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Introduction 
 

This document describes the development made in APLAC Simulators Harmonic 

Balance algorithm during ICESTARS project. The main emphasis has been in 

scalability to ensure analysis of large problems. By scalability we mean the 

increase in memory consumption and/or simulation time when the problem size, 

say number of frequencies taken into account or number of circuit elements, is 

increased.  

In analysis of whole RF systems the circuit sizes are large. Instead of few circuit 

elements the analysis is performed on thousands of elements. The signals used 

are also more complicated including several independent frequencies. It is typical 

that it takes a lot of time to simulate this type of circuits. Therefore the analysis 

methods should also utilize the computational resources as optimally as possible.  

 

Harmonic Balance analysis 

 

Harmonic Balance (HB) is a frequency domain, nonlinear method developed to 

address the issue of fast and accurate simulation of circuits in the frequency 

domain. This means circuits whose normal operational condition is close to a 

periodic steady state (PSS) or almost periodic steady state in the case of multiple 

independent periodic inputs. It treats all signals as a sum of a predefined number 

of sinusoids, thus directly computes PSS of a circuit. Since the PSS is computed 

directly, an error-prone initial transient simulation is avoided resulting in 

considerable accuracy improvement. Furthermore modeling of many RF passive 

components is simplified in the frequency domain and a result from the HB 

analysis contains qualitative information on the frequency spectrum that cannot 

be obtained using a time-domain transient analysis. This is particularly important 

information in case of highly nonlinear electronic circuits where the input may be 

a 1-tone (periodic) or a multi-tone (almost periodic), but the output will contain 

distortion products up to n:th order. 

HB has been successfully applied in the AWR-APLAC Corporation’s commercial 

circuit simulator APLAC and Infineon’s in-house circuit simulator TITAN for 

simulation of basic building blocks in an RF circuit, such as mixers, power 
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amplifiers, frequency multipliers, modulators, and (with a built-in search of the 

oscillation frequency) also for autonomous circuits like oscillators. 

 HB analysis is a prerequisite for a number of further analyses which are built on 

top of it, such as HB noise analysis (HBNOISE), sweep of PSS (HBTRAN), 

small-signal PSS analyses (HBAC/HBTF/LSSS), analysis of multi-port networks 

in PSS (HBSPARAM), Volterra on HB (VoHB), envelope analysis etc. In addition, 

some time-domain analysis methods are closely related to HB analysis, such as 

DC or transient analysis (TRAN). Usually DC analysis result is used as an initial 

guess. However, for some difficult circuits, such as dividers, a transient analysis 

may be used to get the initial guess for node voltages. The HB analysis 

dependence on other analysis methods is shown in figure 1.  

 

Figure 1: HB analysis and its links to other analysis methods 

Typical applications of HB range from RFICs (with hundreds of nonlinear and 

very few linear components) to discrete board/PA modules (with few nonlinear 

devices but hundreds of linear components). The computational complexity 

comes from the fact that we need to solve the circuit simultaneously at every 

node and every frequency. To facilitate this, either direct sparse solvers or 

iterative solvers are used.  

Scalability in multi-threaded analysis 
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The scalability for multiple processors has been profiled and the phenomenon 

behind it has been studied. The main motivation for this study is the fact the 

recent development in CPU’s has brought multi-threading available for practically 

all the designers. Dual-core processors have become main stream in even home 

laptops and more “work-horse” oriented computers have dual-quad core 

processors. In the Intel Core i7 architecture these quad core CPU’s have hyper-

threading, which doubles the amount of cores seen by the Operating System. 

This means that average engineers work with computers that have 2-16 CPU’s 

(or cores) available and they also expect that the tools, which they are using are 

able to take full advantage out of the available hardware resources. 

In figure 2 it is shown how the algorithm scales for 2-8 CPU’s or cores if the 

result for 2 threads gave a speed-up of 1.7 to 1.9. Here speed-up is defined as 

the ratio of the CPU times of single and multithreaded simulation. It is clearly 

shown that even though a result of 1.7 for 2 CPU’s is basically a useful speed-up, 

the amount of single threaded parts results in poor scaling when the number of 

threads increases. Even though we have used 8 threads, a speed up of only 3.5 

is achieved, in other words, we have used less than 50% of the computers 

resources.  

