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Executive	Summary	

This	deliverable	presents	the	outcomes	of	Task	3.3	“Service	mapping”,	of	the	T-NOVA	project.	
The	task	is	focused	on	the	research	and	design	of	algorithms	for	the	optimal	mapping	of	virtual	
network	services	in	virtualized	network	infrastructures.	

This	work	started	by	a	review	of	use	cases,	requirements	and	architecture	design	proposed	in	
Work	Package	(WP)	2,	and	by	the	analysis	of	the	scientific	and	technological	state	of	the	art	in	
service	mapping	algorithms.	Furthermore,	the	input	and	output	interfaces	for	the	algorithm	
have	been	specified	in	detail,	in	terms	of	needed	input	data	and	of	required	output	data	for	a	
service	 instantiation.	 Based	 on	 the	 above	 points,	 three	 main	 service	 mapping	 algorithms	
together	with	an	algorithm	for	service	scheduling	have	been	proposed.	Two	service	mapping	
algorithms	are	based	on	integer	linear	programming	while	the	third	is	based	on	a	stochastic	
control	methodology.	The	mathematical	formulation	and	the	properties	of	the	algorithms	are	
presented	and	discussed	in	detail.	Simulations	results	in	emulated	environments	are	proposed	
and	discussed	to	highlight	the	characteristics	on	the	algorithms.	Prior	to	the	description	of	the	
algorithms,	a	common	mathematical	framework	for	modelling	the	service	mapping	problem	
is	 proposed,	 based	 on	 the	 ETSI	 reference	 documents	 on	 virtualization	 architecture.	 The	
modelling	framework	is	based	on	graph	theory	and	provides	a	way	for	consistently	modelling:	

1. The	requirements	of	the	network	services	to	be	mapped.	
2. The	network	infrastructure’s	topology	and	its	current	occupancy	level	so	that	feasible	

and	optimal	mappings	are	computed	by	the	algorithm.		

The	developed	algorithms	allow	to	consider	multiple	mapping	objectives,	including:	

1. Maximisation	of	network	service	requests’	acceptance.	
2. Minimization	of	mapping	costs	(i.e.	the	costs	for	employing	the	different	network	

resources).	
3. Balancing	of	network/datacenter	load	distribution.	

Aside	of	 the	design	of	 the	mapping	algorithms,	another	 fundamental	output	of	 this	 task	 is	
given	 by	 the	 design	 of	 a	 microservice-based	 service	 mapping	 module,	 aimed	 to	 host	 the	
service	mapping	 algorithm,	 and	 of	 its	 integration	 inside	 TeNOR,	 the	 T-NOVA	orchestrator.	
Such	activity	has	been	carried	out	 in	close	cooperation	with	the	activities	dedicated	to	the	
design	of	the	infrastructure	repository	(Task	3.2)	and	of	the	network	service	descriptor	(WP	
6).	As	a	matter	of	fact,	as	said	before,	network	services’	requirements	and	network	status	are	
the	two	key	inputs	to	the	service	mapping	algorithms.	The	service	mapping	module	offers	the	
possibility	 to	 integrate	 and	 avail	 of	 any	 service	 mapping	 algorithm	 conforming	 to	 the	
input/output	specifications,	which	are	aligned	to	the	three	mapping	algorithms	developed.	In	
this	way,	any	investigated	service	mapping	algorithm,	or	even	a	combination	of	them	can	be	
potentially	integrated	in	TeNOR,	and	tested.	

Finally,	 the	 integration	 of	 the	 service	 mapping	 module	 including	 one	 of	 the	 developed	
mapping	algorithms	has	been	achieved	and	preliminary	tested,	with	details	reported	in	this	
document.	
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1. INTRODUCTION	

1.1. Motivation,	objectives	and	scope	

In	 the	 T-NOVA	 system,	 the	 service	mapping	module	 is	 the	 component	 responsible	 for	 the	
decision	of	which	resources	of	 the	virtualized	network	 infrastructure	must	be	 leveraged	to	
best	serve	an	incoming	request	of	a	Network	Service	(NS)	instantiation.	As	a	matter	of	fact,	
the	availability	of	multiple	allocation	solutions	and,	at	the	same	time,	the	heterogeneity	of	
resources	types,	in	terms	of	requirements,	costs,	quality,	etc.,	makes	the	introduction	of	an	
intelligent	mapping	logic	a	necessity,	or	at	least	a	highly	desirable	feature	for	increasing	the	
efficiency	 of	 the	 instantiation	 process.	 The	 first	 aim	 of	 this	 deliverable	 is	 therefore	 the	
presentation	of	a	general	and	comprehensive	discussion	of	the	service	mapping	problem	in	
virtualized	network	infrastructures.	A	mathematical	modelling	framework	for	the	problem	is	
here	provided,	and	it	is	as	well	discussed	how	the	service	mapping	module	acts	as	a	module	
of	TeNOR	–	the	T-NOVA	orchestrator	–	and	how	it	coordinates	with	the	other	modules	of	the	
T-NOVA	architecture	to	perform	 its	 functions.	Secondly,	 the	work	 in	Task	3.3	has	aimed	at	
researching	different	service	mapping	algorithms1,	designed	to	tackle	the	requirements	and	
the	peculiarities	of	the	mapping	problems	addressed,	and	to	explore	the	strengths	offered	by	
the	different	mathematical	tools	here	used	(mainly	coming	from	the	fields	of	integer	linear	
programming	and	stochastic	control	theory).	A	third	fundamental	output	of	Task	3.3	 is	the	
design	of	the	service	mapping	module,	incorporated	in	a	micro-services	architecture,	and	its	
integration	within	the	TeNOR	orchestrator.	This	integration,	in	particular,	has	been	achieved	
by	means	of	a	detailed	documentation	of	the	external	and	internal	interfaces	of	the	mapping	
module.	The	first	are	the	interfaces	between	the	mapping	module	and	the	other	components	
of	TeNOR,	while	the	second	one	are	the	interfaces	inside	the	service	mapping	module	with	
the	actual	mapping	mathematical	algorithm	utilized	to	solve	the	service	mapping	problem.	
This	last	step	in	particular	provides	a	flexible	way	to	make	possible	the	integration	and	testing	
of	different	mapping	strategies,	thus	providing	a	solid	basis	for	future	work	improvements,	
continuation	 of	 future	 research	 activities,	 research	 cooperation	 of	 the	 topic	 in	 future	
initiatives,	etc.	

1.2. Structure	of	the	Document	

The	remainder	of	the	document	is	structured	as	follows:	

• Section	 2	 presents	 the	 basis	 knowledge	 needed	 to	 frame	 the	 work	 on	 service	
mapping.	 In	 particular,	 this	 section	 reviews	 T-NOVA	 use	 cases,	 requirements	 and	
architecture	design,	seen	in	the	light	of	service	mapping	requirements.	Then,	based	
on	 the	 ETSI	 relevant	 documents	 in	 the	 field,	 this	 section	 proposes	 a	 unifying	
mathematical	modelling	framework	for	service	mapping,	as	a	common	base	and	input	
to	all	the	methodologies	devised.	Finally,	a	summary	of	the	analysis	of	the	state	of	the	
art	in	service	mapping	is	reported.	

• Section	 3	 presents	 the	 detailed	 discussion	 of	 three	 service	 mapping	 algorithms	
proposed	for	T-NOVA,	along	with	a	scheduling	algorithm.	

																																																													
1	 The	 reader	 should	 notice	 the	 distinction	 between	 the	 service	 mapping	 algorithms,	 which	 are	
mathematical	algorithms	designed	to	solve	the	service	mapping	problem,	as	explained	in	Section	3,	and	
the	 service	 mapping	 module,	 which	 is	 the	 module	 of	 the	 T-NOVA	 architecture	 hosting	 the	
implementation	of	a	service	mapping	algorithm	(as	explained	in	Section	4).		
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• Section	4	deals	with	the	design	of	the	service	mapping	module	and	its	integration	in	
TeNOR,	 the	T-NOVA	orchestrator.	This	 section	details	 the	 integration	 logic	and	 the	
technologies	involved.	

• Section	5	discusses	simulation	results	for	the	different	mapping	 logics	devised.	The	
aim	of	 the	 simulations	 is	 to	 highlight	 the	properties	 of	 each	 algorithm	and	 to	 test	
performances	and	scalability	in	extended	scenarios.	

• In	Section	6	the	conclusions	for	the	work	of	the	task	are	given.	
• The	 lists	 of	 references,	 acronyms	 and	 mathematical	 symbols	 are	 reported	 after	

Section	6.		
• The	 Annexes	 present	 a	 brief	 documentation	 of	 the	 developed	 service	 mapping	

Application	Programming	Interface	(API)	and	the	specification	of	the	data	interfaces	
with	the	main	other	modules	of	the	T-NOVA	orchestrator.	
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2. PROBLEM	DEFINITION	

This	chapter	provides	the	basic	information	on	the	service	mapping	problem	as	tackled	in	the	
T-NOVA	project,	to	properly	lay	the	foundation	for	the	discussion	of	the	different	algorithms	
conceived	in	the	project,	and	to	correctly	frame	the	discussion	on	service	mapping	module	
design	and	integration	into	the	T-NOVA	orchestrator,	TeNOR.	

In	the	next	section,	the	Use	Cases	(UCs)	and	the	requirements	involving	service	mapping	are	
recalled	 from	 deliverable	 D2.1	 “System	 Use	 Cases	 and	 Requirements”	 [1],	 to	 define	 the	
boundaries	of	the	service	mapping	problem	as	addressed	in	T-NOVA.	

2.1. Use	Cases	and	Requirements	

In	the	following	we	briefly	summarize	the	T-NOVA	use	cases,	described	and	discussed	in	the	
deliverable	D2.1	[1],	that	are	related	to	the	service	mapping	problem.	The	requirements	for	
the	service	mapping	module	are	identified	as	well.		

2.1.1. Use	cases	

Service	mapping	is	a	core	technology	in	TeNOR,	enabling	use	cases	that	have	a	central	role	in	
the	addressed	business	framework,	as	detailed	in	the	next	figure.		

 

Figure	1	T-NOVA	Overall	Use	case	diagram	([1])	
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Use	cases	analyzed	in	D2.1	[1]	and	related	to	the	service	mapping	are	the	following:	

1. UC2.1.	Map	and	deploy	service	(see	D2.1	[1],	Section	5.2.2.6).	The	VNFs	are	mapped	into	
appropriate	 resources	 and	 then	 provisioned	 on	 the	 Network	 Functions	 Virtualization	
(NFV)	infrastructure.	The	use	case	may	be	executed	in	two	different	manners:		either	upon	
a	new	service	request	by	the	customer	(UC2),	or	as	a	result	of	a	service	reconfiguration	or	
rescaling	(UC3).	

	
2. UC3.	 Reconfigure/Rescale	NFV	 services	 (see	D2.1	 [1],	 Section	 5.2.2.7).	This	 use	 case	 is	

focused	 on	 the	 adaptation	 of	 the	 resources	 allocated	 to	 a	 specific	 service,	 optimizing	
resource	 usage,	 and/or	 modification	 of	 configuration	 parameters.	 	 Two	 variants	 are	
considered,	as	described	below.	

a) UC3.1	scale-out/	scale-in	VNF	Service	
• Scale-out	of	the	NFV	service	results	in	additional	VNF	instances	being	added	to	an	

existing	instance.	The	new	VNF	instances	require	the	instantiation	of	new	Virtual	
Machines	(VMs)	with	compute,	network,	and/or	storage	capacity	to	host	the	new	
VNFs.	

• Scale-in	removes	VNF	instances	(and	their	host	VMs)	that	are	no	longer	required.	
This	action	releases	compute,	network	and	storage	resources.		

b) UC3.3	 Reconfigure	 VNF	 Service:	 the	 configuration/parameters	 of	 the	 service	 are	
adjusted.	

	
3. UC6.	Terminate	NFV	services	(see	D2.1	[1],	Section	5.2.2.11).	This	use	case	defines	the	

procedures	related	to	the	termination	of	a	provisioned	NFV	service,	either	by	the	
customer	or	the	Service	Provider	(SP),	and	removal	of	a	VNF	from	the	catalogue	of	
available	and	advertised	services.		

Service	 mapping	 is	 thus	 envisaged	 in	 TeNOR	 as	 a	 key	 building	 block	 in	 order	 to	 support	
optimized	deploying	of	network	services	and	reconfiguration	of	the	same	in	case	breaches	of	
the	service	levels	are	detected	by	the	monitoring	functionalities.		

2.1.2. Requirements	

The	 analysis	 of	 the	 service	 mapping	 problem	 and	 the	 design	 of	 the	 proposed	 solutions	
reported	 in	 this	 deliverable	 have	 moved	 from	 the	 related	 key	 functional	 requirements	
identified	 in	 deliverable	 D2.1	 [1].	 Such	 requirements	 are	 summarized	 in	 the	 following	
paragraph,	taken	by	the	mentioned	deliverable:	

NFV	service	mapping.	The	T-NOVA	system	should	be	able	to	map	NFV	service	requests	
received	from	customers	to	the	network,	such	that	all	NFV	service	requirements	are	
met.	 Specifically,	 this	 requires	 the	 mapping	 of	 virtual	 network	 topology	 to	 the	
substrate	network,	while	satisfying	any	bandwidth	and/or	delay	requirements,	as	well	
as	 the	 assignment	 of	 NFVs	 to	 substrate	 nodes	 that	 have	 sufficient	 computing	 and	
storage	 resources	 for	 packet	 processing,	 forwarding	 and/or	 caching.	 In	 turn,	 NFV	
service	 mapping	 entails	 requirements	 such	 as	 the	 substrate	 network	 topology,	
processing,	storage	and	network	resource	availability	across	the	network,	as	well	as	
the	computational	 requirements	of	 the	NFVs	that	should	be	deployed.	 	NFV	service	
mapping	 should	 be	 optimised	 based	 on	 one	 or	 multiple	 objectives,	 such	 as	 the	
minimisation	of	the	mapping	cost,	the	maximisation	of	the	provider’s	revenue	or	the	
maximisation	of	NFV	service	request	acceptance	rate.		
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The	text	in	Italic	marks	particularly	relevant	aspects	to	be	taken	into	account	when	designing	
and	developing	a	service	mapping	algorithm.	In	particular:	

1. A	flexible	and	consistent	mathematical	modelling	of	the	service	mapping	problem,	to	be	
able	 to	 correctly	 capture	 the	 process	 of	mapping	 the	 network	 service	 to	 the	 network	
infrastructure	 resources,	 taking	 into	 account	 user	 requirements	 and	
service/infrastructure	constraints.	This	aspect	is	addressed	in	details	in	Section	2	of	this	
report.	

2. The	need	of	feeding	the	mapping	module	with	information	on	both	the	current	status	of	
the	network	and	the	detailed	requirements	of	the	service	to	be	mapped.	This	aspect	is	
addressed	in	Section	4,	which	details	the	interfaces	of	the	service	mapping	module	with	
the	infrastructure	repository	and	the	service	catalogue,	designed	and	implemented	with	
the	purpose	of	retrieving	the	above	data.	

3. The	 fact	 that	 the	 developed	 mapping	 strategies	 have	 to	 take	 into	 account	 multiple	
objectives	 stemming	 from	 service	 users,	 providers,	 infrastructure	 operators,	 etc.	 (e.g.	
maximization	of	service	performances,	minimization	of	mapping	costs,	maximization	of	
mapping	acceptance	rates,	etc.).	This	aspect	is	addressed	in	details	in	Section	3,	where	the	
proposed	T-NOVA	mapping	strategies	are	reported	and	explained,	and	in	Section	5,	where	
simulation	results	are	discussed,	highlighting	how	the	multi-objectives	are	accounted	for	
and	achieved.	

The	T-NOVA	atomic	requirements	addressed	by	the	service	mapping	module	are	reported	in	
the	following	table,	for	the	sake	of	completeness.	For	each	relevant	requirement,	its	relation	
to	the	service	mapping	task	is	explained	in	the	last	column.	The	table	is	taken	and	adapted	
from	the	annex	of	deliverable	D2.1	[1].	

	

Table	1	T-NOVA	requirements	relevant	to	service	mapping.	

Re
q.
	id

	

U
se
	C
as
e	

Re
q.
	N
am

e	

Requirement	Description	 Justification	of	Requirement	 Relation	to	Service	mapping	

T_
N
O
VA

_0
4	

U
C1

,	U
C2

,	U
C3

	

N
S	
Co

m
po

sit
io
n	 The	T-NOVA	system	SHALL	be	

able	to	compose	a	NS	from	
atomic	VNF	instances	available	at	
the	NF	Store	and	define	the	
logical	topology	among	the	
several	components.	

The	creation	of	a	NS	from	the	
combination	of	
atomic/simple	VNF	is	
important	in	order	to	simplify	
the	process	provision	of	NS	
to	the	customers	and	avoid	
complex	path	calculations	

The	information	regarding	
the	NS	composition	process	
outcome	(i.e.	NS	topology	
and	requirements)	is	
acquired	by	the	service	
mapping	module	each	time	a	
NS	mapping	request	is	done.	
That	is	done	in	order	to	
ensure	the	service	mapping	
solution	meets	all	the	NS	
provisioning	requirements.	

T_
N
O
VA

_0
8	

U
C1

.1
,	U

C2
	

Re
so
ur
ce
	M

ap
pi
ng
	 The	T-NOVA	system	SHALL	be	

able	to	map	an	incoming	
customer	service	selection	
(service	+	Service	Level	
Agreement	-	SLA)	to	specific	
computational,	storage,	network	
infrastructure	resources	based	on	
specific	optimisation	criteria	or	
constraints.	

Infrastructure	resources	used	
to	host	a	specific	VNF	service	
and	SLA	restrictions	need	to	
be	selected	from	a	pool	of	
infrastructure	resources;	this	
selection	must	comply	with	
applicable	optimization	
criteria	or	constraints	

This	is	the	key	requirement	
addressed	by	service	
mapping.		
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T_
N
O
VA

_2
0	

U
C2

,	U
C3

,	U
C4

	

Re
so
ur
ce
	

m
on

ito
rin

g	 The	T-NOVA	system	SHALL	be	
able	to	monitor	and	collect	
information	about	consumption	
and	availability	of	resources	
(computational,	storage,	
network)	on	a	real	time	basis,	
including	the	resources	consumed	
by	each	specific	VNF	instance.	

Monitoring	is	essential	to	
ensure	that	the	deployment	
of	VNF’s	onto	hosting	
infrastructure	is	performed	
adequately.	Monitoring	
provides	essential	metrics	
required	by	operations	such	
as	rescaling,	billing,	etc.	

Monitoring	information	is	an	
input	to	service	mapping	
module,	which	provides	
mapping	solutions	aligned	
and	optimised	according	to	
resources’	availability.	

T_
N
O
VA

_2
1	

U
C2

	

VN
F	
cr
ea
tio

n	 The	T-NOVA	system	SHALL	be	
able	to	automate	the	
instantiation	of	VNFs	on	the	
infrastructure	based	on	customer	
requests	and	constraints.	

Automation	of	VNF	lifecycle	
is	an	essential	characteristic	
of	the	T-NOVA	system	

The	systems	fulfilling	these	
requirements	are	the	
actuators	of	the	service	
mapping	decisions.	

T_
N
O
VA

_2
6	

U
C2

	

To
po

lo
gy
	o
f	

VN
F	

co
m
po

ne
nt
s	 The	T-NOVA	system	SHALL	define	

the	logical	topology	between	the	
several	VNF	components.	

Connectivity	between	VNF	
components	must	be	
automated	

The	logical	topology	between	
the	several	VNF	components	
of	a	NS	is	an	input	to	the	
service	mapping	algorithm.	

T_
N
O
VA

_3
0	

U
C3

,	U
C4

,	U
C4

.1
	

SL
A	
m
on

ito
rin

g	 The	T-NOVA	system	SHALL	be	
able	to	compare	service	metrics	
with	SLA	requirements	and	
indicate	SLA	status	
(conformance/breach).	When	the	
T-NOVA	system	determines	that	
an	SLA	is	in	breach	it	SHALL	
initiate	the	applicable	action,	e.g.	
rescaling.		

SLA	management	and	
monitoring	is	considered	
essential	for	the	commercial	
applicability	of	the	T-NOVA	
system.	The	T-NOVA	system	
must	determine	when	an	SLA	
is	in	breach	and	trigger	
corrective	actions.	

Service	mapping	is	one	of	the	
possible	tools	that	TeNOR	
can	use	to	react	to	SLA	
breaches.	

	

In	addition	 to	 the	above	 requirements,	 also	 the	atomic	 requirements	on	 scaling/migration	
(T_NOVA_36-T_NOVA_45	in	D2.1	[1])	are	related	to	service	mapping,	in	the	sense	that	service	
mapping	is	one	of	the	tools	that	TeNOR	could	use	to	deal	with	scaling/migration.		 	
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2.2. Reference	Scenario	and	Architecture	

This	 section	 presents	 the	 service	 mapping	 module	 in	 the	 context	 of	 the	 T-NOVA	 system	
architecture,	 explaining	 which	 are	 the	 relevant	 modules	 of	 the	 T-NOVA	 system	 providing	
inputs	to	the	service	mapping	module,	and	which	are	the	ones	responsible	for	enforcing	its	
decisions.		

TeNOR	service	mapping	module	could	be	called	in	two	different	occasions:	

• When	a	new	instance	of	a	network	service	is	requested:	this	kind	of	request	comes	
from	 the	marketplace,	 and	 it	 happens	when	 a	 customer	wants	 to	 buy	 a	 network	
service.	

• When	 the	 SLA	 enforcement	 module	 predicts	 a	 SLA	 breach	 and	 notifies	 the	 NS	
management	module,	which	requests	a	new	mapping	for	the	resources	that	the	NS	
instance	is	consuming.	

For	 the	 service	mapping	module,	 these	 two	 scenarios	 involve	 the	 same	 kind	 of	workflow,	
which	is	the	focus	of	this	deliverable.	

2.2.1. 	Architecture	and	Flows	

The	place	of	the	service	mapping	module	within	the	TeNOR	architecture	is	shown	in	Figure	2	
below.	

Service	Mapping

NS	Manager

Service	
Catalogue

New	NS	instance	request

NS	Provisioning

Scaling/Migration	
request

SLA	Enforcement

1b

1a

2

3a

4 5

Infrastructure	
Repository

3b

	

Figure	2	The	service	mapping	module	in	the	TeNOR	architecture	

The	figure	shows	the	events	and	flows	involved	in	the	calls	to	the	service	mapping	module:	

1. As	described	above,	there	are	two	kinds	of	reasons	a	call	to	the	service	mapping	can	
be	made:	because	a	new	NS	instance	(1a)	or	because	a	scaling/migration	of	an	existing	
instance	in	order	to	keep	the	agreed	SLA	(1b)	is	needed.	

2. The	request	for	a	new	mapping	is	passed	to	the	service	mapping	module.	
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3. The	service	mapping	module	grabs	from	the	infrastructure	repository	the	most	up-to-
date	data	about	the	infrastructure	(step	3a).	In	addition,	the	service	mapping	module	
grabs	 from	 the	 service	 catalogue	 (T-NOVA	 Network	 Service	 Descriptor	 (NSD))	 the	
relevant	information	about	the	service	to	be	mapped	(step	3b),	such	as	thresholds	for	
the	technical	SLA	metrics,	and/or	node	and	link	requirements,	as	explained	in	the	next	
Section	2.3.	

4. After	the	mapping	optimization,	the	service	mapping	module	returns	the	list	of	Points	
of	Presence	(PoPs)	where	the	resources	can	be	located.	

5. Finally,	 the	NS	Manager	passes	 these	 locations	 to	 the	NS	Provisioning,	 in	 order	 to	
implement	the	decisions	taken	by	the	service	mapping	module.	

The	objective	of	this	deliverable	 is	to	specify	 in	detail	 the	workflow	that	has	been	outlined	
above.	

The	two	key	modules	of	the	T-NOVA	system	supporting	the	service	mapping	module	are	the	
infrastructure	 repository	 and	 the	 service	 catalogue;	 they	 are	 briefly	 introduced	 in	 the	
following	paragraphs,	while	full	details	are	given	in	Section	4.2.	

The	 infrastructure	 repository	 subsystem	 provides	 the	 service	 mapping	 module	 with	 the	
infrastructure	 related	 information,	 gathered	 from	 the	 Virtualized	 Infrastructure	 Manager	
(VIM)	and	Network	Function	Virtualized	Infrastructure	(NFVI)	components,	as	shown	in	Figure	
3.	Also,	a	resource	discovery	mechanism	allows	the	subsystem	to	augment	the	information	
provided	by	cloud	and	SDN	environments.		

	

	
Figure	3	Resource	repository	high	level	architecture.	

	

The	infrastructure	repository	component	that	interfaces	the	service	mapping	module	is	the	
API	Middleware	Layer.	It	is	a	layer	that	provides	a	common	set	of	REST	API	calls	that	can	be	
used	 by	 the	 TeNOR	modules	 to	 request	 and	 retrieve	 information	 from	 the	 infrastructure	
repository.	 It	 is	 through	 the	 API	 Middleware	 layer	 that	 the	 service	 mapping	 module	 can	
retrieve	 the	 infrastructure	 repository	 information	and	build	 a	 consistent	 representation	of	
current	status	of	the	infrastructure,	either	in	term	of	its	topology	or	of	the	current	availability	
of	resources.	That	is	done	each	time	a	NS	mapping	request	is	made,	in	such	a	way	that	the	
solution	 computed	 by	 the	 mapping	 algorithm	 is	 aligned	 with	 the	 current	 status	 of	 the	
infrastructure,	in	terms	of	resources’	availability.	

The	 service	 catalogue,	 on	 the	 other	 hand,	 provides	 the	 service	 mapping	 module	 with	 a	
consistent	 representation	 of	 the	 network	 services	 requirements	 and	 with	 the	 main	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

15	

characteristics.	 In	 fact,	 a	 feasible	 solution	 of	 the	 service	 mapping	 problem	 must	 respect	
network	service	node	and	 link	requirements,	along	with	the	expected	service	performance	
defined	 in	 the	 SLA,	 as	 agreed	 between	 the	 service	 provider	 and	 the	 customer	 in	 the	
marketplace	and	included	in	the	network	service	descriptor.	ESTI’s	NSD	format	(see	e.g.	[2])	
has	been	extended	by	the	T-NOVA	project	to	include	additional	fields	to	define	the	thresholds	
for	 service	 performance	 metrics,	 based	 on	 the	 expected	 performance	 of	 the	 different	
deployment	flavours	of	the	VNFs	that	are	part	of	the	service.	For	each	VNF	deployment	flavour	
the	VNF	developer	 indicates	the	Virtualization	Deployment	Unit	(VDU)	requirements	which	
are	 included	 in	 the	 VNFD.	 Therefore,	 by	 means	 of	 the	 NSD	 and	 of	 the	 VNFD	 the	 service	
mapping	algorithm	gets	the	resource	requirements	needed	to	deploy	the	service	in	order	to	
meet	the	agreed	SLA.	Additional	details	on	the	descriptor	parameters	relevant	to	the	service	
mapping	problem	are	discussed	in	Section	4.2.2.	

