based on these results we have
chosen to use HDFS as storage system, while still being able to switch to FTP, if necessary.

BeeG | Ceph CRAT Eucaly | Gluste | HDFS | Mogile GI‘IdF Swift RlakC Xtree
FS ptus rFS FS mFS
- no* partly partly partly yes
- yes no yes yes yes yes yes yes yes yes
- yes no yes no yes no yes yes yes yes
- no yes yes no yes no yes no yes yes

2 The enterprise version of RiakCS can be used as a back-end, allowing multi-datacenter replication. See
RiakCS for restrictions.

22 GlusterFS supports striping and replication. It also provides a geo-replication feature, to mirror data across
geographically distributed clusters. Therefore, this is useful in case of disaster recovery but not for
distribution.

Z only for replicas

24 It does not have an ability to run its database or trackers in multiple locations.

% MongoDB allows replica sets to be deployed in multiple data centers. Clients can be statically configured
to read data from a specific replica. Write access is possible only on the primary instance.

% Only the commercial extension Riak Enterprise offers a geographical distribution of data. However, this
feature does not support access of the closest data.

Copyright MICO Consortium 20/29

FR-7

FR-8

NFR-1

NFR-2

NFR-3

NFR-6

NFR-7

no

yes

yes

propri
etary
(free
of
charge
),
Client:
GPL

RHEL/
Fedor
av
SLES/
Open
Suse,
Debia
n/Ubu
ntu

yes

POSIX

Deliverable D6.2.2: Platform: Refined Version - November 2015

partly
27

yes

yes

LGPL
2.1

RHEL/
Fedor
a/Cent
oS,
Debia
n/Ubu
ntu

yes

librado
s (C,
C++,
Pytho
n,
Ruby),
S3,
Swift,
FUSE

no

yes

yes

Apach
e
Licens
e20

Java

yes

JAVA,
Pytho
n,
Ruby,
PHP,
Scala,
node.j
S,
Erlang

’
mono/.

NET,
Go

no

no

yes

GPL
v3

RHEL/
CentO

U’bunt

yes

HTTP

no

yes

yes

GPL
v3

RHEL/
Fedor
a/Cent
OS/Pi
dora,
SLES/
Open
Suse,
Debia
n/Ubu
ntu

yes

libglus
terfs,
FUSE,
NFS,
SMB,
Swift,
libgfap
i

yes

yes

yes

Apach
e
Licens
e20

Java
(Linux,
Windo
ws)

yes

Java

and C
client,
HTTP

no

yes

n 028

GPL/
Artistic
Licens
e

Perl,

Java,
Ruby,
PHP,
Pytho

yes

Perl,
HTTP

no

yes

yes

AGPL
v3.0%®

Fedor
a/Cent
0OS,
Debia
n/Ubu
ntu,
FreeB
SD,
OS X,
Solaris

Windo
ws,

yes

C++,
CH#,
Java,
Node.j

Perl,
PHP,
Pytho
n,
Ruby,
Scala

yes

yes

yes

Apach
e
Licens
e20

Pytho
n
(Ubunt
u,
Fedor
a/Cent
(OR))

yes

python
-swiftcl
ient

27 see: http://lists.ceph.com/pipermail/ceph-users-ceph.com/2014-January/007540.html

yes

yes

yes

Apach
e
Licens
e20

Debia
n/Ubu
ntu,
RHEL/
Fedor

FreeB
SD,
0OS X,
Solaris

émart
(O

yes

HTTP

yes

yes

yes

New
BSD

RHEL/
Fedor
a/Cent
oS,
SLES/
Open
Suse,
Debia
n/Ubu
ntu

yes

libxtre
emfs

(Java,
C++),
FUSE

2 The last update was some time ago. (Even it might be used in practice, it seems to be poorly supported.)

2 JAVA and C++ drivers (clients) are released under Apache license 2.0

Copyright MICO Consortium

21/29

http://lists.ceph.com/pipermail/ceph-users-ceph.com/2014-January/007540.html

Deliverable D6.2.2: Platform: Refined Version - November 2015

The installation, configuration and maintenance is very time-intense, as any distributed storage
system is very complex and therefore it is necessary to deal more intense with it to get and keep
it running properly. Moreover the advantages of HDFS is negligible for small systems. Hence it
might not fit for every use case. That is the reason to keep FTP as an option. In addition we will
provide a local storage module to use the local file system as storage system.