 

Figure 2: Scaling in the multi-threaded algorithm for 1-8 threads when the speed 

up of a dual core simulation (uses two threads) is 1.7, 1.75, 1.8, 1.85, and 1.9 
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We can also study the scaling as a function of the percentage of the algorithm 

that can be run in multiple threads. In the following figure 3 we show the speed-

up when the multithreaded part of the algorithm is 70%, 75%, 80%, 85%, 90%, or 

95% of the total amount. 

It is clearly seen that a 15% single thread time means a speed up of 4x when run 

in 8 threads, i.e., the processor “efficiency” is 50%. For a 30% single thread time, 

speed up of only 2.5 is achieved as the single processor efficiency is less than 

1/3. This actually highlights the multithreading problem – even though you have 

70% of the code run in multiple threads – the scalability for 8 cores is not what 

most people (customers) would be expecting. 

Source code profiling was used to find the bottlenecks slowing down 

multithreaded analysis. Naturally it was critical to minimize time spent in those 

parts of the algorithm that were run in a single thread. Figure 4 shows the 

achieved improvement for circuits where GMRES part of the analysis dominates. 

 

Figure 3: Scaling in the multi-threaded algorithm for 1-8 threads when the multi-

threaded part of the algorithm is between 70% and 95%. 
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Figure 4. Scaling for a large linear element dominant circuit. With 8 threads the 

efficiency has not saturated in the new implementation. Practically no speed-up 

was achieved after 6 threads in the old implementation. 

 

Scalability with respect to number of independent time-scales 
(tones) and number of frequencies 

Background 

 

Fourier transformation techniques are used in HB to compute Fourier 

components of currents of nonlinear devices (nonlinearity being defined in the 

time domain). Two things seem to be important here: being able to exactly 

represent a trigonometric polynomial of sufficiently high a degree (trigonometric 

degree) and doing the inverse and forward transformations with a fast algorithm.  
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Usually a technique known as “mapping” or “artificial frequencies” is used in 

multitone simulations. There, given a combination of harmonics, say, k1*f1  + k2*f2 

is mapped to a single index k:= k1*m1  + k2*m2 using the integers mi. That index 

defines the “slot” where the voltage coefficient at that inter-modulation frequency 

is located in a one-dimensional FFT (modulo the length of the FFT). If no two 

interesting coefficients are mapped on the same index the method will yield a 

meaningful result. Having done sampling of current in the artificial time-domain, 

the output current coefficient is read from the same location. 

In dimensions higher than 2 the mappings are not dense so that some padding or 

unused locations occur (at arbitrary locations). These diminish the efficiency of 

the FFT. The problem is more pronounced as the dimensionality increases. 

An alternative to the above technique is the sparse grids approach that can be 

developed also for trigonometric functions. It readily extends to arbitrary 

dimensions. It has the downside of not allowing for inter-modulation terms of high 

trigonometric degree except at the expense of considerably increasing harmonic 

order. It is not known whether such an approximation is good for RF-circuit 

problems. 

Implementation 

 

In search for tone-5 FFT mapping techniques for HB, a good mapping was not 

found using previously described techniques. The development for enabling 

more than 4-tones in a reasonable mapping was redirector to utilizing the existing 

optimal mappings for 1-4 tone problems to generate 5-8 tone mappings.  

Previously, if the number of tones in APLAC simulations has exceeded 4, only 

BOX sampling has been available which has resulted in enormous number of 

sampling points. The results for the new one-dimensional mapping algorithm are 

presented in Table 1. 

Number 

of Tones 

Generated 

from 

Resulting sampling 

points for 

DIAMOND 5 

Sampling points in the 

old implementation 

BOX 5 

Improvement 

4 4 1.35e4 1.97e5 14.6 

5 4+1 2.70e5 4.10e6 15.2 

6 4+2 2.99e6 8.61e7 28.8 
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7 4+3 3.11e7 1.81e9 58.2 

8 4+4 1.82e8 3.78e10 208 

 

Table 1. Improved one-dimensional frequency mappings result in fewer sampling 

points. The 4-tone results are included as well for reference. 