The	sequence	diagram	below	summarises	the	interaction	of	the	service	mapping	module	with	
the	service	manager,	the	infrastructure	repository	and	the	service	catalogue.		

	

	
Figure	4	Interaction	of	the	service	mapping	module	with	the	infrastructure	repository	and	the	

network	service	catalogue	

From	that	picture	it	can	be	already	seen	that	the	mapping	module	is	divided	into	two	main	
sub-components:		

1. A	module	responsible	for	providing	interfacing	and	data	adapting	functionalities;	it	
retrieves	and	organises	(in	the	two	JSON	files	specified	in	the	figure)	the	data	from	
the	mapping	call,	the	infrastructure	repository	and	the	service	catalogue.	

2. The	 actual	module	 responsible	 for	 the	mapping	 problem	 solving,	 which	 receives,	
from	the	two	JSON	files,	all	the	inputs	needed	to	build	the	mapping	problem	itself.	

More	details	on	the	integration	of	the	mapping	module	into	the	T-NOVA	architecture	can	be	
found	in	Section	4.		

The	next	section	presents	a	modelling	framework	for	the	service	mapping	problem	tackled	in	
T-NOVA.	The	 sections	are	based	on	 the	preliminary	outputs	of	 the	 task	as	 reported	 in	 the	
interim	deliverable	D3.01	[3].	
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2.3. Problem	Modelling	

The	Service	mapping	(SM)	problem	addressed	in	T-NOVA	focuses	on	the	optimal	assignment	
of	 Network	 Service	 (NS)	 chains	 to	 servers	 hosted	 in	 interconnected	 datacenters	 (DCs)	
operated	by	the	same	network	service	provider.	

The	optimality	concept	can	be	defined	toward	different	objectives:	economical	profit,	Quality	
of	Service	(QoS),	energy-efficiency	and	others.	

The	SM	is	an	online	problem.	That	is,	the	requests	for	NSs	are	not	known	in	advance.	Instead,	
requests	 arrive	 to	 the	 system	 dynamically	 and,	 when	 accomplished,	 they	 can	 stay	 in	 the	
network	 for	 an	 arbitrary	 amount	 of	 time.	 Algorithms	 for	 the	 SM	 problem	 have	 to	 handle	
service	requests	as	they	arrive.	

According	 to	ETSI’s	NFV	Architectural	 Framework	 [4],	 a	NS	 is	 represented	by	a	 forwarding	
graph	 in	which	each	vertex	 is	a	Virtual	Network	Function	(VNF).	Hence,	 in	T-NOVA,	a	NS	 is	
defined	 as	 a	 directed	 graph	 𝐺 𝑁𝑆 = (𝑉, 𝐴)	 in	 which	 each	 vertex,	 say	 ℎ,	 in	 the	 set	 𝑉	
represents	 a	 VNF,	 and	 each	 arc,	 say	 (ℎ, 𝑘),	 in	 A	 represents	 a	 link	 connecting	 two	 VNFs,	
required	 for	 the	 correct	 implementation	 of	 the	 service	 (e.g.	 a	 chain	 in	 a	 web	 server	 tier	
composed	by	firewall,	NAT	and	load	balancer).	

The	Network	Infrastructure	(NI)	on	which	we	want	to	run	the	NS	can	be	described	as	a	directed	
graph	𝐺(𝑁𝐼) 	= 	 (𝑉., 𝐴.)	in	which	each	vertex,	say	p,	in	the	𝑉. 	set	represents	a	DC,	and	each	
arc,	say	(𝑝, 𝑞),	in	𝐴. 	represents	the	network	connection	established	by	the	network	provider	
among	the	DCs.	

Hence,	the	first	problem	arises	when	a	new	NS	instance	request	arrives	to	the	orchestrator	
and	the	SM	is	asked	to	assign	each	VNF	in	the	required	service	to	a	DC	within	the	available	
network	 infrastructure	 (note	 that	 it	 is	 possible	 that	 all	 the	 involved	 VNFs	 are	 eventually	
assigned	to	the	same	DC).	More	formally,	this	“first	level	problem”	can	be	stated	as	follows.	

First	level	problem:	Given	a	𝑁𝑆	and	a	𝑁𝐼,	solving	the	first	level	SM	problem	requires	to	assign	
each	VNF	of	the	service,	to	a	DC	in	the	network	(i.e.	each	vertex	in	V	to	a	vertex	in	𝑉.)	and	
each	arc	(h,	k)	in	A,	to	an	oriented	path	in	G(NI)	from	the	DC	to	which	the	vertex	h	has	been	
assigned,	to	the	DC	to	which	the	vertex	k	has	been	assigned.	

Figure	5(a)	reports	a	NS	composed	by	two	VNFs,	a	NI	composed	by	four	interconnected	DCs	
and	their	corresponding	graphs.	

Figure	5(b)	reports	a	possible	solution	of	the	first	level	problem	involving	the	graphs	of	Figure	
5(a).	VNF1	has	been	assigned	to	DC1,	VNF2	has	been	assigned	to	DC4	and	the	arc	connecting	
VNF1	and	VNF2	has	been	assigned	to	the	blue	path	from	DC1	to	DC4,	through	DC3.	
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Figure	5	Example	of	a	first	level	SM	problem	(a)	and	its	solution	(b)	

Moreover,	 each	 VNF	 can	 have	 a	 complex	 structure,	 i.e.,	 it	 can	 be	 made	 of	 elementary	
interconnected	 components,	 each	 one	 executed	 on	 a	 VM.	 At	 the	 same	 time,	 each	 DC	 is	
composed	by	hundreds	(or	thousands)	of	interconnected	servers.	

Hence,	once	a	VNF	has	been	assigned	to	a	DC,	a	second	problem	(referred	to	as	a	“second	
level	problem”)	arises	with	the	request	to	instantiate	each	VM	composing	the	VNF	on	a	server	
hosted	in	the	DC.	

More	formally,	each	VNF	can	be	described	as	a	directed	graph	𝐺(𝑉𝑁𝐹) 	= 	 (𝑉2, 𝐴2)	in	which	
each	vertex,	say	i,	in	the	𝑉2 	set	represents	a	Virtual	Network	Function	Component	(VNFc)	[5],	
and	each	arc,	say	(i,	j),	in	𝐴2 	represents	a	link	between	the	VNF	components.	

In	turn,	each	DC	can	be	described	as	a	directed	graph	𝐺(𝐷𝐶) = (𝑉5, 𝐴5)	in	which	each	vertex	
in	the	VD	set	represents	a	hardware	device,	either	a	server	or	a	network	switch,	and	each	arc	
in	AD	represents	the	network	connection	established	by	the	DC	owner	between	the	hardware	
devices.	

Figure	6	displays,	on	the	left	side,	a	VNF	composed	by	four	interconnected	components,	and,	
on	the	right	side,	the	internal	structure	of	a	DC	model	with	its	interconnected	devices.	

	

Figure	6	Example	of	a	VNF	composed	by	four	VNFcs	(on	the	left)	and	the	internal	structure	of	a	DC	
model	(on	the	right)	
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Second	level	problem:	Given	a	VNF	and	a	DC,	solving	the	second	level	SM	problem	requires	
to	 assign	 each	 VNFc	 in	 the	 VNF	 to	 a	 server	 in	 the	 DC	 (i.e.	 each	 vertex	 in	𝑉2 	 to	 a	 vertex	
representing	a	server	in	𝑉5)	and	each	arc	(𝑖, 𝑗),	in	𝐴2,	to	an	oriented	path	in	G(DC)	from	the	
hardware	device	hosting	VNFc	i	to	the	hardware	device	hosting	VNFc	j.	

	
Figure	7	Example	of	second	level	SM	problem	(a)	and	its	solution	(b)	

Figure	7(a)	shows	an	 instance	of	the	second	 level	problem,	 in	which	the	VNF1	components	
must	be	assigned	to	the	DC1	servers.	Figure	7(b)	shows	a	solution	of	the	second	level	problem,	
where	each	component	has	been	assigned	to	a	(suitable)	server	and	the	links	connecting	the	
components	have	been	mapped	to	the	blue	paths	involving	switches	and	servers.	

The	second	level	problem	is	not	part	of	the	service	mapping	module	and	it	is	solved	by	calling	
the	appropriate	OpenStack	functions	(see	discussion	in	next	Section	2.4.2).	

The	candidate	hardware	for	a	mapping,	i.e.	servers	and	links	within	each	DC	and	links	between	
couple	 of	 DCs,	 have	 to	 be	 able	 to	 support	 the	 performance	 requirements	 of	 the	 virtual	
components.	This	means	that	in	each	G(NS)	directed	graph	and	in	each	G(NI)	directed	graph,	
resource	 pools	 are	 associated	 to	 each	 vertex	 and	 to	 each	 arc.	 These	 resources	 must	 be	
available	 on	 servers	 that	 will	 host	 the	 involved	 virtual	 machines	 and	 in	 the	 links	 used	 to	
guarantee	the	connectivity	required	by	the	network	service	(i.e.	network	links	with	specific	
capacities	and	QoS).		

In	particular,	a	feasible	solution	of	the	service	mapping	problem	must	respect	the	following	
three	requirements.	

Node	Requirements.	A	set	of	node	resource	types,	say	𝑁𝑇,	is	associated	to	the	nodes	of	the	
𝐺(𝑁𝑆)	and	𝐺(𝑁𝐼)	graphs.	Each	member	of	the	𝑁𝑇	set	represents	a	particular	resource	(e.g.	
CPU	power	need,	number	of	cores,	number	of	hardware	and	software	accelerators,	number	
of	GPUs,	etc.),	which	can	be	required	by	a	VNF,	since	it	could	be	required	by	some	of	its	VNFc.	
In	turn,	each	member	of	the	𝑁𝑇	set	can	be	present	in	a	DC,	since	it	could	be	present	in	some	
𝑅ℎ𝑡,	 is	associated	to	each	VNF	node	ℎ,	with	𝑡	∈	𝑁𝑇.	 It	represents	the	amount	of	aggregate	
resource	of	type	𝑡	required	by	the	VNF	ℎ.	A	numeric	value,	say	𝑅𝐴;< ,	is	associated	to	each	NI	
	𝑁𝑇.	 It	 represents	 the	 amount	 of	 aggregate	 resource	 of	 type	 𝑡	 available	 in	 the	DC	𝑢.	 The	
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aggregate	values	 in	each	node	are	computed	summing	up	the	values	of	 the	corresponding	
resource	quantities,	required	or	available,	in	the	single	components,	VNFc	or	servers,	in	that	
node.	

For	each	DC	node	𝑢	and	resource	type	𝑡,	the	sum	of	the	aggregated	resource	needs	of	all	VNFs	
mapped	to	it	cannot	exceed	the	aggregate	available	resource	𝑅𝐴;< .	

Link	Requirements.	A	set	of	link	resource	types,	say	𝐿𝑇,	is	associated	to	the	links	of	the	𝐺(𝑁𝑆)	
and	 𝐺(𝑁𝐼)	 graphs.	 Each	 member	 of	 the	 set	 𝐿𝑇	 represents	 a	 particular	 resource	 (e.g.	
bandwidth)	which	can	be	required	by	an	arc	(ℎ, 𝑘)	in	𝐺(𝑁𝑆).	In	turn,	each	member	of	the	𝐿𝑇	
set	can	be	present	in	a	link	of	the	NI.	A	numerical	value,	say	𝑅𝑅?@< ,	is	associated	to	each	arc	
	𝐿𝑇.	It	represents	the	amount	of	resource	of	type	𝑡	required	by	the	arc	(ℎ, 𝑘).	A	numeric	value,	
𝐴𝑝𝑞𝑡,	is	associated	to	each	arc	(𝑝,𝑞)	in	𝐺(𝑁𝐼),	with	𝑡	∈	𝐿𝑇.	It	represents	the	amount	of	resource	
	𝐿𝑇,	the	sum	of	the	𝑅𝑅AB< 	values	of	NS	arcs	mapped	to	paths	including	(𝑝, 𝑞)	cannot	exceed	
𝑅𝐴CD< .		

Δπ,	 is	associated	 to	each	path	π	 in	𝑃.	An	actual	delay	δ𝑝𝑞	 is	associated	 to	each	arc	(𝑝,𝑞)	 in	
δ𝑝𝑞	of	all	the	arcs	(𝑝,𝑞)	∈	𝐴𝐼	belonging	the	paths	used	for	connecting	all	the	links	belonging	to	
Δπ.	

Since	we	 are	 facing	 an	 online	 problem,	 the	 amount	 of	 physical	 resources	 available	 at	 any	
instance	in	each	time	is	equal	to	the	amount	of	the	infrastructure	hardware	devices	in	the	DCs	
minus	the	one	allocated	to	the	VMs	currently	running	on	their	servers	in	response	to	satisfied	
NS	requests.	Only	when	a	service	is	completed	the	resources	(computational	and	bandwidth	
demands)	 allocated	 to	 it	 become	 newly	 available,	 and	 can	 be	 assigned,	 on	 the	 involved	
devices,	to	other	incoming	service	requests.	
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2.4. Scientific	and	Technological	State	of	the	Art	

After	 the	 previous	 general	 introduction	 to	 the	 service	mapping	 problem,	 the	 proposed	 T-
NOVA	 architecture	 and	 the	 modelling	 framework,	 this	 section	 presents	 a	 review	 of	 the	
scientific	 and	 technological	 state	 of	 the	 art	 in	 service	 mapping.	 Founding	 knowledge	 for	
framing	the	service	mapping	problem	in	the	context	of	network	function	virtualization	can	be	
found	 in	 the	 relevant	 ETSI	 documents	 specifying	 terminology	 and	 concepts,	 use	 cases,	
reference	architecture,	etc.	(see	e.g.	[2],	[4],	[5],	[6]).	

2.4.1. Scientific	State	of	the	Art	

NFV	 has	 received	 attention	 by	 the	 research	 community	 since	 a	 few	 years.	With	 regard	 to	
service	 mapping,	 the	 focus	 is	 on	 DC	 networks.	 Many	 works	 present	 cloud	 platform	
implementations	 that	 allow	NFs	 to	 be	 arbitrarily	 integrated	 into	 virtual	machines	without	
considering	the	functionalities	of	a	service	chain.	More	in	details,	Oktopus	[7],	CloudMirror	[8]	
and	SecondNet	[9]	assign	virtual	clusters	to	DCs	taking	into	account	performance	guarantees.	
Other	works,	such	as	STRATOS	[10],	discusses	service	composition	considering	different	NFs.	
However,	those	works	are	mainly	based	on	heuristic	algorithms	that	seek	to	minimize	inter-
rack	 traffic	 within	 DC	 networks.	 In	 a	 similar	 vein,	 [11]	 discusses	 a	 heuristic	 second	 level	
mapping	algorithm	for	assigning	VMs	to	servers	in	a	data	centre.	The	paper	addresses	the	case	
of	NSs	composed	by	multiple	VNFs,	pointing	out	that	the	typical	case	addressed	in	literature	
regards	 instead	 the	mapping	of	 single	network	 functions.	 Interestingly	 the	paper	discusses	
how	automated	second	level	mapping	procedures	could	be	built	on	top	of	the	existing	cloud	
management	 systems,	with	 particular	 regard	 to	 the	OpenStack	 case	 (this	 aspect	 is	 briefly	
addressed	in	the	next	section,	which	details	the	OpenStack	mechanisms	for	assigning	VMs	to	
the	compute	nodes).		

Other	early	works,	such	as	[8],	are	devoted	to	develop	NS	modelling	techniques	for	solving	
the	 inefficiencies	of	previously	adopted	models,	such	as	hose,	VOC	(Virtual	Oversubscribed	
Cluster)	and	pipe	models	[8].	The	technique,	called	TAG	(Tenant	Application	Graph),	allows	to	
accurately	 capture	 bandwidth	 requirements	 for	 the	 VMs	 to	 be	 deployed,	 avoiding	 the	
overprovisioning	 inefficiencies	 that	 the	 other	 mentioned	 models	 do	 allow.	 The	 TAG	 is	
essentially	a	graph	based	model	in	which	VMs,	or	tiers	of	VMs,	are	represented	by	nodes,	and	
ingress	and	egress	bandwidth	requirements	among	VMs	are	modelled	by	directed	edges,	or	
self-loops,	for	modelling	intra-tier	bandwidth	requirements.	The	NS	models	reported	in	this	
deliverable	are	an	extension	of	the	TAG	model.	In	the	same	work,	also	a	second	level	mapping	
strategy	based	on	min-cut	and	knapsack	algorithm	is	outlined,	with	supporting	simulations	
showing	 the	 effectiveness	 of	 the	 algorithm	 in	 avoiding	 overprovisioning	 of	 resources.	
Basically,	the	logic	of	the	algorithm	is	to	maximise	co-location	of	VMs	linked	by	"heavy"	edges,	
in	terms	of	link	bandwidth	requirements.	

The	deployment	of	NFs	over	multiple	DCs,	i.e.,	the	mapping	of	NF	service	chains	over	inter-DC	
networks	finally	enables	the	wide-area	deployment	of	network	services.	Such	service	chain	
mapping	is	often	compared	to	the	Virtual	Network	(VN)	embedding	problem,	which	has	been	
studied	 extensively.	 Fischer	 et	 al.	 [12]	 provide	 a	 survey	 on	 VN	 embedding	 accordingly.	
However,	the	rich	variety	of	proposed	VN	embedding	algorithms	(w.r.t.,	resource	mapping)	
cannot	be	directly	applied	to	service	chains	due	to	the	different	NF	types,	policies	incurred	by	
the	middlebox	operators,	 and	 the	 changing	 traffic	 rates	 caused	by	 some	NFs.	 In	 any	 case,	
those	works	can	inspire	further	approaches	related	to	service	chain	embedding.	

Other	approaches	exist	also	for	the	service	chain	mapping	over	multiple	DCs	and	providers.	
Huang	et	al.	[13]	propose	a	distributed	algorithm	for	network	service	placement	assuming	the	
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ability	to	deploy	NFs	 in	the	data	path.	MIDAS	[14]	employs	a	heuristic	algorithm	for	order-
preserving	NF	assignment	to	middleboxes	deployed	along	the	data	path.		

The	 recent	 contribution	 by	 Riggio	 et	 al.	 [15]	 introduces	 an	 algorithm	 for	mapping	 Service	
Function	Chain	(SFC)	requests	to	a	virtualised	network	infrastructure,	focusing	on	the	case	of	
WLANs.	 The	 paper	 proposes	 a	 general	 NS	 (i.e.	 SFC)	 and	 virtualised	 network	 modelling	
framework,	still	at	an	early	stage,	relying	on	a	graph	formalism	compliant	with	the	ETSI	NFV	
model.	Both	the	sub-problems	of	VNF	mapping	to	the	underlying	network	nodes	and	of	VNF	
virtual	link	mapping	to	network	paths	are	here	addressed.	The	proposed	mapping	strategy	is	
a	greedy	one,	in	the	sense	that	it	sequentially	visits	the	VNFs	to	be	mapped,	starting	from	the	
one	with	maximum	connectivity	degree.	Each	visited	VNF	is	mapped	to	the	network	nodes	
which	optimise	a	cost	metric.	The	cost	metric	accounts	for	the	residual	capacity	level	of	the	
network	node,	and	for	the	capacity	level	of	the	paths	connecting	the	network	node	with	the	
network	nodes	hosting	the	previously	mapped	VNFs	of	the	service.	The	virtual	link	to	network	
path	mapping	is	decided	based	on	shortest	path	computation.	Results	are	presented	relying	
on	performance	metrics	widely	used	in	the	relevant	literature,	such	as	SFC	acceptance	rates	
and	nodes/links	utilization	levels.		

Another	interesting	and	advanced	contribution	can	be	found	in	[16],	where	authors	propose	
a	 service	 mapping	 algorithm	 based	 on	 integer	 linear	 programming.	 The	 services	 and	 the	
infrastructure	are	modelled	as	undirected	graphs,	with	specification	of	topology	and	node/link	
availabilities	 and	 requirements.	 One	 of	 the	 interesting	 features	 of	 that	 paper	 is	 the	
investigation	of	the	so	called	“lookahead”	property	(previously	introduced	by	the	references	
mentioned	 in	 [16]),	according	 to	which	more	network	services	are	embedded	at	 the	same	
time.	 Authors	 show	 that	 the	 solution	 efficiency	 increases	 as	 the	 number	 of	 services	
simultaneously	 mapped	 increases	 (i.e.	 network	 resources	 are	 better	 exploited	 and	 more	
service	 requests	 can	be	accommodated,	 even	 if	 it	 is	 shown	 that	 increasing	 the	number	of	
simultaneously	mapped	services	increases	the	mapping	time).	

Authors	of	[17],	[18]2	analyse	instead	the	case	in	which	a	network	service	chain	consisting	of	
several	network	functions	can	be	realized	in	multiple	ways	(the	process	of	choosing	the	actual	
implementation	 “shape”	 for	 the	 requested	 service	 chain	 being	 referred	 to	 as	 “service	
decomposition”).	The	authors	then	propose	a	mapping	algorithm	which	integrates	a	service	
decomposition	 phase,	 with	 the	 aim	 of	 optimally	 selecting,	 at	 runtime,	 the	 most	 suitable	
service	configuration	to	implement.	Both	an	ILP	and	a	heuristic	model	for	solving	the	problem	
are	proposed.			

Reference	 [19]	 introduces	 a	 context-free	 language	 to	 build	 a	 model	 for	 formalizing	 the	
network	function	chaining	requests.	Also,	a	mixed	integer	quadratic	programming	node	and	
link	 mapping	 strategy	 is	 presented,	 with	 a	 Pareto	 evaluation	 of	 three	 different	 objective	
functions:	 (i)	 maximization	 of	 remaining	 data	 rate	 on	 underlying	 network	 links,	 (ii)	
minimization	of	the	number	of	used	nodes	and	(iii)	minimization	of	latencies	along	the	paths.		

Also	 soft	 computing	 optimization	 techniques	 have	 been	 proposed	 for	 solving	 the	 service	
mapping	problem.	An	interesting	example	in	this	sense	is	given	in	the	early	work	[20],	where	
a	mapping	approach	relying	on	binary	PSO	(Particle	Swarm	Optimization)	 is	proposed.	Five	
different	 target	 functions	 for	 governing	 the	 mapping	 behaviour	 are	 here	 proposed	
(minimization	of	network	nodes	used,	minimization	of	network	link	used,	minimization	of	the	
cost	of	used	links,	and	others	not	relevant	to	this	discussion).	Virtual	link	mapping	is	performed	
via	 shortest	 path	 computation,	 with	 the	 cost	 given	 by	 the	 free	 link	 resources.	 Other	 soft	
computing,	approximate,	evolutionary	optimization	techniques	(such	as	simulated	annealing,	

																																																													
2	Works	supported	by	the	UNIFY	project,	7th	Framework	Programme	for	Research	and	Technological	
Development,	Grant	Agreement	No.	619609,	www.fp7-unify.eu.	
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genetic	 algorithms,	 etc.)	 have	 been	 applied	 as	 well.	 The	 interested	 reader	 is	 referred	 to	
references	in	[20].	

Among	the	recent	works	related	to	service	mapping,	reference	[21]3,	proposes	a	modular	NFV	
architecture	 that	 permits	 policy-based	 management	 of	 VNFs,	 introducing	 as	 well	 an	
information	model	describing	and	abstracting	network	resources	and	network	functions.	This	
paper	 is	 interesting	 because	 it	 investigates	 the	 synergies	 between	 Network	 Functions	
Virtualization	 (NFV)	 architectures	 and	 Software-Defined	 Networks	 (SDN).	 To	 prove	 the	
concept,	 a	 simple	 virtual	 link	 mapping	 algorithm	 based	 on	 shortest	 path	 computation	 is	
proposed	and	the	policy	based	framework	 for	orchestrating	VNFs	 is	 tested	 in	a	small-scale	
testbed.	 It	 is	 shown	 how	 the	 proposed	 rule-based	 framework	 allows	 to	 dynamically	
orchestrate	the	VNFs	and	the	underlying	infrastructure,	in	such	a	way	as	to	ensure	the	SLAs	
defined	for	the	different	client	tiers	are	satisfied.	

Concluding,	research	on	service	mapping	algorithm	is	continuously	evolving,	with	many	novel	
contributions	 being	 proposed.	 The	 interested	 reader	 may	 find	 additional	 discussion	 of	
consolidated	state	of	the	art	in	service	mapping	in	[12],	[22],	[23].		

Finally,	the	output	of	the	current	efforts	of	T-NOVA	consortium	in	the	field	of	service	mapping	
research	can	be	found	in	the	following	papers:	[14],	[24]	(integer	linear	programming	service	
mapping	 for	 multi	 domain	 service	 mapping	 with	 limited	 information	 disclosure);	 [25]	
(scheduling	problem);	[26]	(early	results	on	service	mapping	via	reinforcement	learning);	[27]	
(description	 of	 the	 T-NOVA	 service	mapping	module	 and	 its	 integration	 with	 the	 T-NOVA	
orchestrator).	

2.4.2. Technological	State	of	the	Art	

This	section	presents	details	on	the	OpenStack	filtering	and	weighting	procedure,	which	is	the	
technology	 aimed	 to	 decide	 on	 which	 hosts	 the	 VM	 should	 be	 instantiated.	 This	 is	 a	
technological	solution	to	what	has	been	called	in	Section	2.3	the	second	level	service	mapping	
problem,	which	is	namely	the	problem	of	deciding	which	machines	in	the	DC	should	host	the	
mapped	services.	In	Section	3.3.4,	an	algorithm	proposed	by	T-NOVA	for	second	level	mapping	
is	presented.	

2.4.2.1.	 OpenStack	Filtering	and	Weighting	

When	scheduling	a	VM	in	an	OpenStack	environment	the	“compute”	service	uses	the	nova-
scheduler	to	determine	where	to	instantiate	the	VM.	When	resourcing	VM	instances,	the	nova	
filter	scheduler	filters	and	weights	each	host	in	the	list	of	acceptable	hosts.	The	first	step	is	the	
application	of	filters	to	determine	which	hosts	are	eligible	for	consideration	when	dispatching	
a	resource,	as	shown	in	Figure	8.	Filters	are	binary:	either	a	host	is	accepted	by	the	filter,	or	it	
is	rejected.		