Execution plan configuration

In a typical cross-media analysis scenario, it takes several different extractors that do the
processing. As the current broker implementation just handles static execution plans, a simple
user interface was developed so end users (like our show case partners) are able to set up the
required execution plan (see figure 3).

As the target platform is Debian Linux (Jessie AMDG64 architecture) and the extractors run as
daemons, the execution plan configurations are implemented as shell scripts, which bring up the
required extractors with the execution plan specific configuration.

Development Infrastructure

This section gives an overview of the development infrastructure that is in place and publicly
available.

Distribution

The MICO platform is available as virtual machine image and as Debian packages. Both
sources provide the main components of the platform (service orchestration, persistence API
including Apache Marmotta with contextual extensions, binary storage and messaging) as well
as the available extractors. Some of them have to be installed separately, as they are not
publicly available.

The only difference between the two is, that the virtual image uses HDFS as storage and the
default Debian package setup uses FTP.

Debian package repository

All developed modules are available as Debian packages and designed for Jessie with AMD64
architecture. The public repository is available at http://apt.mico-project.eu/. Instructions how to
install the platform from scratch is available on the MICO project webpage
http://www.mico-project.eu/mico-release/#package-section.

Copyright MICO Consortium 22/29

http://www.mico-project.eu/mico-release/#extractors-section
http://apt.mico-project.eu/
http://www.mico-project.eu/mico-release/#package-section

Deliverable D6.2.2: Platform: Refined Version - November 2015

Some of the extractors are not publicly available. The necessary credentials for these extractors
can be requested from the project coordinator.

The MICO platform and the extractors rely on many libraries®. While all JAVA dependencies
are resolved using Maven, not all dependencies of the C++ persistence APl and some
extractors are available as Debian packages. Therefore we created Debian packages for these
and made them available via the MICO package repository:

e AMQP-CPP?*: Needed for communicating with the RabbitMQ master.
e libhdfs3%%: This is a native HDFS client implementation and does not make use of the
Java Native Interface, keeping it lightweight with a small memory footprint.
e Kaldi**: Kaldi is a toolkit for speech recognition written in C++ and used by the
speech-to-text extractors.
A list of Debian packages available from the MICO package repository (some of them are not
public available):

libmico-api1 This package contains the compiled shared libraries of the MICO
C++ API. They are needed by all binary implementations of MICO
C++ services.

libmico-api-dev This package contains the MICO C++ API header files and
documentation. These are needed for implementing custom MICO
services in C++.

libmico-api-java This package contains the compiled libraries of the MICO Java API.
They are needed by all Java-based implementations of MICO
services. Note that the libraries can also be installed via Maven
(recommended).

mico-apt-key This package contains the public GPG key used to sign packages in
the MICO repository.

mico-apt-repository This package contains the sources.list and public GPG key used to
sign packages in the MICO repository (replaces mico-apt-key).

mico-base This package contains some base configurations used by the MICO
platform. Configuration options will be asked interactively when
installing this package.

mico-broker This package contains the distribution of the MICO Broker Web
Application.
mico-conf This package contains the distribution of the MICO Platform

30 https://bitbucket.ora/mico-project/platform/#markdown-header-prerequisites
31 https://qgithub.com/CopernicaMarketingSoftware/AMQP-CPP

32 hitps://qgithub.com/PivotalRD/libhdfs3

33 http://kaldi-asr.org

Copyright MICO Consortium 23/29

http://www.mico-project.eu/contact/
https://bitbucket.org/mico-project/platform/#markdown-header-prerequisites
https://github.com/CopernicaMarketingSoftware/AMQP-CPP
https://github.com/PivotalRD/libhdfs3
http://kaldi-asr.org/

Deliverable D6.2.2: Platform: Refined Version - November 2015

mico-marmotta

mico-persistence

mico-platform

mico-rabbitmq

mico-extractor-configurations

mico-service-ocr

mico-extractor-audiodemux

mico-extractor-ccv-facedetect
ion

mico-extractor-diarization

mico-extractor-speech-to-text

mico-extractor-kaldi2rdf

mico-extractor-kaldi2txt

mico-extractor-named-entity-r
ecognizer

mico-extractor-object-detectio
n-rdf

mico-extractor-temporal-seg
ments-rdf

Copyright MICO Consortium

Configuration Web Application.

This package contains the distribution of Apache Marmotta used by
the MICO Platform.