The new algorithm simply splits the total dimension as indicated in the column 

“Generated from” in Table 1 and maps the corresponding dimensions (co-

ordinate projections) to a one-dimensional space using existing dense mappings. 

The result is a lower dimensional index-set (in the listed examples two-

dimensional) that can be further mapped to a one dimensional set using a trivial 

bounding box mapping (BOX). This last mapping is no longer particularly dense 

but the end result is still significantly more economic than the trivial BOX 

mapping. 

For a single diode, the current function evaluations (in the time domain) takes 

around 1E-6 seconds. For even the simplest circuit, this function would have to 

be calculated in frequency domain over ten times. As this is done by FFT, each 

of these circa 10 times the function would be called N times, where N is the 

required number of sampling points.  

In practice, a 4-tone simulation can be run for a voltage source, one diode and 

one resistor circuit in 0.3 seconds. A 5-tone simulation samples over 300 times 

more (see Table 1) when the mapping had to be changed and that can be seen 

in simulation time. The simple circuit takes 1min 36s, which is exactly the ratio in 

nonlinear element sampling. The same circuit would take over 30 minutes in 6-

tone analysis. With the new frequency mapping, the 6-tone simulation can be run 

in one minute. The large gap in the simulation times has been diminished to the 

same qualitative level seen earlier in the lower dimensional cases. 

Tensor methods for nonlinear equations  
 

Tensor-Krylov methods have been implemented in the open source large-scale 

numerical solver package Trilinos of Sandia National Laboratories (USA) [1]. 

Additionally, other numerical solvers for nonlinear systems are available in that 

package. Therefore, for trying out whether tensor methods offer an edge over 

inexact-Newton and for benchmarking purposes the coupling of the Trilinos 

nonlinear solver package NOX to APLAC was done. 
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The NOX package is written in C++ and specifies an abstraction (an interface 

class) of a nonlinear equation that needs to be concretely implemented before 

the solvers are called. The interface includes certain basic operations such as 

 

 setting the point (vector) where the function value is computed 

 computing the function value 

 computing the Jacobian 

 applying the Jacobian to a vector 

 applying the Jacobian transpose to a vector 

 copying the object 

 
We implemented the equation class for the APLAC Harmonic balance equations. 

The implementation benefits from the existing efficient components of APLAC 

HB. These include  

 

 matrix-implicit Jacobian computations 

 various preconditioners 

 multithreaded operations 

 
Since in practice only one copy of a Jacobian representation can be retained 

(due to memory consumption) we implemented a strategy where setting a new 

point of computation invalidates the previous Jacobian. Then the function and 

Jacobian need to be possibly recomputed. In practice, it turns out that the NOX 

solvers use the possibility to copy the equations object only for storing the 

previous point of computation so that unnecessary calls to the interface are 

minimized. 

Calling NOX from APLAC was enabled through a C function call interface and 

loads as a DLL on Windows. Trilinos is LGPL licensed (at the time of writing the 

latest version 10.4 is still LGPL 2.1 or later) so it needs to be dynamically linked if 

ever distributed to commercial clients. 

As an example of this methods behavior a GSM-related design was simulated. 

The analysis performed is a 2-tone HB with a circuit of 2200 nodes (s3_onedim.i, 

confidential). For this circuit the NOX solver showed a significant improvement, 

see Table 2. 
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s3_onedim 

Intel Core2 dual-core T7200 2GHz 4MB L2 cache 

Single execution thread 

Solver Function calls 
(M) 

Matrix-vector products time (s) 

APLAC HB mode 1 4.4 933 49 

NOX Inexact Newton 5.1 462 40 

NOX Tensor-Krylov (Tensor 2) 2.2 288 24 

 
Table 2. 2nd test circuit simulation time, function calls and matrix-vector products 
for APLAC Inexact Newton, NOX Inexact Newton and NOX Tensor solvers. 

Hierarchical iteration of the Harmonic Balance Jacobian 
 

The Harmonic Balance (HB) problem for RFIC circuits is in essence a problem of 

solving moderate to large nonlinear system of algebraic equations. The only 

generally efficient methods for solving such systems require iteration based on 

local linearization. An example of this is inexact-Newton. 