The	current	available	filters	in	OpenStack	are	as	follows:	

• AggregateCoreFilter	
• AggregateDiskFilter	
• AggregateImagePropertiesIsolation	
• AggregateInstanceExtraSpecsFilter	
• AggregateIoOpsFilter	
• AggregateMultiTenancyIsolation	

• GroupAffinityFilter	
• GroupAntiAffinityFilter	
• ImagePropertiesFilter	
• IsolatedHostsFilter	
• IoOpsFilter	
• JsonFilter	

																																																													
3	Work	supported	by	the	GN3plus	project,	7th	Framework	Programme	for	Research	and	Technological	
Development,	Grant	Agreement	No.	605243.	
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• AggregateNumInstancesFilter	
• AggregateRamFilter	
• AggregateTypeAffinityFilter	
• AllHostsFilter	
• AvailabilityZoneFilter	
• ComputeCapabilitiesFilter	
• ComputeFilter	
• CoreFilter	
• NUMATopologyFilter	
• DifferentHostFilter	
• DiskFilter	

• MetricsFilter	
• NumInstancesFilter	
• PciPassthroughFilter	
• RamFilter	
• RetryFilter	
• SameHostFilter	
• ServerGroupAffinityFilter	
• ServerGroupAntiAffinityFilter	
• SimpleCIDRAffinityFilter	
• TrustedFilter	
• TypeAffinityFilter	

	

	
Figure	8	OpenStack	Filter	scheduler	approach	(picture	elaborated	from	[28])	

Hosts	that	are	accepted	by	the	filter	are	then	processed	by	a	weighing	step	to	decide	which	
hosts	to	use	for	that	request,	as	shown	in	Figure	9.		All	weights	are	normalized	before	being	
summed	up;	the	host	with	the	largest	weight	is	given	the	highest	priority.	
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Figure	9	Weighting	hosts	(picture	elaborated	from	[28]) 
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3. T-NOVA	SERVICE	MAPPING	ALGORITHMS	

This	 section	 presents	 the	 mathematical	 details	 of	 the	 four	 service	 mapping	 approaches	
proposed	in	T-NOVA.	

The	 first	 proposed	 approach	 is	 based	 on	 Integer	 Linear	 Programming	 (ILP)	 and	 aims	 to	
optimize	NS	 to	 PoP	mappings,	 having	 as	 objective	 the	minimization	 of	mapping	 costs	 and	
service	delay	 in	 respect	of	 infrastructure	and	services’	 constraints.	This	 ILP	approach	 takes	
decisions	based	on	the	current	state	of	the	network	(as	provided	by	the	network	monitoring)	
and	on	the	NS	requirements	and	specifications	(as	gathered	from	the	NS	catalogue).	

The	second	proposed	approach	is	a	stochastic	one	(while	the	previous	one	is	deterministic)	
and	 is	 based	 on	 the	 reinforcement	 learning	 theory.	 The	 approach	 aims	 at	 exploring	 the	
possibility	 of	 improving	mapping	decisions	 based	on	 iterative	 learning	of	 the	 environment	
dynamics	(VNF	types,	arrival	and	termination	rates,	resources’	capacity,	etc.).	

The	third	approach	is	also	based	on	ILP,	and	investigates	both	a	first	level	mapping	strategy	
and	a	second	level	one.	At	first	level,	the	approach	investigates	a	different	target	function	with	
respect	to	the	one	 investigated	by	the	first	proposed	ILP	approach,	aimed	at	balancing	the	
load	 across	 the	 network.	 In	 addition,	 a	 second	 level	 approach	 based	 on	 Mixed	 Integer	
Programming	(MIP)	is	proposed,	where	the	objective	is	to	maximise	the	NS	co-location,	while	
minimizing	the	traffic	within	the	DC.	

Finally,	the	fourth	theoretic	algorithm	here	proposed	addresses	the	problem	of	NS	scheduling,	
an	issue	complementary	the	of	service	mapping	(details	are	in	Section	3.4).	

To	ease	the	reading,	a	 table	reporting	the	 list	and	a	brief	explanation	of	 the	mathematical	
symbols	can	be	found	in	Section	9.	Also,	each	section	has	a	separate	numbering	of	equations.	

3.1. An	Integer	Linear	Programming	based	Approach	

This	mapping	strategy	has	been	proposed	by	the	University	of	Milan	(Unimi).	It	is	based	on	an	
ILP	model	for	the	first	level	problem.	The	aim	of	the	first	level	problem	is	to	identify	a	mapping	
of	VNFs	to	DCs	and	links	to	paths	which	minimize	the	overall	cost,	while	satisfying	constraints	
on	resource	usage	and	delay	(eventually	coming	from	SLAs	and	defined	in	the	NSD	of	the	NS	
to	be	 instantiated).	The	objective	 function	of	 the	optimization	model	 is	a	weighted	sum	of	
three	 components:	 (i)	 the	 cost	 of	 assigning	VNFs	 to	DCs,	 (ii)	 the	overall	 delay	 and	 (iii)	 the	
overall	link	resource	usage,	as	derived	by	assigning	the	links	among	VNFs	to	path	among	DCs.	
Since	we	are	facing	an	online	problem,	this	objective	implicitly	models	the	true	overall	target	
function,	i.e.	the	maximization	of	the	number	of	accepted	NS	requests.			

Given	a	 service	 request	 and	a	network	 infrastructure,	 for	 each	VNF,	 say	ℎ,	 composing	 the	
service,	and	for	each	DC,	say	𝑝,	composing	the	network	infrastructure,	we	need	to	define	a	
cost,	 say	𝑐C?,	which	 can	model	 the	cost	 of	 assigning	ℎ	 to	𝑝	 in	 term	of	 the	maximization	of	
accepted	requests.	These	quantities	can	be	estimated	gathering	data	from	the	quality	of	the	
solution	obtained	when	solving	the	second	 level	problem	through	the	OpenStack	API	calls.	
	have	been	tuned	according	to	the	results	of	an	experimental	campaign	(see	Section	5.1).		

In	this	ILP	formulation	we	use	the	binary	variables	𝑦C?	to	express	the	assignment	of	VNF	ℎ	to	
the	DC	𝑝,	whereas	the	binary	variables	𝑥CD?@ 	indicate	whether	the	link	(ℎ, 𝑘)	in	graph	𝐺 𝑁𝑆 =
(𝑉, 𝐴)	has	been	mapped	onto	a	path	among	DCs	in	graph	𝐺 𝑁𝐼 = (𝑉., 𝐴.)	which	uses	the	
link	(𝑝, 𝑞).		

The	ILP	approach	for	first	level	mapping	can	be	therefore	formalized	as	follows.	
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Problem	(ILP	based	Service	mapping)	

Minimize	
	

𝛼 𝑐C?𝑦C? + 𝛽 𝛿CD𝑥CD?@ + 𝛾 𝑅𝑅?@< 𝑥CD?@(?,@)∈O<∈PQ(C,D)∈OR(?,@)∈SS∈TC∈UR?∈U 						(1)	

	

Subject	to	
	

𝑦C? = 1											∀ℎ ∈ 𝑉C∈UR 		 	 	 	 	 	 	 	 		(2)	

𝑥CD?@ − 𝑥DC?@ =C∈URC∈UR 𝑦C? − 𝑦C@											∀ ℎ, 𝑘 ∈ 𝐴, ∀𝑝 ∈ 𝑉. 		 	 	 	 		(3)	

𝛿CD𝑥CD?@C,D ∈OR?,@ ∈S ≤ ∆S													∀𝜋 ∈ 𝑃		 	 	 	 	 	 		(4)	

𝑅𝑅?@< 𝑥CD?@?,@ ∈O ≤ 𝑅𝐴CD< 										∀ 𝑝, 𝑞 ∈ 𝐴., ∀𝑡 ∈ 𝐿𝑇		 	 	 	 	 		(5)	

𝑅𝑅?< 𝑦C??∈U ≤ 𝑅𝐴C< 										∀𝑝 ∈ 𝑁., ∀𝑡 ∈ 𝑁𝑇		 	 	 	 	 	 		(6)	

𝑦C? ∈ 0,1 										∀ℎ ∈ 𝑉, ∀𝑝 ∈ 𝑉. 		 	 	 	 	 	 	 		(7)	

𝑥CD?@ ∈ 0,1 										∀(ℎ, 𝑘) ∈ 𝐴, ∀(𝑝, 𝑞) ∈ 𝐴. 		 	 	 	 	 	 		(8)	

	

The	objective	function	(1)	is	a	weighted	sum	of	three	components:	the	cost	of	assigning	VNFs	
to	DCs,	the	overall	delay	and	the	overall	link	resources	usage.	

Constraints	(2)	ensure	that	each	VNF	ℎ	 is	mapped	exactly	to	one	DC.	Conditions	(3)	ensure	
that	for	a	given	pair	of	VNFs	ℎ	and	𝑘	assigned	to	DCs	𝑝	and	𝑞,	respectively,	there	is	a	path	in	
the	network	infrastructure	graph	𝐺(𝑁𝐼)	connecting	𝑝	to	𝑞	to	which	the	edge	(ℎ, 𝑘)	has	been	
mapped.	Constraints	(4)	impose	the	satisfiability	of	a	SLA	based	on	the	delay	thresholds	for	
	in	the	𝑃	set.	Constraints	(5)	impose	the	link	resource	limit	of	the	inter	DC	connections	for	each	
link	resource	type	𝑡	 in	the	resource	type	set	𝐿𝑇.	Constraints	 (6)	 impose	the	node	resource	
limit	of	the	DC	for	each	node	resource	type	𝑡	in	the	resource	type	set	𝑁𝑇.	The	conditions	(7)	
and	(8)	express	the	binary	domain	constraints	for	the	variables	used.	

The	above	ILP	model	is	solved	by	invoking	the	open	source	GLPK	ILP	solver.	This	choice	has	
been	tested	against	the	choice	of	the	commercial	solver	CPLEX	(see	Section	5.1).	
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3.2. Reinforcement	Learning	Based	Approach	

This	section	presents	a	service	mapping	strategy	based	on	Reinforcement	Learning	(RL)	[29].	
We	first	focus	on	a	strategy	to	map	single	VNFs	and	then	provide	a	possible	extension	of	the	
method	to	the	general	case	of	NS	mapping.	

This	mapping	strategy	has	been	proposed	by	the	Consortium	for	Research	in	Automation	and	
Telecommunication	(CRAT).	Early	results	of	the	work	can	be	found	in	[26].	

3.2.1. VNF	Mapping	via	Reinforcement	Learning	

This	section	describes	a	reinforcement	learning	strategy	aimed	at	mapping	single	VNFs.	Early	
work	on	the	topic	can	be	found	in	the	paper	[26],	to	which	the	interested	reader	is	redirected.	

3.2.1.1.	 Problem	Modelling	based	on	Markov	Decision	Process		

Reinforcement	learning	methodology	applies	to	control	problems	which	can	be	modelled	as	
a	Markov	Decision	Process	(MDP)	[30].	

A	MDP	 is	a	discrete-time	stochastic	control	process	defined	by	 the	quadruple	{𝑆, 𝐴𝑐𝑡, 𝑇, 𝑟}	
where:	

-	𝑆	is	a	discrete	and	finite	state	space	set.	

-	𝐴𝑐𝑡	is	a	discrete	and	finite	action	space.	

-	𝑇	is	the	transition	probability	matrix,	which	describes	the	system	dynamics.	

-	 𝑟:	𝑆×𝑆×𝐴𝑐𝑡 → 𝑅cd	 is	 the	 reward	 function,	 that	 describes	 the	 reward	 obtained	 in	 the	
transition	from	𝑠	to	𝑠′	when	action	𝑎 ∈ 𝐴𝑐𝑡	is	taken.	

The	 main	 MDP	 definitions	 rely	 on	 the	 Markovian	 (or	 memory-less)	 property	 and	 on	 the	
stationary	 distribution	 of	 the	 stochastic	 process.	 Under	 these	 assumptions,	 the	 transition	
probabilities	are	stationary	and	depend	on	the	current	state-action	pair:	the	generic	element	
of	the	matrix	𝑇,	denoted	with	𝑡(𝑠, 𝑎, 𝑠′),	describes	the	probability	that	the	system	trajectory	
transits	from	state	𝑠	to	state	𝑠′	when	action	𝑎 ∈ 𝐴𝑐𝑡		is	taken.	A	policy	Π	is	a	mapping	of	each	
state	𝑠	to	an	action	𝑎.	The	state	value	function	𝑉i(𝑠)	is	defined	as	the	expected	reward	when	
the	system	is	in	state	𝑠	and	the	system	evolves	under	policy	Π.	Similarly,	the	state-action	value	
function	𝑄i(𝑠, 𝑎)	is	defined	as	the	expected	reward	when	the	system	is	in	state	𝑠,	action	𝑎	is	
chosen	and	the	system	evolves	under	policy	Π.	

In	the	following,	the	actual	SM	problem	is	modelled,	 in	order	to	derive	 information	on	the	
associated	MDP	{𝑆, 𝐴𝑐𝑡, 𝑇, 𝑟}.	Let	us	denote	with	Τ	the	time	horizon	over	which	the	problem	
is	 defined.	 Let	 |An|	 denote	 the	 number	 of	 PoPs	 in	 the	 network	 infrastructure	 and	𝑃𝑜𝑃 =
{1,2,3, . . . , |An|	}the	PoPs’	IDs.	

Recall	 that	𝑅𝐴	denotes	the	vector	of	resources	available	at	the	different	PoPs.	The	generic	
component	of	𝑅𝐴,	called	𝑅𝐴C,	denotes	the	amount	of	the	different	resources	available	at	the	
PoP	 𝑝.	 In	 turn,	 the	 component	 𝑡	 of	 𝑅𝐴C,	 named		
𝑅𝐴C< ,	denotes	the	amount	of	resources	of	type	𝑡	 (e.g.	memory,	computation,	storage,	etc.)	
available	in	the	PoP	𝑝	(we	consider	a	univocally	ordered	set	of	resource	types).		

As	a	matter	of	fact,	resources	are	differentiated	based	on	their	nature:	a	cloud	provider	can	
offer,	for	example,	both	computational	and	storage	resource,	and,	regarding	storage,	either	
on	 ssd	 or	 on	 hdd	 disks;	 some	machines	may	mount	 a	 specific	 network	 card,	 some	 other	
machines	may	have	a	higher	uptime,	and	so	on.		
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On	 the	other	hand,	each	VNF	 is	 characterised	by	 the	 requirement	 vector	𝑅𝑅?< ,	 stating	 the	
amount	of	resources	of	type	𝑡	required	by	the	VNF	ℎ	to	be	mapped.	

	

State	Space	Definition	

In	the	early	work	[26]	the	state	space	has	been	first	defined	as	

𝑆 = {𝑠(𝑡) = 𝑠s,C(𝑡), 𝑡 ∈ Τ, 𝑣 ∈ 𝑉𝑁𝐹, 𝑝 ∈ 𝑃𝑜𝑃}		 	 	 	 	 	 		(1)	

where	𝑠s,C(𝑡)denotes	the	number	of	VNF	of	type	𝑣	deployed	at	PoP	𝑝.	The	state	space	thus	
gives	a	view	of	the	occupancy	level	of	the	PoP	at	the	different	times.	A	formulation	considering	
such	 definition	 of	 the	 state	 space	 presents	 a	 scalability	 problem	 due	 to	 the	 state	 space	
explosion	observed	when	the	number	of	VNF	types	and	PoPs	increases.	Thus,	the	following	
aggregated	formulation	for	the	state	space	is	considered	in	the	following	formula	

𝑆 = {𝑠 ∈ 0,1 d, UR }		 	 	 	 	 	 	 	 	 		(2)	

in	which	the	length	of	the	generic	state	vector	is	equal	to	the	number	of	PoPs	in	the	network	
infrastructure	( 𝑉. ),	and	the	generic	i-th	component	of	the	state	vector	is	equal	to	one	if	the	
aggregated	occupancy	level	of	the	i-th	PoP	is	greater	than	a	predefined	threshold.	By	providing	
an	 aggregated	 view	 of	 the	 PoPs	 occupancy	 level,	 this	 state	 space	 formulation	 improves	
scalability	with	respect	to	the	previous	one.	The	current	state	of	the	systems	is	evaluated	by	
the	service	mapping	module	through	the	API	made	available	by	the	infrastructure	repository,	
as	detailed	in	Section	4.2.1.	

	

Action	Set	

The	action	set	regards	the	decision	about	where	VNF	is	deployed,	and	is	defined	as	follows	

𝐴 = {1,2, … , |𝐴5|}		 	 	 	 	 	 	 	 	 		(3)	

where	𝑎 = 𝑖	means	that	the	VNF	in	question	is	deployed	on	the	i-th	PoP.		

	

Transition	Matrix	

We	assume	that	the	requests	and	the	terminations	of	services	are	characterized	as	follows:		
for	 each	 service	 of	 type	 𝑘,	 the	 new	 NS	 requests	 are	 distributed	 according	 to	 a	 Poisson	
distribution	of	mean	arrival	frequency	𝜆@and	terminations	according	to	a	Poisson	distribution	
of	mean	arrival	frequency	𝜇@.	

In	 case	 the	 state	 space	 definition	 (1)	 is	 adopted,	 a	 state	 transition	 due	 to	 a	 new	 service	
instantiation	can	be	modelled	as	𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝛿A,@ 	where	𝛿A,B 	is	a	vector	all	zeroes	but	
the	i*j-th	component,	which	is	equal	to	one,	meaning	that	a	new	i-th	VNF	has	been	allocated	
in	the	j-th	PoP.	VNF	termination	can	be	modeled	similarly.	

The	 transition	 probabilities	 among	 states	 can	 be	 modelled	 through	 a	 transition	 matrix	
𝑇(𝑠, 𝑎, 𝑠′),	specifying	the	probability	that	performing	action	𝑎	in	state	𝑠	will	lead	to	the	new	
state	𝑠′.	Transition	probabilities	depend	on	the	arrival	and	departure	rates.	In	case	the	state	
space	definition	 in	(2)	 is	chosen,	 it	 is	not	possible	to	easily	derive	a	state	transition	matrix,	
since	an	aggregated	state	description	is	adopted,	so	that	there	is	no	longer	a	granular	view	on	
the	PoP	occupancy	level.	However,	the	reinforcement	learning	solution	approach	proposed	in	
the	following	does	not	require	a	complete	knowledge	of	the	MDP,	and	of	the	transition	matrix	
in	particular	(we	adopt	a	model-free	approach).	
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Reward	Function	

The	 reward	 matrix	 is	 chosen	 to	 reflect	 the	 service	 mapping	 goals.	 A	 possible	 choice	 in	
particular	is	the	following	

	

𝑟(𝑠, 𝑎, 𝑠′) = 𝑟, 𝑟 > 0	𝑖𝑛	𝑐𝑎𝑠𝑒	𝑜𝑓	𝑠𝑢𝑠𝑠𝑒𝑠𝑠𝑓𝑢𝑙𝑙	𝑚𝑎𝑝𝑝𝑖𝑛𝑔
0																																																																	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 												(4)	

	

where	different	choices	for	the	reward	factor	r	are	possible:	

• A	constant	reward,	leading	to	maximization	of	requests’	acceptance.	
• A	 reward	 function	depending	on	 the	VNF	 to	be	mapped	and	 the	PoP	 chosen.	 This	

choice	can	be	adopted	if	minimisation	of	mapping	costs	is	sought	(when	the	costs	for	
mapping	 to	 the	 different	 PoPs	 are	 known),	 or	 as	 well	 maximization	 of	 mapping	
revenue	(when	different	VNFs	yields	to	different	revenues).	

The	 following	 section	 briefly	 describes	 the	 solution	 strategy	 devised	 to	 derive	 an	 optimal	
mapping	strategy,	that	is,	a	strategy	which	maximises	the	revenues	in	the	long	term.	

3.2.1.2.	 MDP	Solution	Strategy	

The	objective	of	this	section	is	to	derive	a	feasible	solution	strategy	to	work	out	the	optimal	
policy	for	the	MDP	defined	in	the	section	above.	An	optimal	policy	is	the	one	optimizing	the	
expected	reward	in	the	long	run.	

Several	strategies	are	available	in	literature	to	find	the	optimal	policy	(a	review	of	the	main	
ones	can	be	found	in	[29]).	It	is	known	that,	in	case	full	information	on	the	MDP	are	available,	
the	optimal	policy	can	be	computed	by	solving	the	Bellman	equation	of	dynamic	programming	
[29].	 In	our	 case,	however,	 it	 is	not	 realistic	 to	assume	perfect	model	on	 the	MDP,	and	 in	
particular	on	the	transition	matrix	(since	there	is	not	perfect	knowledge	of	the	NS	request	and	
termination	patterns	and	the	state	space	has	an	aggregated	structure).	For	 this	 reason,	RL	
approaches	 for	 the	 optimal	 policy	 calculation	 are	 investigated	 next.	 RL	 are	 model	 free	
methods,	which	do	not	assume	complete	knowledge	of	the	environment	(of	transition	matrix	
𝑇	in	particular).	Different	RL	methods	exist,	of	which	Q-learning	will	be	investigated	next.	Both	
methods	aim	at	estimating	 the	previously	 introduced	 state-action	value	 function	𝑄i(𝑠, 𝑎),	
defined	as	the	expected	value	of	the	cumulative	reward	obtained	when	taking	action	𝑎	from	
state	𝑠	and	then	following	policy	Π.		

𝑄i(𝑠, 𝑎) = 𝐸S{ 𝑟�� |𝑠� = 𝑠, 𝑎� = 𝑎}		 	 	 	 	 	 	 		(5)	

where	𝑟�, 𝑠�	𝑎𝑛𝑑	𝑎�	are	the	reward,	state	and	action	at	time	𝜏.	

	

Q-Learning	

Q-Learning	 [29]	 iteratively	 estimates	 the	 best	 state-action	 value	 function	 through	 the	
following	update	rule,	executed	each	time	an	action	is	taken	and	the	effect	(i.e.	reward)	of	the	
action	is	observed.	

𝑄(𝑠�, 𝑎�) ← 𝑄(𝑠�, 𝑎�) + 𝛼�[𝑟��� + 𝜆	𝑚𝑎𝑥�𝑄(𝑠���, 𝑎) − 𝑄(𝑠�, 𝑎�)]			 	 	 	(6)						

Here	𝜏	is	the	time,	α�	is	the	so	called	learning	rate	and	𝜆 ∈ [0,1]	is	a	discount	factor	weighting	
current	rewards	versus	future	ones.	
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Based	on	the	current	estimate	of	Q(𝑠�, 𝑎�),	the	mapping	action	to	be	taken	is	decided	as	the	
one	which	maximizes	the	current	state-action	value	function.	

	

𝜋� 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥�Q 𝑠�, 𝑎� 		 	 	 	 	 	 	 	 		(7)	

	

The	above	defined	update	rule	for	Q	defines	a	feedback	rule	in	which	α�is	a	gain	factor	and	
[𝑟��� + 𝜆	𝑚𝑎𝑥�𝑄(𝑠���, 𝑎) − Q(𝑠�, 𝑎�)]	is	the	error	between	a	mixed	observed	and	estimated	
state	 action	 value	 (𝑟��� + 𝜆	𝑚𝑎𝑥�𝑄(𝑠���, 𝑎))	 and	 the	 previous	 estimate	 for	 Q(𝑠�, 𝑎�).	 A	
similar	policy	that	guarantees	faster	state	exploration	and	convergence	of	the	algorithm	is	the		
𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦	Q-Learning	policy,	in	which,	at	each	mapping	step,	action	𝑎𝑟𝑔𝑚𝑎𝑥�Q(𝑠�, 𝑎�)	is	
taken	with	probability	1 − 𝜖,	while	a	 random	action	 is	 taken	with	probability	𝜖.	 The	effect	
observed	is	that	of	letting	the	algorithm	escape	from	local	minima.	𝜖	is	commonly	referred	to	
as	exploration	parameter,	since	the	greater	it	is,	the	further	we	are	from	the	pure	Q-Learning	
policy.	 In	practice,	𝜖	can	be	chosen	 large	at	 the	beginning	of	 the	operation,	 to	explore	the	
policy	space,	and	then	decreased	when	convergence	to	the	optimal	policy	is	assessed.	

Based	on	the	above,	the	RL	service	mapping	problem	can	be	therefore	stated	as	follows.	

Problem	(Reinforcement	Learning	based	Service	Mapping)	

Given	the	current	state	of	the	system	s�	and	the	observed	reward	𝑟�,	act	according	to	the	Q-
learning	𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦	policy		

π� s = argmax�Q s�, a� 	with	prob. 1 − ϵ	
rand a 												with	prob. ϵ	 			 								 	 	 	 																(8)	

and	update	the	state	action	value	function	according	to	(6).		

The	flow	of	the	proposed	strategy	is	presented	in	the	figure	below.	

	
Figure	10	Reinforcement	Learning	workflow.	

The	presented	algorithm	for	mapping	VNFs	is	outlined	in	the	following	table,	in	the	form	of	
pseudo	code.	

Table	2	Pseudo	code	for	the	VNF	mapping	based	on	reinforcement	learning	

Algorithm 1 Virtual Network Function Mapping Based on Reinforcement 

Learning 

1 Start 

2 initialize state action value function Q 

ENVIRONMENT

SERVICE	MAPPING	
MODULE

MAPPING	
REWARD

CURRENT	Q	
ESTIMATE

MAPPING	DECISION	
(BASED	ON	Q	AND	
CURRENT	STATE)

Q	UPDATE

STATE	UPDATE
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3 listen for incoming VNF activation/termination requests 

4 receive incoming VNFs activation/termination request 

5 retrieve VNF requirements 

6 if VNF activation event 

7  measure current state according to (2) 

8  map the VNF based on Q-Learning policy (8) 

9       check PoP feasibility 

10      if feasible 

11             positive reward 

12      else 

13             failure reward (e.g. zero or negative reward) 

14      endif 

15      update Q function based on (6) 

16 else (i.e. VNF termination event) 

17       compute state after VNF resources are released 

18       reward=0 

19       update Q function based on (6) 

20 endif 

	

3.2.2. NS	Mapping	Algorithm	

The	above	sections	were	concerned	with	a	reinforcement	learning	strategy	for	mapping	VNFs.	
This	section	proposes	an	extension	of	 the	strategy	to	the	case	 in	which	the	mapping	of	an	
entire	NS	is	sought	(i.e.,	a	NS	composed	by	more	VNFs).		

The	procedure	for	mapping	the	VNFs	is	kept	unchanged,	but	the	following	two	additional	steps	
are	added:	

1. VNF	link	–	PoP	path	mapping.	 In	the	general	case,	a	NS	is	composed	by	more	VNFs	
related	 by	 topological	 constraints	 (expressed	 by	 the	 forwarding	 graph)	 and	 link	
requirements.	In	addition	to	the	VNF-PoP	mapping	action,	it	is	therefore	necessary	to	
also	decide	how	links	among	the	VNFs	should	be	mapped	on	the	paths	connecting	the	
PoPs	hosting	the	mapped	VNFs.	

2. Feasibility	check	extended	to	link	requirements.		When	the	VNF	link	mapping	problem	
is	 considered	 as	 well,	 it	 is	 necessary	 to	 check	 that	 the	 actions	 decided	 by	 the	
reinforcement	 learning	 mapping	 engine	 do	 not	 lead	 to	 the	 violation	 of	 the	 link	
resources	requirements	(such	as	available	link	bandwidth,	maximum	admissible	delay	
between	mapped	VNFs,	 etc.).	 Therefore,	 in	addition	 to	 the	PoP	 capacity	 feasibility	
check,	the	feasibility	check	on	link	requirements	is	added.	

The	resulting	algorithm	for	NSs	mapping	based	on	reinforcement	learning	is	outlined	below,	
in	pseudo	code	formalism.	