This package is a configuration-only package setting up ProFTPD as
persistence server for the MICO platform.

This is a metapackage installing a complete setup of the MICO
platform, including the server and C++ client components and online
documentation. It installs a lightweight http server with a simple entry
page for single point access to the services.

This is a configuration package setting up RabbitMQ for the MICO
platform. It configures the necessary RabbitMQ extensions and user
permissions.

MICO configuration scripts for extractor pipelines.

This package contains a binary version of the sample OCR service
implemented in C++ to use with the MICO platform.

MICO service for audio demuxing and downsampling.

MICO service for detection of faces in videos.

This package contains the Speaker Diarization extractor daemon,
responsible of providing support for TE-214 in MICO.

MICO service for automatic transcription, based on Kaldi.

This package contains the extractor daemon, responsible of
providing support for speech to text in MICO. It prepares the result of
the mico-extractor-speech-to-text extractor and provides it as RDF.

This package contains the extractor daemon, responsible of
providing support for speech to text in MICO. It prepares the result of
the mico-extractor-speech-to-text extractor and provides it as plain
text.

This package contains the Named-Entity Recognizer Daemon,
responsible of providing support for TE-220 in MICO. lts
implementation is currently based on a third-party service.

This package contains the object-detection to RDF extractor
daemon, responsible of providing support for faces and animal
detection in MICO.

This package contains the Temporal Segments to RDF extractor
daemon, responsible of providing support for TE-206 in MICO.

24/29

Deliverable D6.2.2: Platform: Refined Version - November 2015

mico-extractor-temporalvideo MICO service for detection of shot boundaries and keyframes in

segmentation videos.

mico-extractors-3rdparty Additional MICO 3rd party libraries needed by extractors.

libamqgpcpp2 This package contains the AMQP-CPP C++ library. It is used for
communicating with a RabbitMQ message broker.

libamgpcpp-dev AMQP-CPP development package.

libhdfs3-1 This library provides native C/C++ access to HDFS. Libhdfs3,

designed as an alternative implementation of libhdfs, is implemented
based on native Hadoop RPC protocol and HDFS data transfer
protocol. It gets rid of the drawbacks of JNI, and it has a lightweight,
small memory footprint code base.

libhdfs3-dev libhdfs3 development package.

kaldi Kaldi is a toolkit for speech recognition written in C++. It is intended
for use by speech recognition researchers.

kaldi-dev Kaldi (including OpenFst) development package.

kaldi-libs Kaldi (and OpenFst) shared libraries.

Maven repository

The released versions of the JAVA platform API are available from our Maven repository at
http://mvn.mico-project.eu/.

Virtual Machine

The virtual machine image provides a ready-to-use installation of the platform and can be
downloaded as Open Virtualization Format (OVF) from
http://apt.mico-project.eu/download/MICO%20Platform%20current.ova. This format is supported by
most current virtualization software. We recommend the use of VirtualBox®.

34 https://www.virtualbox.org

Copyright MICO Consortium 25/29

http://mvn.mico-project.eu/
http://apt.mico-project.eu/download/MICO%20Platform%20current.ova
https://www.virtualbox.org/

Deliverable D6.2.2: Platform: Refined Version - November 2015

Docker

For future releases we are thinking about providing Docker® images for the MICO platform, as it
is designed to quickly build, ship, and run distributed applications at scale and would simplify
deployment.

Demo servers for use-case partners

In order to offer the best possible support to our use case partners during the evaluation phase,
we set up a server for each use case partner running the MICO platform. By having the MICO
platform running on a server accessible by every partner, we were able to clarify questions, as
well as understand and fix problems in a quick and easy way on short-notice.

Source code

The source code of the MICO project platform (and other components) is publicly available at:
https://bitbucket.org/mico-project/platform

Installation instructions and first steps are descibed here:
http://www.mico-project.eu/mico-release/

Continuous Integration

Bamboo*® is used as continuous integration platform for the MICO components. We have
created build plans for our main components (MICO platform including JAVA API, C++ API and
extractors). To take full advantage, the next step is to set up a (semi-)automatic deployment as
well as adopt and extend the build plans to these needs. This will also include nightly-builds to
further facilitate the development process

The dashboard is available at http://ci.mico-project.eu.