 

Numerical solvers of the Newton type require a linear system solve for each 

iteration. For large systems that is usually done iteratively with, e.g., GMRES. 

The iterative linear solver, however, needs good search directions and they are 

computed by solving another linear system called a preconditioner. The 

preconditioners are required to be approximations that are much less expensive 

to solve than the original linear system. The most common preconditioner used 

with HB is a block-diagonal (block-Jacobi) system that is exact for linear time-

invariant systems. 

 

Block-Jacobi preconditioning becomes less effective and eventually useless as 

the nonlinear effects more and more determine the state changes in the circuit. 

However, it turns out that the conversion matrices have a property that can be 

exploited. Looking at a single conversion matrix or a one node circuit the matrix 

G has the hermitian Toeplitz structure (in exp-basis) 
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It follows that a diagonal block of this matrix is just another conversion matrix with 

a smaller number of harmonics of the conductance (or capacitance) waveform. 

The hierarchical GMRES splits the frequencies of unknowns in two 

approximately equal parts and uses the iterative solution of the smaller problems 

as a preconditioner to the whole problem. If this idea is used for the sub-

problems we eventually end up with blocks of one frequency only – the block-

Jacobi preconditioner – that can usually be solved directly with a sparse solver. 

The sparsity pattern of the HB Jacobian from QPSK receiver 1 tone simulation 

with 7 harmonics in complex form (15*119 rows and columns) is shown in Figure 

5. It is shown in frequency major ordering (i.e. circuit ordering within each 

frequency index) and complex equation formulation. The upper left corner of the 

matrix corresponds to the largest negative frequency (index -7) and the lower 

right corner to the largest positive frequency (index 7). DC is at the center. 

Multilevel splitting is depicted by the red boundaries of proper low frequency 

blocks (with DC) and green boundaries that represent high-high conversion. Not 

all subdivisions are included for clarity. 

The algorithm that is used to solve this problem is based on splitting the matrix 

according to the frequency-blocks and applying GCR-iteration for each block until 

some stopping criterion has been reached. No restarting was done and 

subspaces were reused. 

Table 3 shows number of top level iterations and the estimated amount of 

(relative) floating point operations required by the same "basic" algorithm using 

single level or multilevel formulation.  

 niter (upper level)         relative work estimate 

Single level 43 1.0 

Multilevel 15 0.39 

Table 3. QPSK matrix solution results  
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Figure 5. QPSK circuit sparsity pattern 

Conclusions 
 

Several different parts of Harmonic Balance algorithm were improved. The 

authors worked and further developed the Harmonic Balance algorithm in the 

APLAC Simulator of AWR-APLAC, which has been an industry leading high 

quality simulator for over a decade. 

The focus was in scalability in terms of optimal utilization of computer resources 

as well as to methods that are suitable for very large circuits or large number of 

analysis frequencies. Such methods are iterative and matrix implicit. For utilizing 

First low 

frequency 

block 

First high 

frequency block 



ICESTARS - FP7/2008/ICT/214911 D2.11 14  

 

 

computer resources, some bottlenecks in single threaded parts of HB 

implementation were removed which enabled better utilization of CPU’s or cores. 

For alternative solver technology, the Trilinos Tensor-Krylov solver from Sandia 

National Laboratory was integrated in the APLAC environment. It offers a high 

quality solver as an alternative in cases where the classic HB work horse, 

Inexact-Newton-GMRES solver looses orthogonality.  

As a new method for preconditioning of the iterative problem, a hierarchical 

version of GMRES was implemented as well. Initial tests indicate that it promises 

smaller iteration counts so that the problematic restarting of the iteration might be 

avoided. 

For better scalability for several independent excitations, a new method for 

defining a one-dimensional mapping based on existing optimal 1-4 tone 

mappings was developed. The new method reduces the number of required 

sample points dramatically enabling e.g. 5-tone simulations over 10 times faster. 

 

References 
 

[1] The Trilinos project webpage: http://trilinos.sandia.gov/ 
 

http://trilinos.sandia.gov/