	

Table	3	Pseudo	code	for	the	NS	mapping	based	on	reinforcement	learning	

Algorithm 2 Network Service Mapping Based on Reinforcement Learning 

1 Start 
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2 initialize state action value function Q 

3 listen for incoming events (NS activation or termination events) 

4 receive incoming NS activation or termination event 

5 retrieve NS data (number of VNFs, node/link requirements, etc.) 

6 if NS activation event 

7  measure current state according to (2) 

8       for i=1 to number of VNFs composing the NS 

9        map the VNF based on Q-Learning policy (8) 

10            check PoP feasibility 

11            map ingress and egress VNF links 

12            check link feasibility 

13            if feasible 

14                  positive reward 

15            else 

16                  failure reward (e.g. zero or negative reward) 

17            endif 

18            update Q function based on (6) 

19       endfor 

20 else (i.e. NS termination event) 

21       compute state after NS resources are released 

22       reward=0 

23       update Q function based on (6) 

24 endif 

	

The	above	strategy	has	a	degree	of	freedom	in	the	choice	of	the	VNF	link	mapping	strategy	
(line	 11).	 Driven	 by	 the	mapping	 goals	 of	 selecting	 feasible	 PoP	 paths	 leading	 to	minimal	
mapping	 costs	 and	 balanced	 link	 resources’	 consumption	 patterns,	 a	 shortest	 path	 link	
mapping	strategy	has	been	selected,	in	which	the	cost	matrix	of	the	shortest	path	problem	is	
given	by	a	linear	combination	of	the	matrix	carrying	the	information	on	the	link	mapping	costs,	
and	the	matrix	carrying	information	on	the	link	congestion	metrics.	While	the	cost	matrix	can	
be	assumed	 fixed,	 the	 “link	 congestion	matrix”	has	 to	be	updated	 regularly,	 to	 reflect	 the	
current	 congestion	 level	 of	 the	 infrastructure.	 This	 link	 mapping	 strategy	 is	 suited	 to	 the	
problem	because	it	reflects	the	mapping	goals	and	it	is	fast	(the	shortest	path	problem	can	be	
resolved	with	fast	algorithms	such	as	Dijkstra).	The	balance	between	the	goal	of	minimizing	
link	mapping	costs	and	link	balancing	can	be	adjusted	by	tuning	the	coefficients	governing	the	
linear	combination	of	 the	cost	and	the	balancing	matrices,	 similarly	 to	what	 is	done	 in	 the	
selection	 of	 the	 related	 terms	 in	 the	 objective	 functions	 of	 the	 proposed	 ILP	 mapping	
strategies.	
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3.3. Multi-stage	Network	Service	Embedding	

This	 approach	 has	 been	 proposed	 by	 the	 Gottfried	Wilhelm	 Leibniz	 Universität	 Hannover	
(LUH).	Previous	work	can	be	found	in	[31],	[24].	

3.3.1. Main	assumptions	

This	strategy	is	based	on	the	assumption	that	the	NF	providers	(DC	operators)	advertise	PoP-
level	graph	with	 link	costs,	and	the	NF	cost,	 i.e.,	CPU	cost	at	the	DC,	that	are	expressed	as	
weights	in	the	algorithm	description.	The	strategy	is	based	on	an	ILP	model	applicable	to	any	
DC	topology	such	as	the	two-level	hierarchical	fat-tree.	

3.3.2. Iterative	Algorithm	

The	proposed	mapping	algorithm	is	based	on	the	following	steps.	

1. Identify	location-dependent	VNFs	(e.g.,	proxies;	resources	should	be	in	proximity	of	
the	client’s	network).	

2. Identify	candidate	DCs	for	each	VNF	in	the	service	chain.	

3. If	there	is	no	DC	satisfying	all	VNF	requirements	and	constraints,	partition	the	service	
chain	among	DCs:	

• ILP	model	as	shown	in	Section	3.3.3	below.	
• Different	 objectives	 can	 be	 considered,	 depending	 on	 the	 service	 and	 NF	

providers’	preference,	like	for	example:	
o Minimizing	the	client’s	expenditure.	
o Maximizing	load	balancing	across	the	DCs	by	considering	(i.e.,	minimisation	

of)	weight	values	that	express	NF	Service	Providers’	preferences.	

4. Upon	partitioning,	assign	the	VNFs	to	servers	within	the	selected	DCs	(second	level	
mapping	problem):	

• Formulation	as	(Integer)	Linear	Program	similar	to	existing	Multi-commodity-flow	
problem	formulations.	
o Objectives:	Minimize	inter-rack	traffic	and	the	number	of	used	servers.	

• Alternative	solution:	Heuristic	algorithm	that	aims	at	assigning	 the	VNFs	 to	 the	
smallest	number	of	racks	and	servers,	while	CPU	load	and	bandwidth	are	balanced	
across	the	racks	and	servers.	

5. Stitch	together	the	VNF	service	chain	segments	(mapped	to	different	DCs)	with	the	
assignment	of	virtual	links	connecting	the	DCs:	

• Objectives:	 To	 find	 the	 shortest	 path	 between	 a	 pair	 of	 DCs	 that	 offers	 the	
required	amount	of	bandwidth.	

• Multi-commodity	flow	problem	formulation.	

3.3.3. ILP	Model	for	Service	Chain	Partitioning	

Next,	we	present	our	ILP	model	for	service	chain	partitioning.	We	consider	each	link	associated	
with	a	weight	value	that	expresses	the	utilization	of	links	and	DCs.	The	objective	function	of	
the	ILP	aims	at	minimizing	the	sum	of	used	weights	𝑤CD 	which	essentially	leads	to	network	
load	balancing,	and	therewith,	to	increased	resources	efficiency.	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

34	

In	the	ILP	formulations,	we	use	the	binary	variable	𝑦C?	to	express	the	assignment	of	VNF	ℎ	to	
DC	𝑝.	Similarly,	the	binary	variable	𝑥CD?@ 	indicates	whether	the	VNF	graph	edge	 ℎ, 𝑘 ∈ 𝐴	has	
been	mapped	onto	the	PoP-level	graph	edge	 𝑝, 𝑞 ∈ 𝐴. 	(same	notation	is	used	as	for	the	first	
ILP	approach	in	Section	3.1).	

The	service	chain	request	partitioning	ILP	is	therefore	defined	as	follows.	

	

Problem	(Service	mapping	based	on	Service	Chain	Request	Partitioning)	

Minimize:	

	

𝑤CD
C,D ∈OR	

	 	𝑅𝑅?@< 	𝑥CD?@
?,@ ∈O

																																																																																																										(1)	

	

subject	to:	

	

𝑦C? = 1											∀ℎ ∈ 𝑉																																																																																																																			(2)
C∈UR	

	

𝑥CD?@ − 𝑥DC?@ = 𝑦C? − 	𝑦C@										ℎ ≠ 𝑘, ∀ ℎ, 𝑘 ∈ 𝐴, ∀𝑝	 ∈
D∈UR

𝑉.																																						 3 	

𝑦C? ∈ 0,1 										∀ℎ ∈ 𝑉, ∀𝑝 ∈ 𝑉.																																																																																																					(4)	

	𝑥CD?@ ∈ 0,1 									∀ ℎ, 𝑘 ∈ 𝐴, ∀ 𝑝, 𝑞 ∈ 𝐴.																																																																																				(5)	

	

Hereby,	we	briefly	discuss	the	ILP	constraints.		

Constraint	(2)	ensures	that	each	VNF	ℎ	is	mapped	exactly	to	one	DC	𝑝.	Condition	(3)	preserves	
the	binding	between	the	VNF	and	the	link	assignments.	More	precisely,	this	condition	ensures	
that	for	a	given	pair	of	assigned	nodes	𝑖,	𝑗	 (i.e.,	VNFs	or	end-points),	 there	 is	a	path	 in	the	
network	 graph	where	 the	 edge	 (𝑖, 𝑗)	 has	 been	mapped.	 Finally,	 the	 conditions	 (4)	 and	 (5)	
express	the	binary	domain	constraints	for	the	variables	𝑦C?	and	𝑥CD?@ 	.	In	addition,	we	fix	the	
assignment	of	each	end-point	ℎ	in	the	request	to	its	respective	location	𝑝	by	setting	𝑦C? ← 1.	

3.3.4. MIP	Model	for	NF-subgraph	Mapping		

The	MIP	for	VNF-subgraph	mapping	aims	at	maximizing	NF	co-location	while	minimizing	the	
traffic	within	the	DC.	In	this	respect,	the	binary	variable	𝑦C?	denotes	the	assignment	of	VNFc	ℎ	
to	the	server	𝑝,	while	the	binary	variable	𝑧C	indicates	whether	the	server	𝑝	has	been	assigned	
to	any	VNFcs	(i.e.,	𝑧C = 0		when	there	is	no	VNFc	assigned	to	server	𝑝;	otherwise		𝑧C = 	1	).	

Based	 on	 the	 multi-commodity	 flow	 problem	 formulation,	 we	 use	 the	 term	 commodity,	
defined	as	𝑚AB = 	 {𝑖, 𝑗, 𝑅𝑅?@< }	 ,	to	express	the	bandwidth	demands	𝑅𝑅?@< 	between	a	pair	of	
VNFcs	ℎ, 𝑘.	In	this	context,	the	flow	variable	𝑓CD?@ 	denotes	the	amount	of	flow	(i.e.,	bandwidth	
units)	over	the	DC	link	(𝑝, 𝑞)	for	the	VNF-graph	edge	(ℎ, 𝑘)	.	
	
The	VNF-subgraph	mapping	MIP	is	therefore	formulated	as	follows.	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

35	

	

Problem	(VNF-subgraph	Service	mapping)	

Minimize:	

𝑧C
C∈UR

+ 	
1
	𝑅𝑅?@<?,@∈O¦

	 	 	𝑓CD?@

?,@ ∈O¦C,D ∈OR
C§D

																																																																															 6 	

subject	to:	

	

𝑦C? = 1											∀ℎ ∈ 𝑉2

C∈UR	

																																																																																																																		 7 	

𝑓CD?@ − 𝑓DC?@ = 𝑅𝑅?@< 	 𝑦C? − 	𝑦C@ 									ℎ ≠ 𝑘, ∀ ℎ, 𝑘 ∈ 𝐴2, ∀𝑝	 ∈
D∈UR
C§D

𝑉.																								 8 	

𝑅𝑅?< 	𝑦C? ≤ 𝑅𝐴C< 	𝑧C
?∈U¦	

			∀𝑝 ∈ 𝑉.																																																																																																						 9 	

	𝑓CD?@ ≤ 𝑅𝐴CD< 	
?,@ ∈O¦	

			∀𝑝, 𝑞 ∈ 𝑉.																																																																																																		 10 	

	𝑦C?, 𝑧C ∈ 0,1 										∀ℎ ∈ 𝑉2, ∀𝑝 ∈ 𝑉.																																																																																											 11 	

𝑓CD?@ ≥ 0									∀ ℎ, 𝑘 ∈ 𝐴2, ∀ 𝑝, 𝑞 ∈ 𝐴.																																																																																								 12 	

	

The	objective	function	(6)	consists	of	two	terms,	i.e.,	the	number	of	assigned	servers	and	the	
accumulated	flow	divided	by	the	total	bandwidth	demand.	Essentially,	the	second	term	yields	
1	 if	 all	 NF-graph	 edges	 ℎ, 𝑘 ∈ 𝐴2 	 are	 mapped	 onto	 single-hop	 links	 𝑝, 𝑞 ∈ 𝐴..	 The	
normalization	of	the	second	term	provides	a	balance	against	the	first	term	in	the	objective	
function.	

We	further	discuss	the	constraints	of	the	MIP	model.	Condition	(7)	ensures	that	each	VNFc	ℎ	
is	mapped	exactly	to	one	server	𝑝.	Constraint	(8)	enforces	flow	conservation,	i.e.,		the	sum	of	
all	 inbound	and	outbound	traffic	 in	switches	and	servers	that	do	not	host	VNFcs	should	be	
zero.	Constraints	(9)	and	(10)	ensure	that	the	allocated	computing	and	bandwidth	resources	
do	not	exceed	the	residual	capacities	of	servers	and	links,	respectively.	

Finally,	 condition	 (11)	expresses	 the	binary	domain	constraint	 for	 the	variables	𝑦C?	 and	 	𝑧C	
while	constraint	(12)	ensures	that	the	flows	𝑓CD?@		are	always	positive.	We	further	assume	that	
the	first	element	in	𝑉2 	represents	the	virtual	gateway	which	we	bind	to	the	physical	gateway	
GW	by	setting	𝑓«¬

U¦(�) ← 1	.	
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3.4. VNF	Scheduling	over	an	NFV	Infrastructure	

As	 described	 in	 previous	 sections,	 ETSI	 NFV	 defines	 NSs	 as	 entities	 composed	 of	 virtual	
network	 functions,	 which	 are	 the	 actual	 components	 performing	 the	 specific	 operations.	
Typically,	network	traffic	associated	to	a	given	NS	goes	through	several	network	functions.	As	
authors	 state	 in	 the	 previously	 cited	work	 [19],	 that	means	 a	 set	 of	 network	 functions	 is	
specified	 and	 the	 flows	 traverse	 these	 functions	 in	 a	 specific	 order	 so	 that	 the	 required	
functions	are	applied.	This	implies	precedence	requirements	between	functions	in	the	same	
service,	which	is	known	as	the	formalization	of	the	function	chaining.		

The	management	 and	 orchestration	 layer	 within	 the	 NFV	 stack,	 i.e.	 TeNOR	 in	 T-NOVA,	 is	
responsible	for	the	deployment	and	operation	of	the	different	network	services.	The	mapping	
problem,	as	 it	has	been	described	in	the	previous	sections	–	 i.e.	where	the	virtual	network	
functions	will	be	allocated	in	the	NFVI	infrastructure	-	becomes	the	fundamental	challenge	to	
solve.	Different	servers	in	the	NFVI	could	have	different	processing	capabilities,	or	different	
hardware	characteristics,	which	will	affect	at	the	end	the	NS	performance.	While	this	is	true	
for	 all	 the	 virtual	 network	 functions	 that	 process	 traffic	 continuously,	 e.g.,	 deep	 packet	
inspection	(DPI),	there	are	other	specific	control	functions	which	are	only	executed	during	a	
certain	 period	 of	 time,	 like	 the	 virtual	 path	 computation	 element	 (PCE)	 [32]	 or	 the	multi-
domain	virtual	forwarding	function,	as	presented	in	[33].	These	control	functions	can	be	also	
virtualized	together	with	the	actual	traffic-handling	functions,	but	a	new	challenge	comes	into	
the	arena	for	the	last	group	of	virtual	network	functions;	it	is	the	scheduling,	i.e.,	when	is	it	
better	to	execute	each	function	in	order	to	minimize	the	total	execution	time	without,	at	the	
same	 time,	 degrading	 the	 service	 performance	 and	 respecting	 all	 the	 precedencies	 and	
dependencies	among	the	functions	composing	the	service.	

	
Figure	11	Network	service	(control	functions)	scheduling	onto	NFVI	

Discussion	on	whether	these	specific	virtual	control	functions	must	be	considered	as	virtual	
network	functions	is	left	out	the	scope	of	this	deliverable.	The	NFV	scheduling	problem	has	
been	defined	within	T-NOVA	and	published	in	[34],	[25],	as	well	as	it	has	been	accepted	as	one	
of	the	problems	to	be	solved,	amongst	others	in	[23].	The	following	NFV	scheduling	algorithm	
has	been	proposed	by	the	“Fundacio	Privada	I2CAT,	Internet	I	Innovacio	Digital	A	Catalunya”	
(I2CAT).	

	

	

Problem	Description	

In	the	model	a	number	of	sets	are	used.	𝐹	represents	virtual	network	functions,	𝑁	represents	
network	services,	which	are	composed	of	different	chains	of	virtual	network	functions,	and	𝑆	
represents	servers,	which	are	the	elements	responsible	for	processing	different	functions	and	
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services.	Each	network	function	𝑓 ∈ 𝐹	belongs	to	one	of	the	network	services	𝑛 ∈ 𝑁.	In	fact,	
each	network	service	is	made	of	a	number	of	network	functions.	The	relation	is	modelled	by	
sets	𝐹 𝑛 ,	which,	for	each	network	service,	contains	all	functions	that	constitute	it.	The	notion	
of	 network	 service	 is	 also	 indirectly	modelled	 by	 sets	𝐹 𝑓 	 that	 define	 relations	 between	
network	 functions,	 i.e.,	 for	 each	 function	 we	 define	 a	 set	 (possibly	 empty)	 of	 network	
functions	 that	 cannot	 be	 initiated	 before	 the	 considered	 network	 function	 is	 successfully	
executed.	The	sets	are	listed	below:	

• 𝐹		network	functions.	
• 𝑁	network	services.	
• 𝐹 𝑛 	network	functions	belonging	to	network	service	𝑛.	
• 𝐹 𝑓 	 network	 functions	 that	 cannot	 executed	 before	 finishing	 the	 execution	 of	

network	function	𝑓.	
• 𝑆	servers.	

There	is	also	a	set	of	constants	in	the	problem,	which	are	relevant	for	the	calculations:	

• 𝑡 𝑓, 𝑠 	time	needed	by	server	𝑠	to	execute	function	𝑓.	
• 𝐴	weight	of	the	finish	time	of	the	last	served	network	function.	
• 𝑀	infinity;	a	sufficiently	large	constant	in	practice.	

Constant	𝑡 𝑓, 𝑠 	is	responsible	for	a	server	classification.	By	setting	different	execution	times	
for	different	network	functions	on	different	servers,	 it	 is	possible	to	easily	create	classes	of	
servers.	 In	addition,	setting	appropriate	constants	𝑡 𝑓, 𝑠 		to	sufficiently	 large	numbers,	we	
can	easily	block	some	functions	from	being	executed	on	particular	servers.	However,	such	an	
operation	can	be	done	more	easily	by	forcing	appropriate	values	to	be	equal	to	zero.	Another	
constant	is	𝐴.	 It	serves	as	a	weight	to	indicate	which	part	of	the	objective	function	is	more	
important:	the	finish	time	of	the	last	served	network	service,	or	the	sum	of	the	finish	times	of	
all	network	services.	The	 last	constant	 is	 the	so-called	“big-M”	constant	 frequently	used	 in	
mixed	integer	linear	programs	to	express	relations	between	binary	and	real	variables.		

Finally,	the	variables	considered	for	the	problem	model	are:	

• 𝑧	finish	time	of	the	last	served	network	service.	
• 𝑧®	finish	time	of	network	service	𝑛.	
• 𝑣¯	starting	time	of	executing	network	function	𝑓.	
• 𝑒 ° 	binary	variable;	1	if	network	function	𝑓	is	executed	at	server	𝑠;	0	otherwise.	
• 𝑎¯¯±	binary	variable;	1	if	network	function	𝑓	is	executed	after	𝑓′;	0	otherwise.		

The	objective	function	is	defined	as	follows	

𝑚𝑖𝑛	𝐴𝑧 + 𝑧®
®∈²

	

In	the	formulation,	the	objective	function	consisting	of	two	components	is	minimized.	The	first	
component	is	the	time	needed	to	execute	all	network	services,	while	the	second	component	
is	the	sum	of	the	times	needed	to	execute	each	network	service.	The	following	constraints	are	
taken	into	account	in	the	problem.	

𝑧 ≥ 𝑧®												∀𝑛 ∈ 𝑁																																																																																																																														(1)	

𝑣¯ + 𝑡 𝑓, 𝑠
³∈´

𝑒 ° ≤ 𝑧®																∀𝑛 ∈ 𝑁, ∀𝑓 ∈ 𝐹(𝑛)																																																																				(2)	

𝑣¯ + 𝑡 𝑓, 𝑠
³∈´

𝑒 ° ≤ 𝑣¯±																∀𝑓 ∈ 𝐹, ∀𝑓′ ∈ 𝐹(𝑓)																																																																		(3)	
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𝑣¯ + 𝑡 𝑓, 𝑠 ≤ 𝑣¯± + 𝑀 𝑎¯¯± + 2 − 𝑒 ° − 𝑒 ±° ,		∀𝑓, 𝑓′ ∈ 𝐹, ∀𝑠 ∈ 𝑆																																											(4)	

𝑎¯¯± + 𝑎¯±¯ = 1,												∀𝑓, 𝑓′ ∈ 𝐹: 𝑓 ≠ 𝑓′																																																																																									(5)	

𝑒 ° = 1,															∀𝑓 ∈ 𝐹																																																																																																																			(6)
³∈´

	

Variable	z	represents	a	moment	in	time	when	all	network	services	are	already	executed;	thus,	
it	cannot	be	smaller	than	the	finish	time	of	any	network	service,	which	is	expressed	by	(1).	On	
the	other	hand,	the	finish	times	of	single	network	services	cannot	be	smaller	than	finish	times	
of	network	functions	forming	them.	The	relation	is	modelled	by	(2).	Notice	that	in	(2)	the	term	

𝑡 𝑓, 𝑠³∈´ 𝑒 ° 	is	just	a	time	needed	to	execute	function	𝑓	on	a	selected	server	represented	
by	𝑒 °.	We	consider	network	services	that	impose	various	constraints	on	network	functions	
they	are	built	of.	This	fact	is	represented	by	(3),	in	which	time	of	executing	network	function	
𝑓′	that	follows	another	network	function	𝑓,	i.e.	𝑓′ ∈ (𝑃(𝑓)),	has	to	be	greater	than	the	finish	
time	 of	 executing	 network	 function	𝑓.	 The	 next	 constraint,	 namely	 (4),	 prevents	 network	
services	from	being	executed	in	parallel	on	the	same	server;	it	 is	in	fact	assumed	that	each	
server	 can	process	only	 a	 single	network	 function	at	 a	 time.	 In	other	words,	 consider	 two	
network	functions	𝑓	and	𝑓′,	assume	that	𝑓	is	executed	before	𝑓′	(thus	𝑎¯¯± = 0)	and	both	are	
executed	on	server	𝑠.	 If	all	the	conditions	are	met,	constraint	(4)	reduces	to	𝑣¯ + 𝑡 𝑓, 𝑠 ≤
𝑣¯±,	which	means	that	the	starting	time	of	executing	network	function	𝑓′	has	to	be	after	the	
finish	time	of	executing	𝑓.	On	the	other	hand,	when	at	least	one	of	the	mentioned	conditions	
is	not	satisfied	(𝑎¯¯± = 1	or	𝑒 ° = 0	or	𝑒 ±° = 0),	constraint	(4)	reduces	to	𝑎 ≤ 𝑏 + 𝑐𝑀,	where	
𝑐𝑀 ≫ 𝑎, 𝑏 ≥ 0;	hence	it	is	always	satisfied	regardless	the	values	of	the	variables.	Obviously,	
constant	𝑀	has	 to	be	sufficiently	 large;	 in	 the	considered	problem	 it	could	be	 for	 instance	
equal	 to	 the	minimum	 time	needed	 to	 execute	 all	 functions	on	 the	 fastest	 server.	 Finally,	
constraint	 (5)	ensures	 that	not	all	 the	𝑎¯¯	 variables	can	be	equal	 to	1,	while	constraint	 (6)	
ensures	that	all	network	functions	will	be	executed.		

The	 scheduling	 problem	 is	 still	 under	 investigation	 from	 the	 theoretical	 perspective,	 and	
future	work	will	analyse	the	relationship	between	network	functions	scheduling	and	job/task	
scheduling	in	traditional	computer	science	(i.e.	as	processor	oriented	research),	where	huge	
work	on	scheduling	has	been	performed.	On	the	other	hand,	there	is	at	least	one	additional	
initiative	in	the	literature,	which	integrates	both	mapping	and	scheduling	of	network	functions	
into	one	complex	optimization	problem	[35].	TeNOR	prototype	does	not	include	scheduling	
of	network	functions.		

In	order	to	solve	the	problem,	different	methods	could	be	utilized.	For	example,	a	heuristic	as	
a	variation	of	a	greedy	approach	that	in	each	iteration	schedules	a	network	function	which	
minimizes	the	overall	time	assuming	that	the	remaining	network	functions	are	scheduled	on	
the	 fastest	 finishing	servers.	Such	a	scheduling	problem	could	be	utilized	to	determine	the	
performance	 of	 different	 DC	 distribution,	 such	 as	 edge-computing,	 with	micro-DCs	 at	 the	
edge,	 and	 traditional	 Cloud	 computing	 in	 order	 to	 execute	 specific	 virtualized	 control	
functions.	

	

3.5. Summary	of	the	Features	of	the	Algorithms	

Table	 4	 below	 reports	 a	 summary	 of	 the	 main	 features	 of	 the	 algorithms,	 for	 ease	 of	
comparison.		



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

39	

Table	4	Compared	view	of	main	algorithms’	features	

Proposed	
Approach	

ILP	Based	
Algorithms	

Reinforcement	
Learning	based	
approach	

Multi-stage	
Network	
Service	
Embedding	

VNF	Scheduling	
over	an	NFV	
Infrastructure	

Objectives	

Cost	
minimization	or	
load	balancing	

Revenue	
maximization	

Cost	
minimization	
or	load	
balancing	

Cost	
minimization	
(minimal	
makespan)	

First	level	or	
second	level4,	
exact	or	
approximate	

First	level.	

1st	level:	exact	or	
heuristic	

First	level.	

1st	stage:	
approximate	

First	level	and	
second	level.	

1st	level:	exact	

2nd	level:	exact	
or	heuristic	

Second	level.	
Exact	or	
Heuristic	

Online/Offline	

Online	 Online	(also,	the	
algorithm	could	
be	trained	
offline)	

Online	 Online	

Resource	
constraints	

SLA,	node	
resources,	link	
resources	

Node	resources,	
link	resources	

CPU,	
bandwidth,	
location	

Infrastructure	
resources	
available	

Node/link	
mapping	

Coordinated	 Uncoordinated5	 Coordinated6	 -	

Dependencies	 Optimizer,	e.g.	
GLPK7	or	CPLEX	

-	 Optimizer,	e.g.	
CPLEX8	

-	

																																																													
4	First	 level	mapping:	the	problem	of	assigning	VNFs	to	PoPs.	Second	level	mapping:	the	problem	of	
assigning	VNFcs	to	servers	in	DCs.	
5	The	single	iteration	of	the	algorithm	is	uncoordinated.	In	the	long	run,	learning	is	such	that	the	node	
and	link	mapping	are	actually	coordinated	decisions.	
6	Node	mapping	and	link	mapping	takes	place	simultaneously,	i.e.,	we	can	rethink	node	mapping	if	the	
overall	 cost	 is	 lower.	 In	 contrast,	 uncoordinated	means	 the	 node	mapping	 is	 fixed	 before	we	 start	
mapping	the	links,	even	at	the	risk	of	rejection.	
7	 GLPK	 is	 an	 open	 source	 tool	 for	 solving	 linear	 mathematical	 optimization	 problems	 (see	
https://www.gnu.org/software/glpk/).	
8	 CPLEX,	 developed	 by	 IBM,	 is	 one	 of	 the	 most	 efficient	 commercial	 tools	 available	 for	 solving	
mathematical	 optimization	 problems	 (see	
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/).	
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4. SERVICE	MAPPING	MODULE	IMPLEMENTATION	AND	
INTEGRATION	

This	section	give	details	on	how	the	T-NOVA	service	mapping	module	has	been	implemented	
and	integrated	into	TeNOR,	the	T-NOVA	orchestrator.	