35 https://www.docker.com
36 hitps://www.atlassian.com/software/bamboo

Copyright MICO Consortium 26/29

https://bitbucket.org/mico-project/platform
http://www.mico-project.eu/mico-release/
http://ci.mico-project.eu/
https://www.docker.com/
https://www.atlassian.com/software/bamboo

Deliverable D6.2.2: Platform: Refined Version - November 2015

= OBambod Fum v Doph - e -

MICD Continueus Integration — Build Dashboard = wamoan -
Frofect Fan Ewild Complened Tasis REason
KICD = ik Habg s e [l nl] LH S P2 b T Churnee v o Skanliee
TIEHTS (PRI ACKIBMCTT Crands I-_-, ¥ih 1 WoCK S0 A massel Cranges By Mupert dacstesthaicr
=i ripasder Siar (T4 1 ek g B e Fagns Cranyges by Chiksian Weigs
ESrein 12y A0S MO 2 TOans LRangos Oy H0rsl Slade
fest iEmase 52 1 ek oo M2 s foznd Cranges by Horst Stadie

£

Figure 4: Contincus Integration Dashboard

Logging

One downside, that turned out during the evaluation phase and has not been addressed yet is
the lack of a centralized logging system. The MICO platform consist of many different
components that might run, due to its distributed architecture, on different systems. As all
components produce logging data in different locations and files with diverse log formats, it can
get very cumbersome and time-consuming to get through the logging data to locate and bring
together the required information.

Therefore we propose to set up centralized logging system for the MICO platform based on
Logstash®, Elasticsearch® and Kibana®. This allows us to search through all of the logs and
identify issues in a single place. It is also useful to identify issues that span multiple servers by
correlating their logs during a specific time frame.

To accomplish this, Logstash will be used to collect, parse, normalize and transport the logging
data. This gets stored into Elasticsearch a RESTful NoSQL store and search engine that allows
data analyzation in real-time. The user interface to explore, filter and visualize the logging data
will be driven by Kibana.

7 https://www.elastic.co/products/logstash
38 https://www.elastic.co/products/elasticsearch
39 https://www.elastic.co/products/kibana

Copyright MICO Consortium 27/29

https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

Deliverable D6.2.2: Platform: Refined Version - November 2015

Content provenance and Trust

One important aspect of the system is to support provenance tracking, i.e. to be able to identify
where information stems from or was created across the whole acquisition and annotation
chain. On one hand, this is supported by the annotation and broker models, which keep track of
annotators and on their involvement within workflows and jobs, as described for work package 2
and 3. On the other hand, this should also include the ability to authenticate metadata and
annotations that are created outside of the MICO system, and are importet e.g. via crawling
from websites / portals. After consideration of several alternative, the choice was to enable this
by modifying existing FHG background components to sign and authenticate microformats*.
The resulting components allow arbitrary signature and verification of HTML documents via
XPATH. The can also be used to sign and verify copyright and provenance information
embedded within the HTML, and provide the following MicroformatSignature class API:

MicroformatSignature class

Constructor: Builds a new object for creating and verifying microformat signatures for
HTML/XML documents.

public MicroformatSignature (

InputStream keystoreInputStream Input stream for Java keystore that
contains private key used for signing

String keystorePassword Password for keystore
String keyAlias Alias of the private key
String keyPassword Password for private key

)

buildFor: Creates a new microformat signature node for the given HTML/XML node.
public Node buildFor (

Node node HTML/XML node to sign (can also be
a Document object)

40 http://microformats.org

Copyright MICO Consortium 28/29

http://microformats.org/

Deliverable D6.2.2: Platform: Refined Version - November 2015

@return Node Signature node created

checkFor: Verifies the embedded microformat signature for a given HTML/XML node.

public CheckResult checkFor (

Node node HTML/XML node to check (can also
be a Document object)

@return CheckResult Enum:
® signatureValid
® signaturelnvalid
® signatureNotFound

checkAllDocumentSignatures: Verifies all microformat signatures found in the given
document.

public Map<String, CheckResult>
checkAllDocumentSignatures (

Document doc Document to examine

@return Map<String, CheckResult> Map containing for each signed node:
e XPath expression and
e CheckResult value
Enum:
0 signatureValid
0 signaturelInvalid
0 signatureNotFound

These components will be integrated into the platform in year 3, and can then be used to
authenticate content and metadata including authorship and related copyright information (as
extracted from content, the web, or derived from the retrieval context). They will be
complemented by tools to extract authorship and copyright information from content and
metadata based, in order to store them in the knowledge base and query them.

Copyright MICO Consortium 29/29