The	documentation	of	the	service	mapping	module	API,	and	of	the	data	model	and	the	format	
used	to	exchange	 information	between	the	service	mapping	module	and	the	other	TeNOR	
modules	is	reported	in	the	annexes.	

4.1. Implementation	

Similar	 to	 the	 other	 main	 orchestrator	 components,	 the	 service	 mapper	 has	 been	
implemented	as	a	microservice	application,	which	is	composed	by:	

• A	REST	service	(written	in	Ruby	[36]).	
• A	compiled	application	(written	in	C++).		

The	two	modules	have	each	a	specific	task:	in	a	nutshell,	the	compiled	application	implements	
the	actual	solver	of	the	service	mapping	mathematical	problem,	while	the	REST	service	acts	
as	 an	 interface	between	 the	other	microservices	 in	 the	orchestrator	 and	 the	 solver	 (i.e.	 it	
gathers	the	inputs	needed	to	build	the	mathematical	mapping	problem,	passes	them	to	the	
solver	and	returns	the	solution	to	the	orchestrator).	
Details	of	the	REST	service	are	provided	in	the	next	section	of	this	document,	devoted	to	the	
integration	work.	A	schema	of	the	whole	microservice	architecture	is	given	in	Figure	12	below.	

	
Figure	12	Details	of	the	T-NOVA	Service	Mapper	microservice.		

As	represented	in	the	figure,	when	the	service	mapping	module	is	called	by	the	orchestrator,	
the	operations	are	divided	into	three	main	flows:	

1. Querying	of	the	network	service	catalogue	(left	branch	in	the	figure).	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

41	

2. Querying	of	the	infrastructure	repository	(right	branch	in	the	figure).	
3. Collection	 of	 constraints	 (central	 branch	 of	 the	 figure)	 varying	with	 each	mapping	

instance/request,	 such	 as:	 solver	 parameters	 –	 which	 can	 be	 chosen	 to	 tune	 the	
behaviour	of	the	solver	–,	geographical	constraints	on	the	mapping,	etc.	

Details	 on	network	 infrastructure	 and	 service	 catalogue	querying	 are	 reported	 in	 the	next	
section,	discussing	the	integration	of	the	service	mapping	module.	After	the	querying	phase,	
all	the	relevant	data	input	to	the	service	mapping	mathematical	problem	are	stored	in	two	
distinct	JSON	files:	

1. NI.json,	a	file	storing	all	the	data	from	the	infrastructure	repository	which	enter	the	
service	mapping	problem	mathematical	formulation.	

2. NS.json,	a	file	storing	all	the	data	related	to	the	network	service	to	be	mapped	and	
relevant	for	service	mapping	(also,	NS.json	file	is	enriched	with	the	above	mentioned	
runtime	information	on	algorithm	parameters,	additional	user	constraints,	etc.).	

After	 the	 above	 inputs	 are	 gathered,	 they	 are	 passed	 to	 the	 actual	 solver	 of	 the	 service	
mapping	problem.		
Here	 the	 focus	 is	 on	 the	 implementation	provided	by	UniMi	of	 the	 ILP	mapping	 approach	
proposed	 in	 Section	 3.1.	 Other	 mapping	 approaches	 could	 be	 similarly	 integrated	 in	 the	
future,	 by	 adding	 to	 the	mapper	microservice	 a	 routing	 logic	 which	 enables	 the	mapping	
algorithm	to	be	called.		
In	the	above	figure,	the	call	 to	the	solver	 is	represented	by	the	block	“call	 to	 ./glpksolver”,	
since	an	open-source	solver,	the	GNU	Linear	Programming	Kit	(GLPK),	has	been	deployed	to	
solve	the	ILP	service	mapping	problem.	
GLPK	needs	two	basic	structures	for	correctly	instantiating	the	optimization	problem:	
	

1. A	.mod	file,	containing	the	Mathematical	Programming	Language	(MPL)	program	that	
implements	the	abstract	mathematical	model	described	in	the	previous	sections	on	
algorithms’	description.	

2. At	least	one	.dat	file	containing	the	inputs	to	the	mapping	problem,	collected	by	the	
REST	 service	 (i.e.	 the	 inputs	 from	 the	 infrastructure	 repository	 and	 the	 service	
catalogue,	etc.).	

	
The	 developed	 C++	 application	 –	 which	 spans,	 in	 the	 above	 figure,	 from	 the	 “call	 to	
./glpksolver”	 block	 up	 to	 the	 “Output:result.json”	 block	 –	 acts	 as	 a	wrapper	 for	 the	 GLPK	
solver;	 this	 application	 is	 invoked	 and	 executed	 by	 the	 REST	 service	 once	 all	 the	 network	
infrastructure	and	network	service	data	required	by	the	solver	have	been	collected	and	locally	
saved	to	disk	into	the	two	input	files	NI.json	and	NS.json.	
	
The	 application	 is	 composed	 by	 two	 distinct	 binary	 executables,	 which	 are	 sequentially	
invoked	by	the	REST	service:	

1. jsonConverter,	which	parses	and	further	processes	both	files	 in	order	to	create	the	
.dat	 files	 required	 by	 GLPK;	 data	 extracted	 from	 the	 NI.json	 and	 NS.json	 files	 are	
roughly	divided	into	three	.dat	files:	

a) NI_generated.dat	file,	containing	the	snapshot	of	the	network	infrastructure,	
i.e.	 the	 list	 of	 PoPs	 and	 their	 connection	 topology,	 as	 well	 as	 additional	
information	regarding	each	PoP	and	each	link	between	them	(i.e.	computing	
power	and	capabilities,	bandwidth	and	delay	of	network	connections,	etc.).	

b) NS_generated.dat	file,	which	contains	the	description	of	the	network	service	
and	its	requirement,	i.e.,	the	list	of	VNFs	and	their	connection	graphs,	as	well	
as	minimal	hardware	and	bandwidth	requirements,	etc.	

c) pref_generated.dat	file,	which	contains	a	list	of	variables	that	are	not	strictly	
related	to	NI	or	NS,	but	are	used	by	the	solver	to	adapt	the	solution	to	any	
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need	specified	by	the	customer	(i.e.	locking	a	VNF	to	a	specific	PoP)	or	by	the	
network	status	/	flavour	/	service	characteristics	by	steering	the	solution	in	
order	to	meet	those	requirements	(i.e.	preferring	delay	minimization	instead	
of	PoP	spreading);	these	variables	are	NI	and	NS	independent	and	may	vary	
at	each	allocation	request.	

	
2. solver,	which	acts	as	a	wrapper	for	the	GLPK	solver:once	the	.dat	files	are	successfully	

imported,	this	application	allocates	an	MPL	problem,	fills	its	workspace	with	both	the	
model	and	the	data	files,	and	invokes	the	actual	GLPK	solver.	

	
The	last	task	of	the	solver	builds	and	returns	the	solution	to	the	REST	service,	in	json	format.	
A	response	is	provided	even	if	the	problem	has	no	feasible	solution,	while	error	messages	are	
generated	if	something	goes	wrong	when	creating	and	instantiating	the	MPL	problem	or	the	
GLPK	workspace.	
The	returned	feasible	solution	(if	successfully	 found)	states	the	target	PoP	of	allocation	for	
each	VNF	and	the	path	of	allocation	for	each	link	between	VNFs.	
	
Data	transfers	between	the	REST	service	and	the	C++	application	package	is	achieved	by	locally	
storing	 files	 in	 json	 format.	Since	ANSI	C++	has	no	built-in	 support	 for	parsing	 json	 files	or	
streams,	 the	 Daniel	 Parkers's	 "jsoncons"	 open-source	 (under	 Boost	 license)	 library9	 for	
processing	data	in	this	format	has	been	used.	
	
It	 is	worth	noting	that	by	dividing	the	json-to-MPL	conversion	phase	from	the	actual	solver	
may	reduce	the	future	amount	of	work	needed	for	the	implementation	of	different	solvers	
than	GLPK.	
	

4.2. Integration	

The	REST	service	mentioned	in	the	previous	section	takes	care	of	the	integration	of	the	service	
mapper	with	the	Orchestrator	components	that	play	a	role	in	service	mapping,	such	as	sources	
of	information	needed	to	build	the	mathematical	mapping	problem	or	as	entities	responsible	
for	enforcing	the	mapping	decisions.	
By	logically	separating	the	interface	with	the	orchestrator	(by	means	of	the	REST	service)	from	
the	actual	service	mapping	solution	phase	(the	C++	applications),	a	strategy	for	providing	a	
common	platform	for	data	collection	and	aggregation	has	been	devised.	So	different	solving	
algorithms	can	be	potentially	integrated	into	the	platform	either	by	changing	the	core	.mod	
file	 that	 reports	 the	 formulation	of	 the	optimization	problem	to	be	solved	 (if	 the	mapping	
algorithm	 is	 still	 in	 the	 family	 of	 linear	 programming),	 or	 by	 changing	 the	 solver	 and	 the	
needed	 parts	 of	 the	 C++	 apps	 (in	 case	 of	 a	 mapping	 algorithm	 not	 based	 on	 linear	
optimization).	 Moreover,	 such	 integration	 scheme	 provides	 a	 common	 testbed	 so	 that	
evaluation	 of	 different	 algorithms	 may	 be	 performed	 on	 the	 same	 set	 of	 data,	 even	 in	
operational	environment.	
	
Briefly,	the	main	interactions	of	the	REST	service	with	the	other	involved	TeNOR	modules	are:	

• Receive	and	validate	instantiation	requests	from	the	orchestrator.	

																																																													

9
	 	https://github.com/danielaparker/jsoncons/wiki/json	
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• Collect	 data	 needed	 by	 the	 mapping	 algorithms,	 by	 querying	 the	 infrastructure	
repository,	 the	 network	 service	 catalogue	 and	 virtual	 network	 function	 catalogue	
APIs.	

• Save	the	collected	data	into	the	NI.json	and	NS.json	input	files.	
• Invoke	the	mapping	solver	(the	Unimi	C++	application).	
• Return	the	solution	to	the	orchestrator	and	to	the	visualization	service.	

	
The	 service	 mapper	 REST	 service	 responds	 to	 explicit	 POST	 commands	 coming	 from	 the	
orchestrator,	with	the	body	payload	containing,	in	particular,	the	ID	of	the	network	service	to	
be	instantiated,	so	that	it	is	possible	to	properly	query	the	service	catalogue	to	retrieve	the	
needed	parameters	of	the	network	service.	
	
Once	the	request	has	been	checked,	the	operation	flow	proceeds	according	to	the	following	
steps	(the	reader	may	refer	for	convenience	to	Figure	12):	

1. The	REST	service	queries	the	network	service	catalog	API	to	get	a	descriptor	of	the	
network	service;	once	successfully	received,	this	NSD	is	parsed	and	the	relevant	data	
are	 extracted	 (composing	 the	 virtual	 network	 functions	 IDs	 and	 their	 forwarding	
graphs,	as	well	as	any	other	first	level	requirements).	

2. For	each	virtual	network	function	ID	collected	in	the	previous	step,	the	virtual	network	
function	descriptor	is	requested	from	the	virtual	network	function	catalog	and,	once	
successfully	received,	the	relevant	data	are	extracted	from	the	descriptors:	each	VNFd	
is	parsed,	looking	for	the	requested	flavour	(or	the	default	one).	Since	every	VNF	may	
be	 composed	 by	 different	 VDUs10,	 we	 chose	 to	 collect	 the	 total	 aggregated	
requirements	of	each	VNF	(e.g.,	for	the	memory	requirement,	the	aggregated	virtual	
memory	requirement	of	a	VNF	is	the	sum	of	the	"virtual_memory_resource_element"	
field	of	each	VDU	composing	the	VNF).	Currently,	collected	aggregate	data	regard	the	
number	of	virtual	CPUs,	the	amount	of	virtual	memory	and	the	required	bandwidth;	
also	in	addition,	the	maximum	allowed	delay	between	VNFs	is	collected	too.	Also	the	
virtual	forwarding	graph	(as	well	as	the	descriptors	of	the	virtual	link	involved)	which	
interconnects	the	VNFs	is	collected.	

3. All	the	data	collected	by	parsing	the	NSd	and	the	VNFds	are	saved	into	a	NS.json	file	
on	disk;	this	file	may	contain	additional	parameters	that	are	NS/VNF	independent	and	
vary	on	allocation	basis	(at	run-time),	i.e.	geographical	location	requirements,	solving	
strategy,	additional	parameters	to	be	passed	to	the	solver,	etc.	

4. Once	 NS	 collection	 finishes,	 the	 REST	 service	 begins	 querying	 the	 infrastructure	
repository	APIs,	in	order	to	build	a	snapshot	of	the	network	infrastructure	status.	Data	
collected	include,	but	are	not	limited	to,	PoP	IDs,	PoP	description	and	status,	PoP	links	
IDs,	PoP	links	descriptions	and	statuses,	etc.;	then,	for	each	PoP,	every	hypervisor	is	
queried	in	order	to	extract	the	total	aggregated	resource	available	for	that	PoP.	

5. Aggregated	resource	of	each	PoP	is	calculated	by	summing	the	available	resources:	
data	 regarding	 the	 total	 amount	 of	 available	 CPUs,	 RAM,	 HD	 and	 bandwidth	 is	
collected	 in	 this	 same	way.	 Enhanced	Platform	Awareness	 (EPA)	 requirements	 are	
treated	 in	 a	 similar	 way:	 the	 current	 implementation	 counts	 the	 total	 number	 of	
DPDK-enabled	NICs	and	the	total	amount	of	GPU	accelerator	for	each	PoP,	but	other	
EPA	features	can	be	added	as	well.	All	network	infrastructure	collected	data	are	saved	
to	disk	in	the	NI.json	file.	

6. Once	both	NS.json	and	NI.json	are	saved,	the	solver	is	invoked	with	a	system	call.	For	
the	service	mapping	algorithm	implemented,	the	one	proposed	by	Unimi,	it	consists	

																																																													
10	Recall	that	a	Virtualisation	Deployment	Unit	(VDU)	[5]	is	a	construct	to	describe	the	deployment	and	
operational	behaviour	of	a	VNFc.	
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in	a	sequence	of	system	calls	to	the	C++	applications	detailed	in	the	above	section.	
The	 solver	 response	 is	 saved	 to	 disk	 in	 the	 "MapperResponse.json"	 file	 and	 data	
related	 to	mapping	 visualization	 are	 built	 and	 added	 to	 the	 json;	 finally,	 this	 json	
response	is	returned	to	the	Orchestrator.	

	

As	mentioned	above,	the	two	key	T-NOVA	subsystems	queried	by	the	mapping	microservice	
are	the	infrastructure	repository	and	the	service	catalogue.	

Essential	information	on	the	two	subsystems	is	provided	in	the	following	two	sections.	

Details	 on	 the	 service	 mapping	 module	 API	 and	 on	 the	 format	 and	 content	 of	 the	 data	
exchanged	between	the	mapping	module	and	the	orchestrator	are	reported	in	the	annexes.	

4.2.1. Interaction	with	the	Infrastructure	Repository	

This	section	reports	the	key	features	of	the	infrastructure	repository	instrumental	to	service	
mapping.	 Full	 details	 on	 the	 infrastructure	 repository	 design	 can	 be	 found	 in	 D3.2	
Infrastructure	Resource	Repository	[37].	

The	 infrastructure	 repository	 is	 the	 subsystem	 of	 the	 T-NOVA	 Orchestration	 layer	 which	
provides,	to	the	resource	mapping	module,	infrastructure	related	information	collected	from	
the	 Virtualized	 Infrastructure	 Manager	 (VIM)	 and	 from	 the	 NFVI	 components	 of	 the	
Infrastructure	 Virtualisation	 and	 Management	 (IVM)	 layer.	 The	 design	 of	 the	 repository	
subsystem	addresses	the	challenges	of	assimilating	 infrastructure	related	 information	from	
sources	 within	 the	 IVM,	 namely	 the	 cloud	 infrastructure	 and	 data	 centre	 network	
environments.	This	subsystem	comprises	a	number	of	key	elements	including	a	data	model,	
resource	 information	 repositories	 and	 access	mechanisms	 to	 the	 information	 repositories.	
The	 subsystem	 also	 augments	 the	 information	 provided	 by	 cloud	 and	 SDN	 environments	
through	a	resource	discovery	mechanism.	

OpenStack	until	recent	versions	exposed	a	limited	set	of	infrastructure	related	information,	
and	that	was	problematic	for	the	resource	mapping	module.	For	example	in	the	Juno	release	
of	 OpenStack	 the	 NOVA	 service	 database	 contained	 almost	 no	 infrastructure	 information	
beyond	 limited	CPU	details	 such	as	manufacturer,	 speed	and	CPU	status	 flags.	Subsequent	
releases	of	OpenStack	have	improved	the	level	of	infrastructure	information	stored.	However	
inclusion	of	fine	grained	infrastructure	information	remains	a	work	in	progress	and	will	not	be	
fully	addressed	in	the	lifetime	of	the	T-NOVA	project.		

Generation	 of	 a	 comprehensive	 view	 of	 the	 network	 infrastructure	 has	 been	 another	
challenge	 for	 the	 infrastructure	 repository.	 While	 OpenStack	 Neutron	 service	 database	
maintains	information	regarding	the	VM	related	network	connections	there	is	no	view	of	the	
physical	network	topology	i.e.	what	compute	node	NIC	is	connected	to	an	SDN	enable	switch.	
In	order	to	address	this	limitation	it	is	necessary	to	collect	these	information	from	the	DC	SDN	
controller	 i.e.	 OpenDaylight.	 ODL	 provides	 a	 REST	 API	 which	 can	 be	 used	 to	 retrieve	
information	regarding	the	topology	of	the	SDN	switches	and	of	the	compute	nodes	attached	
to	the	switch	ports.	From	a	resource	mapping	module	perspective	using	a	separate	interface	
to	retrieve	network	topology	information	creates	unwanted	complications.	Therefore	from	a	
design	and	implementation	perspective	the	repository	 implements	a	single	 interface	which	
abstracts	the	retrieval	of	infrastructure	information	from	all	sources	within	the	IVM	layer.	

Addressing	 these	 shortcomings	was	 the	 key	 goal	 for	 the	 repository	 subsystem	design	 and	
implementation.	The	key	components	of	the	infrastructure	repository	as	shown	in	Figure	15	
are	the	following:	
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• Enhanced	Platform	Awareness	(EPA)	Agents	–	Python	based	software	agent	running	on	
the	compute	nodes	of	the	NFVI-PoP.	A	central	EPA	controller	service	provides	aggregation	
of	data	from	each	agent	and	persists	the	data	to	a	central	database.	

• Infrastructure	 Repository	 Database	 –	 Collected	 infrastructure	 data	 is	 stored	 in	 a	
graph	database	where	resources	are	represented	as	nodes	with	associated	properties.	
Edges	between	the	nodes	store	information	on	their	relationship.	

• Listener	Services-	Two	separate	listener	services	are	specified	within	the	architecture.	
The	OpenStack	Notification	 listener	service	 is	designed	to	 intercept	messages	 from	
the	OpenStack	notification.info	queue	and	to	provide	notifications	to	the	controller.	
The	 EPA	 agent	 listener	 service	 intercepts	 EPA	 agent	 messages	 and	 notifies	 the	
controller	of	the	messages	in	order	to	trigger	processing	of	received	data	files	and	to	
use	the	data	to	carry	out	an	update	database	action.	

• EPA	Controller	–	The	controller	is	responsible	for	updating	the	infrastructure	database	
based	on	 information	received	from	the	 listener	services	and	data	files	sent	by	the	
EPA	agents.	One	instance	of	the	controller	runs	in	each	NVFI-PoP.	The	service	runs	on	
a	compute	node	within	the	NFVI.	

• API	Middleware	Layer	–	Provides	a	common	set	of	API	calls	that	can	be	used	by	all	
the	 functional	 entities	 of	 the	 T-NOVA	 Orchestration	 layer	 including	 the	 resource	
mapping	module.	

	
Figure	13	Infrastructure	Repository	sub-system	architecture	

4.2.1.1.	 Infrastructure	Repository	Database	

Regarding	 the	 implementation	of	 the	 infrastructure	 repository	database	 it	was	 considered	
useful	 and	 important	 to	 encode	 the	 relationship	 between	 the	 resources	 and	 associated	
parameters.	In	order	to	achieve	this	goal	a	graph	database	approach	was	adopted	(see	the	T-
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NOVA	 deliverable	 3.2	 [37]	 for	 more	 details).	 Graph	 databases	 are	 NoSQL	 (Not	 only	 SQL)	
database	 systems	 which	 commonly	 use	 a	 Directed	 Acyclic	 Graph	 (DAG)	 to	 store	 data	
relationships.	A	graph	database	stores	information	using	vertices/nodes	and	edges/relations.		

The	use	of	graphs	maps	conveniently	to	the	hierarchical	structure	of	compute,	storage	and	
network	elements	within	the	NFVI.	The	NFVI	can	be	decomposed	into	either	physical	or	virtual	
resources	that	can	be	mapped	directly	to	a	node	structure.	The	relationships	of	virtual-virtual,	
physical-physical	and	virtual-physical	are	captured	in	the	relevant	connections	between	the	
resources.	Virtual	resources	have	an	implicit	dependency	on	physical	resources,	i.e.	a	virtual	
resource	cannot	exist	without	a	physical	host.	Therefore	in	a	graph	construct,	virtual	resources	
must	at	some	point	of	the	graph	be	connected	to	a	physical	resource	

Figure	14	shows	a	simple	graph	for	a	server,	where	it	has	two	sockets,	each	socket	has	one	
CPU	and	each	CPU	has	multiple	cores.		

	
Figure	14	Simple	server	resource	graph	

Middleware	API	

To	 achieve	 a	 unified	 view	 of	 the	 infrastructure	 information	 among	 multiples	 PoPs,	 the	
infrastructure	 repository	 implements	 a	middleware	 layer.	 The	main	 responsibilities	 of	 the	
middleware	layer	are:	

• Defining	 a	 common	 view	 for	 all	 information	 sources	 (OpenStack,	 EPA	 Agents	 and	
OpenDaylight	SDN	controller);	

• Dispatching	user	requests	to	the	required	PoP.	

The	middleware	 layer	exposes	the	API	calls	 to	manage	the	PoPs	(Create,	Retrieve,	Update,	
Delete).	When	a	request	is	sent	to	the	middleware	layer,	the	ID	of	the	PoP	that	the	user	wants	
to	access	must	be	specified.	In	this	way	the	middleware	layer	can	retrieve	the	URLs	and	query	
the	appropriate	PoP	level	information	sources.		From	the	perspective	of	a	component	using	
the	 interface	 the	 location	of	 the	data	 and	 the	underlying	 complexity	 in	 forming	 the	query	
response	is	abstracted.	To	be	compliant	with	the	other	Orchestrator	interfaces	a	REST	type	
approach	was	adopted	 to	 implement	 the	 interfaces	 (see	deliverable	D3.2	Section	4.5.1	 for	
more	details).		Some	sample	calls	to	retrieve	specific	infrastructure	information	available	to	
the	resource	mapping	module	are	shown	in	Table	5.	

Server

Socket Socket

CPU CPU

Core Core Core Core

Has	resource

Has	resource

Has	resource
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Table	5	API	calls	for	specific	infrastructure	information	retrieval	

Kind	 Endpoint	url	 Description	 Actions	

Net		 /pop/{pop_id}/net/		 Neutron	network		 GET		

Port		 /pop/{pop_id}/port/		 Neutron	port		 GET		

Hypervisor		 /pop/{pop_id}/hypervisor/		 Hypervisor	used	by	Nova	
Compute		 GET		

Machine		 /pop/{pop_id}/machine/		 Physical	machine		 GET		

NUMA	Node		 /pop/{pop_id}/numanode/		 NUMA	node		 GET		

NUMA	 node	
link		 /pop/{pop_id}/numanode/link/		

Link	 between	 NUMA	
node	 and	 Bridge	 or	
Socket		

GET		

PCI	Bridge		 /pop/{pop_id}/bridge/		 PCI	Bridge		 GET		

Bridge	link		 /pop/{pop_id}/bridge/link/		
Link	 between	 PCI	 bridge	
and	 PCI	 devices	
connected	to	it		

GET		

PCI	Device		 /pop/{pop_id}/pcidev/		 PCI	Device		 GET		

PCI	 Device	
link		 /pop/{pop_id}/pcidev/link/		 Link	 between	PCI	Device	

and	respective	OS	device		 GET		

OS	Device		 /pop/{pop_id}/osdev/		
OS	Device	(allowed	type:	
Compute,	 Network,	
Storage)		

GET		

Socket		 /pop/{pop_id}/socket/		 Socket		 GET		

Cache		 /pop/{pop_id}/cache/		 Cache		 GET		

Core		 /pop/{pop_id}/core/		 Physical	Core		 GET		

Core	link		 /pop/{pop_id}/core/link/		 Link	 to	 Process	 Units	
node		 GET		

PU		 /pop/{pop_id}/pu/		 Processing	unit		 GET		

Switch		 /pop/{pop_id}/switch/		 Physical	SDN	switch		 GET		

Switch	
Interface		 /pop/{pop_id}/switch-interface/		

Switch	 interface	
controlled	 by	 ODL	
controller		

GET		

	

Technical	details	on	the	sequence	of	actions	performed	to	query	the	infrastructure	
repository	and	an	example	of	the	resulting	NI.json	file	are	reported	in	Annex	11.	

4.2.2. Interaction	with	the	T-NOVA	NSD	

The	SLA	specification	in	T-NOVA	is	done	in	the	marketplace	by	the	Service	Provider	(SP)	[38]	
and	will	 be	 available	 to	TeNOR	by	means	of	 the	T-NOVA	NSD	 that	 is	 stored	 in	 the	 service	
catalogue	[39].	The	SP	will	define	in	the	marketplace	expected	values	for	the	different	service	
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performance	 metrics,	 considering	 the	 performance	 metrics	 of	 VNFs	 that	 are	 part	 of	 the	
service.	Also	other	metrics	 can	be	defined	 for	 the	end-to-end	service	considering	 the	 links	
between	VNFs,	for	instance	the	delay	added	by	the	links.		

Therefore,	each	SLA	specification	is	associated	by	means	of	the	NSD	to	the	VNFDs	of	the	VNFs	
that	 constitute	 the	 service.	 These	 VNFDs	 describe	 the	 VDU	 requirements	 defined	 by	 the	
Function	Providers	(FPs)	for	the	corresponding	VNF	flavor	in	each	case.	

The	 marketplace	 will	 also	 define,	 as	 part	 of	 the	 SLA	 specification,	 the	 rewarding	 for	 the	
customer,	like	billing	discounts,	in	case	the	SLA	agreed	between	the	SP	and	customer	is	not	
met.	This	is	relevant	for	the	commercial	activity	in	the	T-NOVA	marketplace	and	not	for	TeNOR	
itself,	but	it	represents	the	relevance	for	the	service	mapping	to	achieve	the	SLA	specified	for	
the	service.	

The	NSD	and	VNFD	fields	relevant	for	the	service	mapping	are	reported	in	the	following	tables.	

	

Table	6	NSD:SLA	

Identifier	 Description	

SLA_Id	 ID	of	the	service	SLA	
assurance_pa
rameters	

Assurance	 parameter	 or	 a	 combination	 of	 multiple	 assurance	 parameters	 with	 a	 logical	
relationship	 between	 them	 and	 values	 against	 which	 this	 SLA	 is	 being	 described.	 The	
parameters	should	be	present	as	a	NSD:	monitoring_parameter,	and	they	can	be:	

- generic	metrics	common	to	all	 the	network	services	that	will	be	monitored	(e.g.	
network	throughput	metrics).	The	basic	metrics	will	have	an	associated	threshold	
for	action	initiation.		

- Flavour_key	parameters	
flavour_key	 Parameter	 or	 a	 combination	 of	multiple	 assurance	 parameters	with	 a	 logical	 relationship	

between	them	against	which	this	flavour	is	being	described.	
constituent_v
nf	

Represents	the	characteristics	of	a	constituent	flavor	element.		

	

Table	7	NSD:	SLA:	assurance_parameters	

Identifier	 Description	

name	 Name	of	the	metric	
value	 Range	of	values	the	metric	should	take	to	meet	the	SLA:	LT(50)	à	lower	than	50	
unit	 Unit	of	the	values:	%,	Mb,	Gb,	etc	
formula	 Formula	that	aggregates	the	metrics	of	the	VNFs	in	order	to	calculate	the	value	above.	
violations	 Definition	of	SLA	violations	

	

Table	8	NSD:	SLA:	assurance_parameters:	violation	

Identifier	 Description	

breaches_coun
t	

Amount	of	times	the	thresholds	are	breached	

interval	 Time	interval	
	

	

Table	9	NSD:	SLA:	constituent	VNFs	

Identifier	 Description	

vnf_reference	 Reference	to	a	VNFD	declared	as	VNFD	in	the	network	service	via	vnf:id.	
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vnf-
flavour_id_refe
rence	

References	a	VNF	flavor	(vnfd:deployment_flavour:id)	to	be	used	for	this	service	SLA.	

redundancy_m
odel	

Represents	the	redundancy	of	instances,	for	example,	“active”	or	“standby”	

affinity	 Specifies	the	placement	policy	between	this	instance	and	other	instances,	if	any.	
number_of_ins
tances	

Number	of	VNF	instances	satisfying	this	service	assurance.	
	

	

	

Table	10	VNFD:	deployment	flavor	

Identifier	 Description	
id	 ID	of	the	VNF	flavour	
assurance	
parameters		

A	set	of	elements	related	to	a	particular	monitoring	parameter.		
 

constraint	 Constraint	that	this	deployment	flavour	can	only	meet	the	requirements	on	certain	hardware	
constituent_vdu	 Represents	the	characteristics	of	a	constituent	flavour	element	

Examples	include	Control-plane	VDU	&	Data-plane	VDU	&	Load	Balancer	VDU	Each	needs	a	
VDU	element	to	support	the	deployment	flavour	of	10k	calls-per-sec	of	vPGW,	Control-plane	
VDU	may	specify	3	VMs	each	with	4	GB	vRAM,	2	vCPU,	32	GB	virtual	storage	etc.	
Data-plane	VDU	may	specify	2	VMs	each	with	8	GB	vRAM,	4	vCPU,	64	GB	virtual	storage	etc.	

	

	

Table	11	vnfd:deployment_flavour:constituent_vdu	

Identifier	 Description	
vdu_reference	 References	a	VDU	which	should	be	used	for	this	deployment	flavour	by	vnfd:vdu:id	
number_of_inst
ances	

Number	of	VDU	instances	required	

constituent_vnf
c	

References	VNFCs	which	should	be	used	for	this	deployment	flavour	by	vnfd:vdu:vnfc:id	

	

Technical	details	on	the	sequence	of	actions	performed	to	query	the	service	catalogue	and	an	
example	of	the	resulting	NS.json	file	are	reported	in	Annex	12.	
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5. SIMULATION	TESTS	

The	aim	of	 this	section	 is	 to	present	and	discuss	simulation	tests	 for	each	service	mapping	
algorithm	proposed	 in	 T-NOVA,	with	 the	objective	of	 highlighting	 the	peculiarities	 of	 each	
approach,	its	strengths	and	the	possible	drawbacks	and	areas	for	future	works.	

5.1. Integer	Linear	Programming	based	approach	

We	performed	a	 computational	evaluation	of	 the	method	both	 to	understand	 the	 relative	
impact	of	parameters	choice	in	our	models	and	to	assess	the	scalability	of	the	solvers,	thereby	
validating	 the	 practical	 applicability	 of	 our	 framework.	 For	 this	 task	 we	 built	 a	 synthetic	
simulator,	working	as	follows.		

First,	 we	 populated	 the	 simulator	 with	 the	 Network	 Infrastructures	 (NI)	 and	 the	 Network	
Services	 (NS)	 included	 in	 the	 dataset	 [40]	 described	 in	 [41],	 a	 popular	 reference	 in	 the	
literature	of	mapping	algorithms.	In	particular,	such	a	dataset	consists	of	210	base	instances,	
partitioned	 in	 7	 classes	 of	 increasing	 size	 networks,	 each	 one	 including	 30	 instances.	 Any	
instance	contains	a	graph	describing	the	NI	and	a	number	of	smaller	graphs	describing	the	
NSs.	NS	graphs	belong	to	a	limited	number	of	topologies,	representing	different	service	types.	
NI	 (respectively,	 NS)	 graph	 nodes	 are	 annotated	 with	 one	 integer,	 indicating	 the	 CPU	
availability	(respectively,	consumption)	on	that	node.	NI	graph	nodes	are	annotated	also	with	
an	additional	integer,	indicating	the	allocation	cost	on	that	node,	which	is	independent	on	the	
NS	node	to	be	allocated.	Similarly,	NI	 (respectively,	NS)	graph	arcs	are	annotated	with	two	
integers,	one	indicating	the	amount	of	available	(respectively,	consumed)	bandwidth,	and	the	
other	indicating	the	expected	(respectively,	required)	delay	on	that	arc.	Furthermore,	for	each	
NS	node	a	vector	of	compatibilities	to	NI	nodes	is	given,	indicating	which	mappings	are	feasible	
due	to	specific	resources	needed	by	the	NS	VNF	on	the	host.	We	considered	each	arc	in	the	
NS	graph	(and	only	them)	as	critical	paths,	whose	delay	constraints	have	to	be	respected.	

In	Table	12	the	features	of	this	dataset	are	reported:	for	each	class,	we	detailed	the	number	
of	 nodes	 in	 the	 NI,	 the	 average	 number	 of	 nodes	 in	 the	 corresponding	 NSs,	 the	 average	
number	of	NS	types,	the	average	fraction	of	NI-NS	node	mappings	which	are	feasible,	and	the	
average	 ratio	 between	 the	 overall	 amount	 of	 available	 CPU	 at	 NI	 nodes	 and	 the	 overall	
required	CPU	of	NS	nodes.		

Table	12	Instance	details	

Size Average 
VNF nodes 

VNF 
types 

Average 
compatibility 

ratio 
Available CPU / 
required CPU 

20 5,52 4 18,98% 3,38 
30 6,91 4 16,56% 3,88 
50 9,87 4 13,81% 4,29 

100 17,43 4 10,03% 5,1 
Total 

Result 9,93 4 14,84% 4,16 

	

These	base	instances	represent	static	mapping	problems,	while	those	in	TNOVA	are	dynamic.	
That	is,	each	NS	allocation	request	arrives	at	a	certain	point	in	time	and	has	a	certain	duration:	
NI	resources	are	allocated,	if	possible,	when	each	request	is	issued,	and	released	when	the	
request	is	over.		
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Therefore,	we	completed	our	synthetic	simulator	considering	two	running	modes:	simulation	
and	stress	test.		

In	 simulation	mode,	we	model	 the	 arrival	 of	NS	 allocation	 requests	 as	 a	 Poisson	 process,	
whose	average	interarrival	time	is	denoted	as	λ.	We	also	assume	the	duration	of	NS	allocation	
requests	 to	 be	 random,	 following	 a	 normal	 distribution	whose	mean	 is	 denoted	 as	 μ	 and	
whose	standard	deviation	is	denoted	as	σ.	A	simulation	run	consists	of	selecting	a	particular	
base	 instance	 (that	 is,	 a	 NI	 and	 the	 corresponding	 pool	 of	 possible	 NSs),	 and	 then	 to	 (a)	
iteratively	choose	one	NS	at	random,	selecting	it	with	uniform	probability	from	the	NS	pool,	
(b)	 randomly	 draw	 an	 interarrival	 time	 and	 a	 duration	 for	 the	 corresponding	 allocation	
request,	 (c)	 possibly	 release	 the	NI	 resources	 assigned	 to	 allocations	 requests	 terminating	
within	the	drawn	interarrival	time,	(d)	ask	the	mapping	algorithm	to	find	a	suitable	allocation	
of	 the	 drawn	 NS	 to	 the	 NI,	 (e)	 either	 reject	 the	 allocation	 request	 or	 accept	 it,	 and	
subsequently	mark	NI	resources	as	used,	according	to	the	mapping	provided	by	the	algorithm.	
The	simulation	ends	as	soon	as	the	sum	of	interarrival	times	exceeds	a	given	time	horizon	τ,	
that	represents	the	time	length	of	the	simulation.	Values	λ,	μ,	σ,	and	τ,	and	the	base	instance	
to	be	used,	are	parameters	of	the	simulator.		

In	stress	test	mode,	instead,	we	consider	for	a	given	base	instance	all	NS	allocation	requests	
to	arrive	following	the	order	in	which	they	appear	in	the	instance	file,	with	a	negligible	fixed	
interarrival	 time,	 and	 a	 duration	 equal	 to	 τ.	 That	 is,	 in	 stress	 test	 mode	 all	 NS	 allocation	
requests	arrive	one	after	another,	they	are	either	rejected	or	allocated,	and	in	the	second	case	
the	assigned	resources	are	never	released.		

For	the	sake	of	interpretability,	we	always	set	the	simulation	length	τ	=	168	hours	(that	is,	one	
week),	the	average	allocation	request	duration	μ	=	24	hours,	and	the	corresponding	standard	
deviation	σ	=	2	hours.		

	

5.1.1. Test	1:	Evaluating	solvers	scalability	as	the	NI	size	increases		

First,	we	verified	that	the	approach	is	computationally	effective	enough	to	be	embedded	in	
TeNOR.	We	therefore	considered	two	options:	to	use	either	the	open	source	solver	GNU	GLPK	
or	the	commercial	one	 IBM	CPLEX	to	perform	service	mapping.	 In	both	cases,	the	solver	 is	
invoked	to	optimize	the	service	mapping	model	described	in	Section	3.2.		

A	time	limit	of	60s	was	given	to	each	solver	run.	The	simulations	were	restricted	to	instances	
with	up	to	100	NI	nodes.	The	parameters	α,	β	and	γ	of	the	model	were	all	set	to	1.		

The	synthetic	simulator	was	set	in	simulation	mode.	We	analysed	two	scenarios:	mild	and	high	
average	NI	load,	setting	in	the	former	case	λ	=	μ	/	(0.50	*	(L	/	l)),	and	in	the	latter	case	λ	=	μ	/	
(0.75	*	(L	/	l)),	where	L	is	the	overall	available	CPU	resources	in	the	NI,	and	l	is	the	average	
amount	of	CPU	resource	required	by	each	NS	in	the	corresponding	pool.	That	is,	if	CPU	were	
the	only	scarce	resource,	and	NS	node	fragmentation	were	possible,	in	the	mild	(respectively,	
high)	average	NI	 load	 scenario	we	would	expect	 to	have	about	50%	 (respectively,	 75%)	of	
overall	CPU	resources	always	allocated.		

We	 considered	 two	 performance	 measures:	 the	 percentage	 of	 accepted	 NS	 allocation	
requests,	and	the	average	computing	time	per	allocation	request.		

Table	13	Solvers	scalability	test,	60s	time	limit	

Solver GLPK 
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A
ve

ra
ge

 
lo

ad
 

Size Acceptance 
rate 

CPU 
time 

(accept) 

Percentage 
Timeout 
(accept) 

CPU 
time 

(reject) 

 Percentage 
Timeout 
(reject) 

0,5 20 80,55% 0,02 0,00% 0,03 0,00% 
  30 75,31% 0,21 0,19% 0,43 0,57% 
  50 71,43% 0,49 0,20% 0,48 0,34% 
  100 58,91% 2,69 0,78% 1,95 0,63% 

0,75 20 67,52% 0,02 0,00% 0,02 0,00% 
  30 62,12% 0,21 0,12% 0,25 0,25% 
  50 57,26% 0,51 0,19% 0,32 0,08% 
  100 47,57% 2,57 0,74% 1,87 0,54% 

Avg.   65,08% 0,84 0,28% 0,67 0,30% 
       
Solver CPLEX 

A
ve

ra
ge

 
lo

ad
 

Size Acceptance 
rate 

CPU 
time 

(accept) 

Percentage 
Timeout 
(accept) 

CPU 
time 

(reject) 

 Percentage 
Timeout 
(reject) 

0,5 20 80,57% 0,02 0,00% 0,01 0,00% 
  30 75,42% 0,04 0,00% 0,02 0,00% 
  50 71,07% 0,09 0,00% 0,04 0,00% 
  100 59,52% 0,31 0,00% 0,16 0,00% 
0,75 20 67,73% 0,02 0,00% 0,01 0,00% 
  30 62,70% 0,04 0,00% 0,02 0,00% 
  50 58,75% 0,08 0,00% 0,04 0,00% 
  100 47,07% 0,29 0,00% 0,15 0,00% 
Avg.   65,35% 0,11 0,00% 0,06 0,00% 

	

Table	13	contains	 two	horizontal	blocks,	one	for	each	NI	 load	scenario	 (column	avg.	 load).	
Each	block	contains	one	row	for	any	instance	class,	reporting	average	values	over	instances	of	
that	class.	Instance	classes	are	sorted	by	increasing	NI	size	(column	size).	The	actual	results	
are	reported	in	the	subsequent	two	vertical	blocks,	one	for	each	solver	option	(as	indicated	in	
the	 leading	 row).	 Each	 of	 them	 is	 composed	 by	 two	 sub-blocks,	 restricting	 to	 results	 on	
allocation	 requests	 that	 were	 accepted	 (respectively,	 rejected).	 In	 each	 sub-block	 we	
reported,	 in	 turn,	 the	 average	 percentage	 of	 accepted	 (respectively,	 rejected)	 allocation	
requests,	 the	 average	 CPU	 time	 spent	 in	mapping	 for	 those	 requests	 that	 were	 accepted	
(respectively,	rejected),	the	percentage	of	those	runs	that	exceeded	the	time	limit.		

We	first	observe	that	computing	time	is	not	a	critical	issue:	the	commercial	solver	CPLEX	never	
exceeds	the	time	limit,	and	the	average	response	times	is	as	low	as	0.3s	even	for	large	NIs.	
The	open	source	solver	GLPK	yields	computing	times	that	are	one	order	of	magnitude	larger	
than	those	of	CPLEX;	this	was	expected,	giving	the	benchmarking	results	from	the	literature.	
Still,	 the	 average	 query	 time	 is	 always	 less	 than	 3s.	 Allocation	 rejection	 is	 almost	 always	
produced	as	the	result	of	the	solver	detecting	infeasibility	(timeout	is	observed	on	average	in	
0.3%	 of	 the	 runs,	 and	 only	 for	 GLPK);	 rejections	 are	 on	 average	 faster	 to	 report	 than	
allocations.		
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Summarizing,	both	solvers	scale	well	in	terms	of	computing	time:	embedding	either	CPLEX	or	
GLPK	would	 likely	yield	 systems	whose	bottleneck	 is	not	 the	 service	mapping	optimization	
algorithm.	Embedding	CPLEX	yields	almost	real-time	performances.		

Second,	we	observed	that	the	percentage	of	accepted	requests	decreases	as	the	size	of	the	NI	
increases.	This	might	highlight	a	possible	point	of	improvement	for	the	mapping	model.	At	the	
same	time,	GLPK	and	CPLEX	provide	almost	identical	results,	even	if	GLPK	incurs	more	often	
(0.3%	of	the	runs)	in	timeouts.		

To	 further	 check	 the	 behaviour	 of	 the	 solvers	 when	 very	 fast	 response	 is	 required,	 we	
repeated	the	experiment	by	setting	a	time	limit	of	3s	instead	of	60s.	Our	results	are	reported	
in	Table	14;	for	simplicity	only	the	NS	allocation	requests	acceptance	rate	is	reported	for	both	
solvers;	 as	 a	 reference,	we	 include	 also	 the	 acceptance	 rate	 obtained	during	 the	 previous	
experiment.	On	average,	no	worsening	is	observed.		

Table	14	Solvers	scalability	tests,	overall	acceptance	rate.	

Timeout 3 seconds 60 seconds 

Average 
load Size GLPK CPLEX GLPK CPLEX 

0,5 20 80,48% 80,25% 80,55% 80,57% 
  30 74,92% 76,15% 75,31% 75,42% 
  50 70,97% 71,30% 71,43% 71,07% 
  100 60,16% 60,12% 58,91% 59,52% 

0,75 20 67,81% 67,82% 67,52% 67,73% 
  30 62,60% 62,52% 62,12% 62,70% 
  50 57,41% 57,59% 57,26% 58,75% 
  100 47,94% 47,76% 47,57% 47,07% 

Avg.  65,29% 65,44% 65,08% 65,35% 
	

Therefore,	 also	 in	 terms	 of	 acceptance	 rate,	 embedding	 either	 CPLEX	 or	 GLPK,	 even	 by	
imposing	tight	time	limits,	has	no	strong	impact	on	the	performances	of	the	overall	system.		

5.1.2. Test	2:	Evaluating	solvers	scalability	as	the	average	datacenter	
load	increases	

Second,	we	 analysed	 the	 performances	 of	 our	mapping	 algorithm	 as	 the	 average	DC	 load	
changes.	In	particular,	we	restricted	our	tests	to	instances	whose	NIs	contain	20	nodes,	and	
considered	simulations	in	which	the	average	CPU	load	of	NI	nodes,	denoted	as	𝛿,	ranges	from	
0.1	 to	 1.2,	 considering	 each	 step	 of	 0.1	 points,	 and	 setting	 for	 each	 of	 them	 𝜆 = 𝜇/(𝛿 ∗
(𝐿	/	𝑙)).		

Figure	15	below	depicts	the	average	acceptance	rate	obtained	using	CPLEX	as	the	average	CPU	
load	changes.		
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Figure	15	Percentage	acceptance	as	average	load	increases.	

Figure	 16	 has	 a	 similar	 structure	 and	 reports	 the	 average	 computing	 time	 per	 allocation	
request	that	was	subsequently	accepted	(blue	line)	or	rejected	(orange	line).		

	
Figure	16	CPU	time	as	average	load	increases	

As	expected,	the	acceptance	rate	drops	as	the	average	load	increases,	but	the	system	does	
not	collapse	even	under	heavy	stress	(rightmost	part	of	the	charts).	Average	load	seems	to	
have	very	little	effect	on	solver	computing	time.		

No	 substantial	 difference	 was	 observed	 by	 using	 GLPK,	 and	 therefore	 the	 corresponding	
results	are	omitted.		

	

5.1.3. Test	3:	Fine	tuning	of	model	parameters	

Finally,	we	tried	to	assess	the	behaviour	of	the	service	mapping	algorithm	as	the	parameters	
of	the	corresponding	model	change.	To	this	purpose,	we	set	the	synthetic	simulator	in	stress	
test	mode,	 and	 we	 considered	 only	 instances	 whose	 NIs	 contain	 20	 nodes.	 These	 always	
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include	40	NSs.	We	considered	eight	configurations,	one	for	each	possible	choice	of	either	
value	1.0	or	value	0.0	 for	each	of	 the	model	parameters	α,	β	and	γ.	 Figure	17	depicts	 the	
acceptance	rate	(vertical	axis)	with	respect	to	the	NS	allocation	request	arrival	rank	(horizontal	
axis)	obtained	using	CPLEX.	One	line	is	included	for	each	configuration:	thick	lines	encode	the	
choice	α	=	1.0	(while	thin	ones	encode	α	=	0.0),	black	lines	encode	β	=	1.0	(while	grey	ones	
encode	β	=	0.0),	continuous	lines	encode	γ	=	1.0	(dashed	ones	encode	γ	=	0.0).	Before	rank	20	
the	acceptance	rate	was	always	100%,	and	therefore	the	corresponding	portion	of	the	Chart	
is	omitted.	

	
Figure	17	Acceptance	rate	in	function	of	the	arrival	rank	

We	note	that	moving	from	β	=	0.0	(grey	lines)	to	β	=	1.0	(black	lines)	substantially	improves	
the	acceptance	rate;	the	same	applies	moving	from	γ	=	0.0	(dashed	lines)	to	γ	=	1.0	(continuous	
lines).	Moving	 from	α	=	0.0	 (thin	 lines)	 to	α	=	1.0	 (thick	 lines)	has	 still	 some	 impact,	when	
combined	with	settings	β	=	1.0	and	γ	=	1.0.	This	matches	our	modelling	aim,	in	which	objective	
terms	related	to	β	and	γ	directly	affect	allocation	feasibility,	while	that	related	to	α	is	useful	
only	for	diversification,	and	therefore	inter	PoP	balancing.	Overall,	setting	all	parameters	to	
1.0	gives	the	best	results.		

Figure	 18	 depicts	 the	 average	 computing	 time	 per	 allocation	 request	 (vertical	 axis)	 with	
respect	to	the	NS	allocation	request	arrival	rank	(horizontal	axis).	One	line	is	included	for	each	
configuration,	respecting	the	encoding	described	above.	While	up	to	request	20	the	allocation	
sub	problems	turn	out	to	be	trivial	for	the	solver,	as	even	a	simple	greedy	solution	may	be	
optimal,	from	request	21	onwards	solving	the	sub	problem	becomes	not	trivial	and	requires	
an	additional	effort,	even	if	the	solver	response	time	remains	low.		
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Figure	18	Average	computing	time	in	function	of	the	arrival	rank	(on	stress	test)	

No	 configuration	 yields	 substantial	 changes	 in	 the	 average	 solver	 computing	 time.	 No	
substantial	difference	was	observed	by	using	GLPK,	and	therefore	the	corresponding	results	
are	omitted.	
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5.2. Reinforcement	Learning	Based	Approach	

In	the	following	subsection	simulation	tests	for	the	two	RL	mapping	algorithms	proposed	are	
provided	(i.e.	for	the	VNF	mapping	strategy	in	Section	3.2.1		and	the	complete	NS	mapping	
Strategy	 in	 Section	 3.2.2).	 The	 approach	 has	 been	 implemented	 in	 Matlab,	 with	 artificial	
infrastructure	and	service	repositories	created	to	build	the	simulation	scenarios.	

5.2.1. Mapping	of	Single	VNFs	

The	following	simulation	scenario	 is	proposed	to	highlight	the	peculiarities	of	the	approach.	
Three	 types	 of	 NSs	 are	 considered:	 “light”,	 “medium”	 and	 “heavy”,	 in	 terms	 of	 resource	
requirements.	NSs	are	characterized	by	the	same	arrival	 (𝜆� = 0,02)	and	termination	 (𝜆< =
0,0001)	Poissonian	rates.	NSs	are	composed	each	by	a	single	VNF.	VNFs	can	require	up	to	five	
different	 types	of	 resources.	A	network	with	10	PoPs	 is	 considered.	 Infrastructure	and	NSs’	
resource	specifications	have	been	chosen	based	on	[41]	(PoP	resources	in	the	order	of	10¹ −
10º	and	NS	cumulative	resources	of	400,	500	and	600	respectively	for	the	three	NS	types).	The	
rewards	for	mapping	the	first	two	NSs	are	set	to	1,	the	reward	for	mapping	the	“heavy”	NSs	is	
set	 to	 10.	 The	 remaining	 simulation	 parameters	 are	 𝜂 = 0.9, 𝛾 = 0.7, 𝛼� = 1/(1.01 +
𝜏/1000 ).	 This	 simple	 simulation	 setting	 is	 aimed	 at	 showing	 how	 RL	 manages	 to	 learn	
environment	dynamics	and	maximize	the	allocation	reward,	in	respect	of	infrastructure	and	NS	
constraints.	Figure	26	shows	the	total	reward	achieved	in	time	(3×10º	simulation	steps)	by	
two	different	policies:	a	greedy	policy	and	the	proposed	Q-Learning	strategy.	

 
Figure	19	Revenue	evolution:	greedy	and	Q-Learning	policies	compared	

The	greedy	policy	is	a	typical	policy	used	for	benchmark	purposes	in	RL	applications.	According	
to	 the	 greedy	 policy,	 at	 each	 time	 𝜏,	 the	 action	 is	 chosen	 which	 maximizes	 the	 current	
achievable	reward	𝑟�,	compatibly	with	the	PoPs’	level	of	occupancy.	The	figure	shows	that	the	
adopted	Q-Learning	policy	largely	overcomes	in	time	the	greedy	one.	The	Q-Learning	strategy	
ensures	higher	performances	by	learning	system’s	dynamics	(e.g.	arrival	and	termination	rates,	
PoP	 resources	 availabilities	 and	 NS	 requirements).	 Also,	 it	 acts	 having	 as	 objective	 the	
performance	of	the	system	over	a	time	horizon,	rather	than	by	looking	only	at	the	immediate	
reward	(thus	implicitly	implementing	the	“lookahead”	property	[16]).	In	this	sense,	allocation	
of	NSs	 is	managed	by	the	controller	 in	such	a	way	as	to	give	some	precedence	to	the	most	
rewarding	services,	as	it	can	be	seen	in	the	next	Figure	27.	The	figure	shows	the	performance	
of	 the	 two	 policies	 in	 terms	 of	 average	 acceptance	 rate.	 For	 both	 policies,	 as	 natural,	 the	
acceptance	rate	decreases	as	the	NS	size	increases.		
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Figure	20	Average	NS	acceptance	rates	

However,	it	can	be	noticed	that,	under	the	Q-Learning	policy,	the	acceptance	rate	of	the	“large”	
NS	 (the	 one	 associated	with	 the	 greatest	 reward)	 significantly	 increases	 (+56%),	 while	 the	
acceptance	 rate	 of	 the	 “small-size”	NS	 decreases.	Notice	 that	 this	 is	 done	 not	 by	 explicitly	
rejecting	the	less	rewarding	services	(even	though	explicit	rejection	could	be	modelled	as	well),	
but	 rather	 by	mapping	 them	 to	 sub-optimal	 PoPs,	 in	 order	 to	 keep	 available	 space	 for	 the	
rewarding	NSs.	 As	 a	 result,	 also	 the	 overall	 acceptance	 rate	 increases	 (+4%),	 resulting	 into	
higher	utilization	of	PoP	resources11	(Figure	28).		

 
Figure	21	Utilization	of	PoP	resources	

The	simulation	scenario	above	corresponds	to	a	challenging	load	factor12	of	1.05.	Furthermore,	
the	 fact	 that	 the	 different	 NSs	 have	 different	 resource	 requirements	 poses	 significant	

																																																													
11	Utilization	is	defined	here	as	the	ratio	of	the	average	used	PoP	resources	over	the	total	available	PoP	
resources.	
12	Recall	that	load	factor	is	defined	here	as	the	ratio	of	the	average	requested	resources	to	the	available	
ones.	
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constraint	to	the	mapping	process	(making	 impossible	 in	practice	to	achieve	high	utilization	
factors).		

Concluding,	the	following	strengths	can	be	mentioned	regarding	the	proposed	RL	approach:	(i)	
the	 behavior	 of	 the	 algorithm	 can	 be	 tuned	 in	 accordance	 with	 the	 control	 objectives	 by	
choosing	the	right	reward	function,	(ii)	the	mapping	algorithm	works	by	simply	updating	the	
equations	(9)	and	(10),	thus	having	negligible	execution	times,	(iii)	the	learning	property	of	the	
RL	 algorithm	 makes	 possible	 to	 maximize	 not	 just	 the	 immediate	 reward,	 but	 rather	 the	
expected	reward	in	the	long	run,	which	is	important	when	acting	in	an	uncertain	environment	
(e.g.	stochastic	service	request	times	and	types).	In	particular,	points	(ii)	and	(iii)	are	distinctive	
features	with	respect	to	the	proposed	ILP	approaches.	

5.2.2. Mapping	of	Complete	NSs	

We	finally	provide	a	simple	simulation	test	of	the	RL	algorithm	designed	to	map	NSs	composed	
by	more	 than	one	VNF	 (i.e.	 the	most	general	 case	–	 refer	 to	Section	3.2.2).	 To	 this	end,	a	
scenario	is	considered	in	which	requests	randomly	arrive	according	to	a	Poisson	distribution.	
At	each	request	time,	a	NS	is	randomly	picked	from	a	pool	of	three	possible	ones.	Topology	
and	node/link	resource	requirements	of	the	three	NSs	are	reported	in	the	next	figure.		

	

	

	
(a)	 	

(b)	

	

	

	
(c)	

Figure	22	NSs	topologies	and	bandwidth	requirements	for	the	NS1	(a),	the	NS2	(b)	and	the	NS	(c)	

The	algorithm	is	tested	on	the	20	node	NI	from	[41],	the	same	used	previously	in	Section	5.1.2.	
The	network	graph	is	reported	in	the	next	figure.	

	
(a)	

	
(b)	

Figure	23	NI	topology	(20	nodes)	and	bandwidth	availability	(a),	link	delay	(b)	
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The	figure	below	reports	the	resulting	acceptance	rate	as	a	function	of	the	load	of	requests,	
defined	as	the	ratio	between	the	average	cumulative	resources	asked	to	the	total	available	
resources.	We	refer	to	the	PoP	load.	To	compute	the	average	cumulative	resources	asked,	we	
refer	 to	 the	 Little	 law	 [42],	 according	 to	 which	 the	 average	 number	 of	 NSs	 outstanding	
requests	is	equal	to	the	average	arrival	rate	times	the	average	dwelling	time	(which	is	in	turn	
given	by	the	ratio	of	the	arrival	rate	to	the	departure	rate,	for	Poisson	distributions).	The	figure	
reports	 the	 acceptance	 rate	 for	 the	 three	 NSs.	 The	 reward	 function	 in	 this	 test	 is	 set	 to	
maximise	NSs	 acceptance.	As	 for	 the	previous	VNF	 case,	 the	 rates	 are	decreasing	 and	 the	
heaviest	NS	is	associated	with	the	lowest	acceptance	rate.	

	
Figure	24.	Acceptance	rate	in	function	of	the	load	(same	reward	for	all	NS	types)	

Concluding,	the	above	simulations	have	shown	the	applicability	of	the	reinforcement	learning	
concept	to	the	service	mapping	problem,	with	encouraging	results	which	show	that	learning	
systems’	dynamics	allows	to	effectively	implement	a	form	of	lookahead	property13	different	
from	 the	 one	 previously	 discussed	 in	 literature	 [16],	which	 consisted	 “simply”	 in	mapping	
together	more	than	one	request.	

Future	research	work	will	regard	in	particular:	

• Investigation	of	new	definitions	for	the	state	space,	in	order	to:	(i)	improve	scalability	
through	improved	state	aggregation,	(ii)	improve	the	details	on	the	actual	state	of	the	
infrastructure	conveyed	by	the	state	definition.	

• Investigate	new	definitions	for	the	reward	function,	in	line	with	the	goals	of	the	actors	
involved.	

• Investigate	 possible	 combinations	 with	 the	 ILP	 approaches	 proposed	 in	 this	
deliverable.	

	 	

																																																													
13	That	is,	the	ability	of	a	mapping	algorithm	to	map	more	than	one	request	at	the	same	time.	
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5.3. Multi-stage	Network	Service	Embedding	

In	this	section,	we	evaluate	the	efficiency	of	the	proposed	two-stage	service	chain	embedding	
approach.	We	 particularly	 focus	 on	 the	 ILP-based	weight-minimized	 service	 chain	 request	
partitioning	for	which	we	employ	the	IBM	ILOG	CPLEX	optimizer.	In	addition,	we	use	a	greedy	
algorithm	as	baseline.	This	algorithm	binds	each	NF	with	one	of	the	end-points,	depending	on	
the	 NF	 location	 constraint	 or	 the	 order	 in	 the	 service	 chain	 (for	 NFs	 without	 location	
dependencies),	and	assigns	each	NF	to	the	DC	which	is	most	proximate	to	the	corresponding	
end-point.	We	run	simulations	with	50	homogeneous	DCs,	each	containing	200	servers.	We	
generated	service	chains	with	each	10	to	20	NFs	and	a	source	traffic	rate	of	10	to	100	Mbps.	
	
Figure	 25	 depicts	 the	 evolution	 of	 load	 balancing	 level	 across	 the	 DCs.	 Since	 the	 greedy	
selection	of	DCs	close	to	the	end-points	does	not	lead	to	load	balancing14,	we	focus	on	the	
load	 balancing	 level	 of	 the	 ILP	 variant.	 According	 to	 Figure	 25,	 weight-minimized	 request	
partitioning	converges	to	near-optimal	load	balancing	after	100K	requests,	exploiting	the	DC	
utilization	levels	disclosed	via	the	link	weights.		
More	specifically,	after	250K	requests	the	highest	server	load	is	5.3%	above	the	average	DC	
utilization	for	weight-minimized	request	partitioning.	
	

	
Figure	25:	Load	balancing	level	across	the	DC	servers	with	weight-minimized	request	partitioning	

Figure	26	shows	the	request	acceptance	rates	for	the	weight-minimized	and	for	the	greedy	
request	partitioning	methods.	Optimizing	DC	selection	based	on	the	disclosed	weights	inhibits	
the	 assignment	 of	 NF-subgraphs	 to	 highly	 utilized	 DCs,	 which	 usually	 leads	 to	 request	
rejections.	As	such,	weight-minimized	request	partitioning	yields	a	higher	request	acceptance	
rate	 while	 the	 greedy	 algorithm	 suffers	 from	 a	 large	 number	 of	 rejections,	 due	 to	 the	
restrictions	in	DC	selection.		
	

																																																													
14	The	DC	load	balancing	factor	is	defined	by	the	maximum	over	the	average	server	utilization.	
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Figure	26:	Acceptance	rate	with	weight-minimized	and	greedy	request	partitioning	

	
Figure	26	and	Figure	27	show	a	strong	correlation	between	the	acceptance	rate	and	generated	
revenue.	The	 ILP	variant	generates	 substantially	higher	 revenue	 from	CPU	and	bandwidth,	
compared	to	the	greedy	algorithm.	The	high	acceptance	rate	with	weight-minimized	request	
partitioning	 translates	 to	 higher	 revenue	which	 is	 up	 to	 three	 times	 higher	 than	with	 the	
greedy	 variant.	 This	 essentially	 designates	 weight-minimized	 request	 partitioning	 as	 the	
preferred	method.		
	

	
Figure	27:	Cumulative	revenue	with	weight-minimized	and	greedy	request	partitioning	

	
Finally,	we	measure	the	acceptance	rate	of	weight-minimized	request	partitioning	with	250K	
expiring	 requests	 and	 diverse	 arrival	 rates.	 Figure	 28	 shows	 that	 acceptance	 rates	 always	
converge	 to	a	 steady	 state.	This	 further	 indicates	 the	efficiency	of	 the	proposed	 ILP-based	
methods	for	service	chain	embedding	across	multiple	DCs.	
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Figure	28:	Acceptance	rate	with	diverse	arrival	rates	of	expiring	service	chain	requests	with	weight	
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6. CONCLUSIONS	

This	deliverable	has	reported	the	outcomes	of	the	Task	3.3	“Service	Mapping”	of	the	T-NOVA	
project.	

The	service	mapping	problem	has	been	put	into	the	context	of	the	architecture	developed	in	
T-NOVA	for	virtualized	network	function	orchestration,	and	a	common	modelling	framework	
for	the	first	level	mapping	problem	(i.e.	mapping	of	virtual	network	functions	to	data	centres)	
and	 the	 second	 level	 mapping	 problem	 (i.e.	 assignment	 of	 virtual	 machines	 to	 hardware	
devices	 inside	 the	 data	 centre)	 has	 been	 proposed,	 based	 on	 graph	 theory.	 Different	
mathematical	methodologies	for	service	mapping	have	been	explored,	mainly	borrowing	from	
pure	 mathematical	 optimization	 theory	 (integer	 linear	 optimization)	 and	 from	 stochastic	
control	theory	(reinforcement	learning).	The	properties	of	such	proposed	mapping	algorithms	
have	been	discussed	by	means	of	simulations	carried	out	in	emulated	environment.	

A	 second	 key	 outcome	of	 the	 Task	 3.3,	 reported	 in	 this	 deliverable,	 is	 the	 design	 and	 the	
integration	of	the	service	mapping	module	(the	module	actually	hosting	the	service	mapping	
algorithm)	in	the	T-NOVA	system.	A	key	outcome	of	the	integration	design	is	that	the	mapping	
module	can	potentially	integrate	different	mapping	algorithms,	provided	that	they	comply	to	
the	documented	interfaces	specifications.	Such	interfaces	mainly	regard	the	interaction	of	the	
module	with	the	infrastructure	repository	and	with	the	service	catalogue,	which	are	the	two	
key	subsystems	providing	 inputs	 to	 the	mapping	problem.	The	 integer	 linear	programming	
approach	proposed	by	Unimi	has	been	integrated	in	TeNOR,	the	T-NOVA	orchestrator.	The	
integration	 has	 been	 first	 tested	 on	 a	 mock-up	 system,	 built	 based	 on	 the	 interfaces	
specification,	and	then	integrated	into	the	actual	T-NOVA	system.	

The	 integration	 and	 implementation	 style	 adopted	 and	 the	 results	 of	 algorithms	 research	
open	the	way	for	further	promising	works.	As	mentioned,	the	so	built	platform	allows	to	easily	
integrate	 advancements	 in	 the	 mapping	 algorithms,	 which	 are	 possible	 especially	 in	 the	
direction	 of	 integrating	 the	 theoretical	 approaches	 presented	 (exact	 optimization	 versus	
stochastic	control)	towards	an	enhanced	algorithm.	Such	enhanced	algorithm	could	capture	
the	strengths	of	both	the	theoretical	approaches,	that	is,	(i)	the	ability	of	exact	methods	to	
accurately	 tackle	 the	 service	 and	 infrastructure	 requirements,	 thanks	 to	 the	 inclusion	 of	
related	 constraints,	 and,	 (ii)	 the	 ability	 of	 the	 stochastic	 methods	 to	 learn	 environment	
dynamics	in	order	to	came	up	with	mapping	decisions	that	account	for	the	behaviour	of	the	
system	in	the	long	run.	

	 	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

65	

7. REFERENCES	
	

[1]	 T-NOVA	Consortium,	“Deliverable	D2.1	System	Use	Cases	and	Requirements.”	pp.	1–
62,	2014.	

[2]	 European	Telecommunications	Standards	Institute	(ETSI),	“GS	NFV-MAN	001	-	V1.1.1	-	
Network	Functions	Virtualisation	(NFV);	Management	and	Orchestration,”	vol.	1,	pp.	
1–184,	2014.	

[3]	 T-NOVA	 Consortium,	 “Deliverable	 D3.01	 Interim	 Report	 on	 Orchestrator	 Platform	
Implementation.”	pp.	1–92,	2014.	

[4]	 European	 Telecommunications	 Standards	 Institute	 (ETSI),	 “Network	 Functions	
Virtualisation	(NFV);	Architectural	Framework,”	vol.	1,	pp.	1–21,	2013.	

[5]	 European	 Telecommunications	 Standards	 Institute	 (ETSI),	 “Network	 Functions	
Virtualisation	(NFV);Terminology	for	Main	Concepts	 in	NFV,”	vol.	1,	no.	ETSI	GS	NFV	
003	V1.2.1,	pp.	1–13,	2014.	

[6]	 European	 Telecommunications	 Standards	 Institute	 (ETSI),	 “Network	 Functions	
Virtualisation	(NFV);	Use	Cases,”	ETSI	GS	NFV	001	V1.1.1,	pp.	1–50,	2013.	

[7]	 H.	Ballani,	P.	Costa,	T.	Karagiannis,	and	A.	Rowstron,	“Towards	predictable	datacenter	
networks,”	ACM	SIGCOMM	Comput.	Commun.	Rev.,	vol.	41,	no.	4,	p.	242,	2011.	

[8]	 J.	Lee,	M.	Lee,	L.	Popa,	Y.	Turner,	S.	Banerjee,	P.	Sharma,	B.	Stephenson,	J.	C.	Mogul,	J.	
Mudigonda,	 J.	 R.	 Santos,	 H.	 P.	 Labs,	 and	 P.	 Alto,	 “CloudMirror :	 Application-Aware	
Bandwidth	Reservations	in	the	Cloud,”	in	Proceedings	of	the	5th	USENIX	Workshop	on	
Hot	Topics	in	Cloud	Computing,	2013,	pp.	1–6.	

[9]	 C.	 Guo,	 G.	 Lu,	 H.	 J.	 H.	 J.	 Wang,	 S.	 Yang,	 C.	 Kong,	 P.	 Sun,	 W.	 Wu,	 and	 Y.	 Zhang,	
“SecondNet:	 a	 data	 center	 network	 virtualization	 architecture	 with	 bandwidth	
guarantees,”	 in	Proceedings	of	 the	6th	 International	Conference,	 2010,	no.	Vdc,	pp.	
15:1–15:12.	

[10]	 A.	 Gember,	 R.	 Grandl,	 and	 A.	 Anand,	 “Stratos:	 Virtual	 middleboxes	 as	 first-class	
entities,”	ONS	summit,	2013.	

[11]	 S.	Oechsner	and	A.	Ripke,	“Flexible	Support	of	VNF	Placement	Functions	in	OpenStack,”	
in	Proceedings	of	the	2015	1st	IEEE	Conference	on	Network	Softwarization	(NetSoft),	
2015,	pp.	1–6.	

[12]	 A.	Fischer,	J.	F.	Botero,	M.	T.	Beck,	H.	De	Meer,	and	X.	Hesselbach,	“Virtual	network	
embedding:	A	survey,”	 IEEE	Commun.	Surv.	Tutorials,	vol.	15,	no.	4,	pp.	1888–1906,	
2013.	

[13]	 H.	Xin,	S.	Ganapathy,	and	T.	Wolf,	“A	scalable	distributed	routing	protocol	for	networks	
with	 data-path	 services,”	 in	 Proceedings	 -	 International	 Conference	 on	 Network	
Protocols,	ICNP,	2008,	pp.	318–327.	

[14]	 A.	Abujoda	and	P.	Papadimitriou,	“MIDAS:	Middlebox	discovery	and	selection	for	on-
path	 flow	 processing,”	 in	 2015	 7th	 International	 Conference	 on	 Communication	
Systems	and	Networks	(COMSNETS),	2015,	pp.	1–8.	

[15]	 R.	Riggio,	T.	Rasheed,	and	R.	Narayanan,	“Virtual	Network	Functions	Orchestration	in	
Enterprise	 WLANs,”	 in	 Integrated	 Network	 Management	 (IM),	 2015	 IFIP/IEEE	
International	Symposium	on,	2015,	pp.	1220–1225.	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

66	

[16]	 R.	 Guerzoni,	 R.	 Trivisonno,	 I.	 Vaishnavi,	 Z.	 Despotovic,	 A.	 Hecker,	 S.	 Beker,	 and	 D.	
Soldani,	“A	novel	approach	to	virtual	networks	embedding	for	SDN	management	and	
orchestration,”	 in	 Proceedings	 of	 the	 Network	 Operations	 and	 Management	
Symposium	(NOMS),	2014,	pp.	1–7.	

[17]	 S.	 Sahhaf,	W.	 Tavernier,	 D.	 Colle,	 and	M.	 Pickavet,	 “Network	 service	 chaining	with	
efficient	network	function	mapping	based	on	service	decompositions,”	in	Proceedings	
of	the	2015	1st	IEEE	Conference	on	Network	Softwarization	(NetSoft),	2015.	

[18]	 S.	 Sahhaf,	W.	 Tavernier,	 D.	 Colle,	 and	M.	 Pickavet,	 “Network	 service	 chaining	with	
efficient	 network	 function	 mapping	 based	 on	 service	 decompositions,”	 Comput.	
Networks,	vol.	93,	pp.	492–505,	2015.	

[19]	 S.	 Mehraghdam,	 M.	 Keller,	 and	 H.	 Karl,	 “Specifying	 and	 Placing	 Chains	 of	 Virtual	
Network	Functions,”	arXiv	Prepr.	arXiv1406.1058,	vol.	22,	no.	5,	pp.	20–25,	2014.	

[20]	 V.	Abedifar,	M.	Eshghi,	S.	Mirjalili,	and	S.	M.	Mirjalili,	“An	optimized	virtual	network	
mapping	using	PSO	in	cloud	computing,”	in	2013	21st	Iranian	Conference	on	Electrical	
Engineering	(ICEE),	2013,	pp.	1–6.	

[21]	 K.	 Giotis,	 Y.	 Kryftis,	 and	 V.	Maglaris,	 “Policy-based	 orchestration	 of	NFV	 services	 in	
Software-Defined	 Networks,”	 in	 Proceedings	 of	 the	 2015	 1st	 IEEE	 Conference	 on	
Network	Softwarization	(NetSoft),	2015,	pp.	1–5.	

[22]	 T-NOVA	Consortium,	“T-NOVA	Document	of	Work.”	pp.	1–164,	2013.	

[23]	 R.	Mijumbi,	J.	Serrat,	J.	L.	Gorricho,	N.	Bouten,	F.	De	Turck,	and	R.	Boutaba,	“Network	
Function	 Virtualization:	 State-of-the-art	 and	 Research	 Challenges,”	 IEEE	 Commun.	
Surv.	Tutorials,	no.	c,	pp.	1–28,	2015.	

[24]	 D.	Dietrich,	A.	Rizk,	and	P.	Papadimitriou,	“Multi-domain	virtual	network	embedding	
with	limited	information	disclosure,”	IEEE	Trans.	Netw.	Serv.	Manag.,	vol.	12,	no.	2,	pp.	
188–201,	2015.	

[25]	 J.	F.	Riera,	X.	Hesselbach,	E.	Escalona,	J.	A.	García-espín,	and	E.	Grasa,	“On	the	Complex	
Scheduling	Formulation	of	Virtual	Network	Functions	over	Optical	Networks,”	in	16th	
International	Conference	on	Transparent	Optical	Networks	(ICTON	’14),	2014,	pp.	1–5.	

[26]	 S.	Battilotti,	F.	Facchinei,	A.	Giuseppi,	G.	Oddi,	A.	Pietrabissa,	and	V.	Suraci,	“Resource	
Management	 in	 Multi-Cloud	 Scenarios	 via	 Reinforcement,”	 in	 Control	 Conference	
(CCC),	2015	34th	Chinese,	2015,	pp.	9084	–	9089.	

[27]	 J.	Riera,	J.	Batallé,	J.	Bonnet,	M.	Días,	M.	J.	McGrath,	G.	Petralia,	F.	Liberati,	A.	Giuseppi,	
A.	Pietrabissa,	A.	Ceselli,	A.	Petrini,	M.	Trubian,	P.	Papadimitrou,	D.	Dietrich,	A.	Ramos,	
M.	Javier,	G.	Xilouris,	A.	Kourtis,	T.	Kourtis,	and	M.	Evangelos,	“TeNOR	-	A	Resource	and	
Service	Mapping	Approach	to	Orchestrating	VNF	Deployments,”	 in	Submitted	to	the	
Proceedings	 of	 the	 2016	 2nd	 IEEE	 Conference	 on	Network	 Softwarization	 (NetSoft),	
2016.	

[28]	 Openstack,	 “Scheduling,”	 2015.	 [Online].	 Available:	
http://docs.openstack.org/kilo/config-reference/content/section_compute-
scheduler.html.	

[29]	 R.	S.	Sutton	and	A.	G.	Barto,	Reinforcement	Learning:	An	 Introduction,	 vol.	3,	no.	9.	
Cambridge	MA:	The	MIT	Press,	2012.	

[30]	 M.	L.	Puterman,	Markov	decision	processes:	discrete	stochastic	dynamic	programming.	
John	Wiley	&	Sons,	2014.	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

67	

[31]	 D.	Dietrich,	A.	Abujoda,	 and	P.	Papadimitriou,	 “Embedding	Network	Services	across	
Multiple	Providers	with	Nestor,”	in	Proc.	IFIP	Networking,	2015.	

[32]	 A.	Farrel	and	J.	P.	Vasseur,	“RFC	4655,”	Netw.	Work.	Gr.,	no.	1,	pp.	1–5,	2006.	

[33]	 J.	Batallé,	J.	Ferrer-Riera,	E.	Escalona,	and	J.	A.	García-Espín,	“On	the	implementation	
of	NFV	over	an	OpenFlow	infrastructure :	Routing	Function	Virtualization,”	 in	Future	
Networks	and	Services	(SDN4FNS),	2013	IEEE	SDN,	2013,	pp.	1–6.	

[34]	 J.	 F.	 Riera,	 E.	 Escalona,	 J.	 Batalle,	 E.	 Grasa,	 and	 J.	 A.	Garcia-Espin,	 “Virtual	 network	
function	 scheduling:	 Concept	 and	 challenges,”	 in	 2014	 International	 Conference	 on	
Smart	Communications	in	Network	Technologies	(SaCoNeT),	2014,	pp.	1–5.	

[35]	 R.	Mijumbi,	 J.	 Serrat,	 J.	Gorricho,	N.	Bouten,	 F.	De	Turck,	 and	 S.	Davy,	 “Design	and	
Evaluation	of	Algorithms	for	Mapping	and	Scheduling	of	Virtual	Network	Functions,”	in	
Proceedings	 of	 the	 2015	 1st	 IEEE	 Conference	 on	 Network	 Softwarization	 (NetSoft),	
2015.	

[36]	 “Ruby	 Programming	 Language,”	 2015.	 [Online].	 Available:	 https://www.ruby-
lang.org/.	[Accessed:	15-Dec-2015].	

[37]	 T-NOVA	Consortium,	“Deliverable	3.2	Infrastructure	Resource	Repository.”	pp.	1–105,	
2015.	

[38]	 T-NOVA	Consortium,	“Deliverable	6.4	SLAs	and	Billing.”	2015.	

[39]	 T-NOVA	Consortium,	“Deliverable	D6.1	Service	Description	Framework.”	2015.	

[40]	 Algorithms	 and	 complexity	 group,	 “Virtual	 Network	 Mapping	 Problem	 Instances,”	
2015.	[Online].	Available:	https://www.ac.tuwien.ac.at/research/problem-instances/.	
[Accessed:	15-Dec-2015].	

[41]	 J.	 Zhu,	 “Benchmarking	 Virtual	 Network	 Mapping	 Algorithms,”	 University	 of	
Massachusetts	-	Amherst,	2014.	

[42]	 J.	D.	C.	Little	and	S.	C.	Graves,	“Chapter	5	Little	’	s	Law,”	Oper.	Manag.,	vol.	115,	pp.	
81–100,	2008.	

	



T-NOVA	|	Deliverable	D3.3	 	 Service	mapping	
	

©	T-NOVA	Consortium		
	

68	

8. LIST	OF	ACRONYMS	

Acronym	 Explanation	

API	 Application	Programming	Interface	

CIMI	 Cloud	Infrastructure	Management	Interface	

DAG	 Directed	Acyclic	Graph	

DC	 Datacenter	

DMI	 Desktop	Management	Interface	

DMTF	 Distributed	Management	Task	Force	

DPDK	 Data	Plane	Development	Kit	

EPA	 Enhanced	Platform	Awareness	

ETSI	 European	Telecommunications	Standards	Institute	

GPU	 Graphics	Processing	Unit	

GW	 Gateway	

HDFS	 Highly	Distributed	File	System	

HTTP	 Hyper-Text	Transfer	Protocol	

ILP	 Integer	Linear	Programming	

IPMI	 Intelligent	Platform	Management	Interface	

IVM	 Infrastructure	Virtualisation	and	Management	

JSON	 JavaScript	Object	Notation	

MANO	 (ETSI	NFV)	Management	and	Orchestration	

MDP	 Markov	Decision	Problem	

MIF	 Management	Information	Format	

MIP	 Mixed	Integer	Programming	

ML	 Modular	Layer	

MPL	 Mathematical	Programming	Language	

NAT	 Network	Address	Translator	

NF	 Network	Function	

NFS,		
NF	Store	

Network	Function	Store	

NFV	 Network	Functions	Virtualization	

NI	 Network	Infrastructure	

NIC	 Network	Interface	Controller	

NS	 Network	Service	

NSD	 Network	Service	Descriptor	
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Or-Vi	 Interface	between	the	Orchestrator	and	the	VIM	

PoP	 Point	of	Presence	

QoS	 Quality	of	Service	

RCSP	 Resource	Constrained	Project	Scheduling	Problem	

REST	 Representational	State	Transfer	

SLA	 Service	Level	Agreement	

SM	 Service	mapping	

SMM	 Service	mapping	Module	

SP	 Service	Provider	

SR-IOV	 Single	Root	I/O	Virtualization	

T-Ac-Or	 Interface	between	T-NOVA	Accounting	 (Marketplace	module)	and	 the	
Orchestrator	

T-Br-Or	 Interface	 between	 T-NOVA	 Brokerage	 (Marketplace	 module)	 and	 the	
Orchestrator	

T-Da-Or	 Interface	 between	 T-NOVA	Dashboard	 (Marketplace	module)	 and	 the	
Orchestrator	

T-Sla-Or	 Interface	 between	 T-NOVA	 Servile	 Level	 Agreement	 (Marketplace	
module)	and	the	Orchestrator	

UC	 Use	Case	

VCPU	 Virtual	CPU	

VDU	 Virtualisation	Deployment	Unit	

VIM	 Virtual	Infrastructure	Manager	

VM	 Virtual	Machine	

VN	 Virtual	Network	

VNE	 Virtual	Network	Embedding	

VNF	 Virtual	Network	Function	

VNFc	 Virtual	Network	Function	component	

VNFD	 Virtual	Network	Function	Descriptor	

VNFM	 Virtual	Network	Function	Manager	

Vnfm-Vnf	 Interface	between	the	VNF	Manager	and	VNFs	

vNIC	 virtual	Network	Interface	Controller	
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9. LIST	OF	MATHEMATICAL	SYMBOLS	

Symbol	 Definition/Explanation	

𝐴	 Set	of	 links	of	the	graph	𝐺 𝑁𝑆 ,	modelling	the	set	of	 links	among	
the	VNFs	composing	the	NS.	

𝐴5	 Set	of	links	of	the	graph	𝐺 𝐷𝐶 ,	modelling	the	connections	among	
the	PoP	apparatuses.			

𝐴2 	 Set	of	links	of	the	graph	𝐺 𝑉𝑁𝐹 ,	modelling	the	set	of	links	among	
the	VNFc	composing	the	VNF.			

𝐴. 	 Set	of	links	of	the	graph	𝐺 𝑁𝐼 ,	modelling	the	set	of	links	among	the	
PoPs	composing	the	NI.	

𝛼	 Weighting	 parameter	 of	 the	 target	 function	 of	 the	 proposed	 ILP	
mapping	approach.	

𝐴𝑐𝑡	 Space	 of	 the	 possible	 mapping	 actions	 (reinforcement	 learning	
approach)	

𝛽	 Weighting	 parameter	 of	 the	 target	 function	 of	 the	 proposed	 ILP	
mapping	approach.	

𝑐C?	 Cost	of	assigning	the	VNF	ℎ	to	the	PoP	𝑝	

𝛿CD 	 Delay	associated	with	each	arch	(𝑝, 𝑞)	in	𝐺 𝑁𝐼 .	

ΔS	 Maximum	allowed	delay	associated	to	each	path	π∈P.	

𝑓CD?@ 	 Amount	of	flow	over	the	link	(p,q)	for	the	NF-graph	edge	(h,k).	

𝛾	 Weighting	 parameter	 of	 the	 target	 function	 of	 the	 proposed	 ILP	
mapping	approach.	

𝐺(𝐷𝐶) 	
= 	 (𝑉5, 𝐴5)	

Graph	modelling	each	PoP	infrastructure.	

𝐺 𝑁𝐼 = (𝑉., 𝐴.)	 Graph	modelling	the	Network	Infrastructure.	

𝐺 𝑁𝑆 = (𝑉, 𝐴)	 Graph	modelling	the	Network	Service.	

𝐺(𝑉𝑁𝐹)=	(𝑉2, 𝐴2)	 Graph	modelling	the	Virtual	Network	Function.	

𝜆	 Learning	rate	of	the	Q-Learning	update	rule.	

𝑁𝑇	 Set	of	resource	types	available	at	Network	Infrastructure	nodes.	

𝑃	 The	set	of	paths	connecting	pairs	of	VNFs	in	a	NS.	

π∈P	 Generic	path	in	𝑃	(i.e.	sequence	of	arcs	in	the	graph	𝐺 𝑁𝑆 ).	

Π	 Policy	 function	 providing	 a	 mapping	 of	 states	 to	 actions	 (i.e.		
Π(s,a)	 denotes	 the	 probability	 that	 action	 𝑎	 is	 taken	 when	 the	
system	is	in	state	𝑠.	

𝑄S(𝑠, 𝑎)	 State-action	value	function.	Estimate	of	the	value	associated	to	the	
state-action	 couple	 (𝑠, 𝑎)	 (i.e.	 expected	 future	 reward	 achieved	
when	starting	from	state	𝑠,	taking	action	𝑎	and	following	policy	Π).	
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𝑟	 Reward	 function	 associated	 with	 the	 Markov	 decision	 process	
defined	for	the	SM	approach	based	on	reinforcement	learning.	

𝑅𝐴C< 	 Amount	of	resources	of	type	𝑡 ∈ 𝑁𝑇	available	at	PoP	node	𝑝 ∈ 𝑉..	

𝑅𝐴CD< 	 Amount	 of	 resources	 of	 type	 𝑡 ∈ 𝑁𝑇	 available	 at	 Network	
Infrastructure	link	(𝑝, 𝑞) ∈ 𝐴..	

𝑅𝑅?< 	 Amount	of	resources	of	type	𝑡 ∈ 𝑁𝑇	required	by	VNF	node	ℎ ∈ 𝑉.	

𝑅𝑅?@< 	 Amount	of	resources	of	type	𝑡 ∈ 𝑁𝑇	required	by	VNF	link	(ℎ, 𝑘) ∈
𝐴.	

𝑆	 State	 space	 of	 the	 Markov	 decision	 process	 defined	 for	 the	 SM	
approach	based	on	reinforcement	learning.	

𝑇	 State	transition	matrix	characterizing	the	Markov	decision	process	
defined	for	the	SM	approach	based	on	reinforcement	learning.	

Τ	 Time	 horizon	 over	 which	 the	 reinforcement	 learning	 problem	 is	
defined.	

𝑡 𝑠, 𝑎, 𝑠± ∈ 𝑇	 Probability	 to	 go	 to	 state	 𝑠’	 when	 starting	 from	 state	 𝑠	 and	
performing	action	𝑎	

𝑉	 Set	 of	 vertices	 of	 the	 graph	 𝐺 𝑁𝑆 ,	 modelling	 the	 set	 of	 VNFs	
composing	the	NS.	

𝑉5	 Set	 of	 vertices	 of	 the	 graph	 𝐺 𝐷𝐶 ,	 modelling	 the	 connections	
among	the	apparatuses	of	the	PoP.	

𝑉2 	 Set	 of	 vertices	 of	 the	 graph	𝐺 𝑉𝑁𝐹 ,	 modelling	 the	 set	 of	 VNFc	
composing	the	VNF.	

𝑉. 	 Set	of	vertices	of	the	graph	𝐺 𝑁𝐼 ,	modelling	the	set	of	PoPs	in	the	
Network	Infrastructure.	

𝑉i(𝑠)	 Value	 function.	 Estimate	 of	 the	 value	 associated	 to	 state	 𝑠	 (i.e.	
expected	 future	 reward	achieved	when	 starting	 from	 state	𝑠	 and	
following	policy	Π)	

𝑤CD 	 Weight	value	associated	with	link	(p,q).	

𝑥CD?@ 	 Binary	decision	variable.	𝑥CD?@ = 1	if	the	link	(ℎ, 𝑘)	in	graph	𝐺(𝑁𝑆)	is	
mapped	on	a	path	 in	the	 infrastructure	which	passes	through	the	
link	(𝑝, 𝑞)	of	graph	𝐺(𝑁𝐼).	

𝑦C?	 Binary	decision	variable.	𝑦C? = 1	if	VNF	ℎ	is	assigned	to	PoP	𝑝.	

𝑧C	 Binary	decision	variable.		𝑧C = 1	if	server	p	is	used.	
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Annexes	
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10. ANNEX	A:	DOCUMENTATION	OF	THE	SERVICE	
MAPPING	MODULE	API	

This	 annex	 reports	 a	 documentation	 of	 the	 REST	 API	 of	 the	 developed	 service	 mapping	
module.	 The	API	provides	 to	 the	orchestrator	 the	access	 to	 the	 service	mapping	module’s	
services.	

The	information	provided	may	be	subject	to	future	changes	as	the	integration,	deployment	
and	testing	work	is	refined	during	the	course	of	the	project.	

	

Supported	HTTP	Method	

POST		

	

Current	Accepted	Request	Parameters	

The	accepted	parameters	are	reported	in	the	table	below.	

	

Table	15	Service	mapping	request	parameters	(body	of	the	POST	call)	

Name Description Example 

NS_id Id of the Network Service to be instantiated "NS_id" = "demo1" 

NS_sla Flavour of the Network Service to be instantiated "NS_sla" = "gold" 

tenor_api Address of the Tenor API 
"tenor_api" = 
"http://1.2.3.4:5544" 

infr_repo_api Address of the Infrastructure Repository 
"infr_repo_api" = 
"http://1.2.3.4:5544" 

ir_simulation If true, dummy IR data is used for testing purpose 
"ir_simulation" = 
"false" 

ns_simulation If true, dummy NS data is used for testing purpose 
"ns_simulation" = 
"false" 
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alpha 
Optional parameter to be passed to the solutor: weight of alpha 
parameter in objective function (see notes) 

"Alpha" = "0.6" 

beta 
Optional parameter to be passed to the solutor: weight of beta 
parameter in objective function (see notes) 

"Beta" = "0.25" 

gamma 
Optional parameter to be passed to the solutor: weight of 
gamma parameter in objective function (see notes) 

"Gamma" = "0.15" 

fixVnf01 
Optional parameter that forces the allocation of the first VNF 
of the NS to the PoP specified by the "toPoP01" parameter (for 
testing purpose) 

"fixVnf01" = 
"vnf_id_a012fe31" 

toPoP01 
Optional parameter that states in which PoP should be 
allocated the VNF specified by the "fixVnf01" parameters (for 
testing purpose) 

"toPoP01" = 
"126594f3a2a1" 

solver Chooses the solver application "solver" = "unimi" 

	

Notes	on	Alpha,	Beta	and	Gamma	parameters:	these	optional	key/value	pairs	are	passed	by	
the	Orchestrator	to	the	UniMi	solver	and	they	are	used	as	weights	for	the	three	components	
of	 the	 objective	 function.	 By	 altering	 the	 default	 values,	 the	 solver	 tries	 to	 optimize	 the	
allocation	of	the	VNF	so	that	cost	is	minimized	(alpha	>	gamma	+	beta),	the	aggregate	delay	is	
minimized	(beta	>	alpha	+	gamma)	or	the	number	of	infrastructure	links	for	the	allocation	of	
each	NS	path	is	minimized	(gamma	>	alpha	+	beta).	

	

Request	Payload	Example	

{ 
 "NS_id":"demo1", 
        "NS_sla":"gold", 
        "tenor_api":"http://10.20.30.40:5454", 
        "infr_repo_api":"http://1.2.3.4:5544", 
 "ir_simulation":"true", 
 "ns_simulation":"false", 
        "solver":"unimi", 
 "Alpha":"0.5", 
 "Beta":"0.3", 
 "Gamma":"0.2", 
 "fixVnf01":"", 

 "toPoP01":"" 
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} 

	

	

Return	Value	Example	(successful	mapping)	

{ 
    "status": 0, 
    "created_at":"Thu Nov  5 10:13:25 2015", 
    "links_mapping": 
    [ 
        { 
            "vld_id":"vld0", 
            "maps_to_link":"/pop/link/85b0bc31-dff0-4399-8435-
4fb2ed65790a", 
        }, 
        { 
            "vld_id":"vld1", 
            "maps_to_link":"/pop/link/85b0bc32-dff0-4399-8435-
4fb2ed65790a", 
        }, 
        { 
            "vld_id":"vld0", 
            "maps_to_link":"/pop/link/85b0bc33-dff0-4399-8435-
4fb2ed65790a", 
        }, 
        { 
            "vld_id":"vld1", 
            "maps_to_link":"/pop/link/85b0bc34-dff0-4399-8435-
4fb2ed65790a", 
        } 
    ], 
    "vnf_mapping": 
    [ 
        { 
            "maps_to_PoP":"/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f7", 
            "vnf":"vnf_demo1_0" 
        }, 
        { 
            "maps_to_PoP":"/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f7", 
            "vnf":"vnf_demo1_1" 
        }, 
        { 
            "maps_to_PoP":"/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f6", 
            "vnf":"vnf_demo1_2" 
        } 
    ] 

} 

Return	Value	Example	(mapping	failure)	
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{ 
    "status": 1, 
    "error":"Error in MIP problem", 
    "info":"MIP solution is undefined", 
    "created_at":"Thu Nov  5 10:11:37 2015" 

} 

	

Return	Value	Codes	

All	return	messages	are	in	json	format	and,	with	the	only	exception	for	return	code	0,	each	
message	has	the	keys	"status"	(a	numerical	value)	and	an	associated	"error"	(a	string).	The	
complete	list	of	statuses	and	errors	is	the	following:	

Status Error Description 

0 - All ok / valid mapping found 

1 "No feasible solution found" The solver was unable to find a feasible 
solution 

-1 "No matching NSd in NS catalog" - 

-2 "No matching SLA in NSd" - 

-3 "No matching VNFd in VNF catalog" - 

-4 "No matching flavour in 
vnf.deployment_flavour" 

- 

-60 "No matching NSd in dummy NS catalog" - 

-61 "No matching VNFd in dummy VNF 
catalog" 

- 

-120 "NS.json not found / not generated" - 

-121 "NI.json not found / not generated" - 

-122 "Invalid json request: no ns_id found" - 
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11. ANNEX	B:	DETAILS	ON	INFRASTRUCTURE	
REPOSITORY	QUERYING	

Details	on	the	sequence	of	actions	performed	for	querying	the	infrastructure	repository	are	
reported	in	the	table	below.	

An	example	of	the	resulting	JSON	file	storing	the	queried	parameters	is	reported	(i.e.	NI.json	
file).	

Table	16	Sequential	steps	in	querying	the	infrastructure	repository	

Task Description 

ir_simulation == true? 
§ Check if ir_simulation is true 

§ set ir_simulation_requested accordingly 

request PoP list 
§ GET to /pop/ to retrieve list of PoP; 

§ store list to pop_id_array 

request PoP detail 

§ for each pop, GET to /pop/<pop-id> to retrieve the deatil of PoP 

§ clear unused PoP information 

§ store PoP status in pop_detail_array 

request link list 
§ GET to /pop/link to retrieve list of links between PoPs 

§ store list to pop_link_id_array 

request link detail 

§ for each link, GET to /pop/link/<link-id> to retrieve the detail of link 

§ store link status in pop_link_detail_array 

§ convert both bw_Gps and bw_util_Gps into Mbps (modyfing the key 

accordingly) 

§ note that available bw will be calculate as the difference between 

occi.epa.pop.bw_Mbps and occi.epa.pop.bw_util_Mbps 

§ also, link delay will be extracted from 

occi.epa.pop.roundtrip_time_sec 

request list of 
hypervisors 

§ for each PoP, GET to /pop/<pop-id>/hypervisor to retrieve the list of 

the hypervisors 

§ store everything in the hash of arrays hypervisors_list_hash 

collect data from each 
hypervisor and build 
the aggregate 
resource of each PoP 

§ for each PoP, for each hypervisor in this pop, GET to /pop/<pop-

id>/hypervisor/<hypervisor_id> to retrieve the hypervisor detail 

§ from this hypervisor detail extract the data: 

§ cpus = attributes -> occi.epa.attributes -> vcpus 
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§ vcpu_used = attributes -> occi.epa.attributes -> vcpu_used 

§ ram = attributes -> occi.epa.attributes -> memory_mb 

§ ram_used = attributes -> occi.epa.attributes -> 

memory_mb_used 

§ hdd = attributes -> occi.epa.attributes -> local_gb 

§ hdd_used = attributes -> occi.epa.attributes -> local_gb_used 

§ calculate the amount of free resource as algebraic difference and 

accumulate on PoP basis 

§ count the how many cpu have the AES-NI acceleration from 

attributes -> occi.epa.attributes -> cpu_info -> features 

§ save free resources of each PoP into hypervisors_detail_hash 

collect GPU / DPDK 
data 

§ for each PoP_id: GET to /pop/<pop-id>/pcidev/?dpdk=true to get list 

of DPDK-enabled NIcs 

§ store number of DPDK-enabled NICs in PoP_aggregate_resources -

> dpdk_nic_count 

§ for each PoP_id: GET to /pop/<pop-id>/osdev/?category=compute to 

get list of GPUs (actually, compute devices?) 

§ store number of GPUs in PoP_aggregate_resources -> gpu_count 

create final hash and 
save to disk 

§ create a new hash containing pop_id_array, pop_detail_array, 

pop_link_id_array, pop_link_detail_array, hypervisors_detail_hash 

§ save to disk the hash in json format. create NI.json 

	

An	 example	 of	 the	 resulting	 JSON	 file	 storing	 the	 queried	 parameters	 is	 reported	 in	 the	
following	(i.e.	NI.json	file).	

{ 
  "PoP_id": [ 
    "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4", 
    "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f5" 
  ], 
  "PoP_detail": [ 
    { 
      "attributes": { 
        "occi.epa.pop.graph_db_url": 
"http://neo4j:intel_tnova@134.191.243.7:7474/db/data/", 
        "occi.epa.pop.lat": "53.3720513", 
        "occi.epa.pop.lon": "-6.5130686999999625", 
        "occi.epa.pop.name": "Intel Ireland's Leixlip Campus, Kildare, 
Ireland", 
        "occi.epa.pop.odl_name": "admin", 

        "occi.epa.pop.odl_password": "admin", 
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        "occi.epa.pop.odl_url": 
"http://134.191.243.7:9001/restconf/operational/", 
        "occi.epa.timestamp": 1434538341.071382 
      }, 
      "identifier": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4", 
      "links": [ 
 
      ] 
    }, 
    { 
      "attributes": { 
        "occi.epa.pop.graph_db_url": 
"http://neo4j:intel_tnova@134.191.243.7:7474/db/data/", 
        "occi.epa.pop.lat": "23.3727512", 
        "occi.epa.pop.lon": "18.5199025", 
        "occi.epa.pop.name": "Googre Corporation, datacenter 00f3a", 
        "occi.epa.pop.odl_name": "admin", 
        "occi.epa.pop.odl_password": "admin", 
        "occi.epa.pop.odl_url": 
"http://134.191.243.7:9001/restconf/operational/", 
        "occi.epa.timestamp": 1434449042.2 
      }, 
      "identifier": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f5", 
      "links": [ 
 
      ] 
    } 
  ], 
  "PoP_link_id": [ 
    "/pop/link/85b0bc27-dff0-4399-8435-4fb2ed65790a", 
    "/pop/link/85b0bc28-dff0-4399-8435-4fb2ed65790a" 
  ], 
  "PoP_link_detail": [ 
    { 
      "attributes": { 
        "occi.epa.label": "is_connected_to", 
        "occi.epa.pop.bw_Mbps": 102400, 
        "occi.epa.pop.bw_util_Mbps": 19420, 
        "occi.epa.pop.destination": "200.202.200.5", 
        "occi.epa.pop.interface": "Interface0", 
        "occi.epa.pop.ip_address": "200.202.200.4", 
        "occi.epa.pop.netmask": "255.255.255.0", 
        "occi.epa.pop.protocol": "MPLS", 
        "occi.epa.pop.roundtrip_time_sec": "0.021", 
        "occi.epa.pop.source": "Ethernet", 
        "occi.epa.pop.type": "Egress", 
        "occi.epa.timestamp": 1434701892.961004 
      }, 
      "identifier": "/pop/link/85b0bc27-dff0-4399-8435-4fb2ed65790a", 
      "source": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4", 

      "target": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f5" 
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    }, 
    { 
      "attributes": { 
        "occi.epa.label": "is_connected_to", 
        "occi.epa.pop.bw_Mbps": 102400, 
        "occi.epa.pop.bw_util_Mbps": 15380, 
        "occi.epa.pop.destination": "200.202.200.4", 
        "occi.epa.pop.interface": "Interface0", 
        "occi.epa.pop.ip_address": "200.202.200.5", 
        "occi.epa.pop.netmask": "255.255.255.0", 
        "occi.epa.pop.protocol": "MPLS", 
        "occi.epa.pop.roundtrip_time_sec": "0.023", 
        "occi.epa.pop.source": "Ethernet", 
        "occi.epa.pop.type": "Egress", 
        "occi.epa.timestamp": 1434701892.961004 
      }, 
      "identifier": "/pop/link/85b0bc28-dff0-4399-8435-4fb2ed65790a", 
      "source": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f5", 
      "target": "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4" 
    } 
  ], 
  "PoP_aggregate_resources": { 
    "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f4": { 
      "aggregate_cpus": 8, 
      "aggregate_ram": 4096.0, 
      "aggregate_hdd": 160, 
      "aggregate_cpu_accel_aes-ni": 3, 
      "dpdk_nic_count": 2, 
      "gpu_count": 5 
    }, 
    "/pop/55ef7cce-1e9b-4b8f-9839-d40ceeb670f5": { 
      "aggregate_cpus": 0, 
      "aggregate_ram": 0.0, 
      "aggregate_hdd": -2160, 
      "aggregate_cpu_accel_aes-ni": 3, 
      "dpdk_nic_count": 4, 
      "gpu_count": 2 
    } 
  } 

} 
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12. ANNEX	C:	DETAILS	ON	THE	SERVICE	CATALOGUE	
QUERYING	

Details	on	the	sequence	of	actions	performed	for	querying	the	service	catalogue	are	reported	
in	the	table	below.	

An	example	of	the	resulting	JSON	file	storing	the	queried	parameters	is	reported	(i.e.	NS.json	
file).	

	

Table	17	Sequential	steps	in	querying	the	service	catalogue	

Task Description 

set IR and NS/VNF 
catalog addresses 

§ set IR default address 

§ set NS base address accordingly to ns_simulation parameter 

parse of body request 
and preliminary check 

§ Parse of the request body 

§ Check if NS_id is present, return if not 

§ Check if NS_sla is present; set ns_sla to "gold" as default 

query NS catalog 
§ GET to NS catalog for retrieving the NSd 

§ Check if NSd is avaliable in the NS catalog, return if not 

store VNF ids 
associated with 
selected NS flavour 

§ scan nsd -> sla array looking for an id match 

§ when found, store for each constituent vnf the 

§ nsd -> sla -> constituent_vnf -> vnf_reference 

§ nsd -> sla -> constituent_vnf -> vnf_flavour_id_reference 

§ nsd -> sla -> constituent_vnf -> number_of_instances 

query VNF catalog 
§ -- Loop over constituen_vnfd_array 

§ for each vnf_id in constituent_vnf_array: GET to VNF catalog 

flavour management 

§ scan the vnf -> deployment_flavours array for a match with the 

constituent_vnf -> flavour_id 

§ once found, store the associated: 

§ vdu_name from vnf -> deployment_flavours -> constituent_vdu -

> vdu_reference 

§ num_of_vdu_instances from vnf -> deployment_flavours -> 

constituent_vdu -> number_of_instances 

§ return if no match 
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§ vdu_name is used to reference the correct vdu descriptor associated 

to the selected VNF flavor 

collect aggregate reqs 
for each VNF 

§ scan vnf -> vdu array for a match with vdu_name from the previous 

step 

§ once found, collect and aggregate the data 

§ tot_cpu with vnf -> vdu -> resource_requirements -> vcpus 

§ tot_ram with vnf -> vdu -> resource_requirements -> memory 

§ tot_hdd with vnf -> vdu -> resource_requirements -> storage -> 

size 

§ tot_peak_bw with vnf -> vdu -> networking_resources -> peak 

§ tot_aver_bw with vnf -> vdu -> networking_resources -> average 

§ max_bw with vnf -> vdu -> resource_requirements -> 

network_interface_bandwidth (NOT an aggregate, just max 

value) 

§ tot_cpu_aesni with vnf -> vdu -> resource_requirements -> 

cpu_support_accelerator 

§ tot_dpdk with vnf -> vdu -> resource_requirements -> 

data_processing_acceleration_library 

§ multiply each aggregate data by the number_of_vdus_instance 

§ save the aggregate requirements into vnf_requirements array 

-- End of loop over constituen_vnfd_array 

special requirements 
management 

§ scan and save the special/additional requirements of each VNF, i.e. 

GPUs or DPDK-enabled NICs 

Forwarding graph 
management 

§ Scan and save into virtual_links_array array the list of virtual links 

from nsd -> vld, and extract: 

§ virtual_link_id 

§ root_requirements (converted in MBps) 

§ source 

§ destination 

§ Scan and save into network_forwarding_paths array the list of 

Network Forwarding Paths from nsd -> vnffgds -> vnffgs -> 0 -> 

network forwarding path and save: 

§ nfp_id 

§ nfp_graph (list) 

§ connection_points (list) 
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create the ns_out 
array and fill with data 

§ store ns_id in ns_out array 

§ store ns_sla in ns_out array 

§ store vnf_id array in ns_out array 

§ store vnf_req array in ns_out array 

§ store virtual_links array in ns_out array 

§ store network_forwarding_paths array in ns_out array 

collect dynamic 
parameters passed by 
the Orchestrator 

§ check for "alpha", "beta", "gamma" and all the rest in the request 

body 

§ store them additional parameter in ns_out array 

save data to disk § create NS.json, store ns_out in it and save to disk 

	

An	example	of	the	resulting	JSON	file	storing	the	queried	parameters	is	reported	(i.e.	NS.json	
file).	

{ 
  "ns_id": "demo4", 
  "ns_sla": "gold", 
  "vnf_id": [ 
    "/vnf_demo4_0", 
    "/vnf_demo4_1" 
  ], 
  "vnf_req": [ 
    { 
      "vnf_id": "/vnf_demo4_0", 
      "req_vcpus": 4, 
      "req_ram": 4096.0, 
      "req_hdd": 160.0, 
      "req_nic_bw": 10000, 
      "req_peak_bw": 10, 
      "req_aver_bw": 7, 
      "req_cpu_accel_aes-ni": 1, 
      "req_data_accel_lib_dpdk": 1, 
      "vnf_flavour": "vnfflavourid1", 
      "vnf_num_of_inst": "1" 
    }, 
    { 
      "vnf_id": "/vnf_demo4_1", 
      "req_vcpus": 8, 
      "req_ram": 4096.0, 
      "req_hdd": 160.0, 
      "req_nic_bw": 10000, 
      "req_peak_bw": 10, 
      "req_aver_bw": 7, 
      "req_cpu_accel_aes-ni": 1, 
      "req_data_accel_lib_dpdk": 1, 

      "vnf_flavour": "vnfflavourid1", 
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      "vnf_num_of_inst": "1" 
    } 
  ], 
  "virtual_links": [ 
    { 
      "virtual_link_id": "vld0", 
      "root_requirements": 10000, 
      "source": "data0", 
      "destination": "vnf_demo4_0:data0" 
    }, 
    { 
      "virtual_link_id": "vld1", 
      "root_requirements": 10000, 
      "source": "vnf_demo4_0:data1", 
      "destination": "vnf_demo4_1:data0" 
    }, 
    { 
      "virtual_link_id": "vld2", 
      "root_requirements": 10000, 
      "source": "vnf_demo4_1:data1", 
      "destination": "data1" 
    } 
  ], 
  "network_forwarding_paths": [ 
    { 
      "nfp_id": "nfp0", 
      "nfp_graph": [ 
        "vld0", 
        "vld1", 
        "vld2" 
      ], 
      "connection_points": [ 
        "data0", 
        "data1" 
      ] 
    } 
  ] 

} 

	


