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1 Introduction

1.1 Motivation

It is the idea of PRECIOSA to provide a so called “privacy-verifiable architecture”, i.e., an
architecture that can guarantee certain privacy properties and these properties can be
verified by some external entity, e.g., a user or trusted third party.

This contrasts with today’s situation where most systems in use basically allow the data
processor to declare its privacy policy and intended use to the data subjects, i.e., the
persons providing the data. P3P [3] is an example of such an approach, where a website
can declare its privacy policy and how data submitted by a web user will be utilized. The
user (or a specifically configured browser) can then check whether the policy is compatible
with the own privacy requirements and decide whether to trust the data processor and
submit the personal information or to not reveal personal information and end the session.
This puts the user in a very weak position. He can either accept the policy of the data
processor and submit data, or reject the policy and give up using the offered service.

Moreover, various incidents in the past1 have shown that this declarative approach is not
sufficient. Most of the time, there is no control whether the data processor actually adheres
to its stated policy. But even if the data processor intends to comply to its policy, if data is
not sufficiently protected, data can get lost or an attacker can steal the data2 resulting in
uncontrollable use of the data.

For future cooperative ITS (cITS) systems, this is not an acceptable solution for various
reasons:

1. Data processed by ITS systems is very privacy sensitive, as it reveals locations and
movement patterns of drivers (see PRECIOSA deliverables D1 and D4). Loss of this
data or submission for uncontrolled use is not acceptable.

2. Drivers are not expected to know details about the applications running in the ITS
and are not capable of verifying privacy policies when using a new service because
they are not familiar with privacy details. Even more importantly, drivers must not be
distracted by configuration issues during driving.

1E.g., the Deutsche Telekom collected and scrutinized call data of journalists and members of the supervi-
sory board during 2005 and 2006 – http://www.time.com/time/business/article/0,8599,1809679,

00.html; in 2009 the chief of the German railway (Deutsche Bahn) finally offered his resignation after
active manipulation of trade union leaders’ e-mail traffic became public – http://www.timesonline.co.

uk/tol/news/world/europe/article6004352.ece
2E.g., the British tax agency lost personal and financial data of 25 million citizens in November 2007 –
http://news.bbc.co.uk/2/hi/uk_news/politics/7104945.stm
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3. There is no guarantee whatsoever that the data processor will actually adhere to the
privacy policy and process data only in the specified way. The data subject has to
ultimately trust the data processor.

Therefore, we take a completely contrary approach for the PRECIOSA V2X Privacy-
Verifiable Architecture. We start from the privacy requirements of the data subject, i.e.,
the user. The user uses a specific policy language or other tools that generate this lan-
guage to express the purpose he provides his data for. Our architecture then provides
a cryptographically secured path from the data subject to a specific application and this
application must contain an access control mechanism that only allows data access in a
policy compliant way. Access control must be mandatory and it must not be possible to
circumvent it.

The resulting privacy-aware and privacy-protected cITS is also termed hippocratic coop-
erative ITS or HcITS with reference to hippocratic databases as defined by Agrawal e.a.
[4]. Our starting point for defining an HcITS are the privacy requirements of the data sub-
ject expressed as a privacy policy. The HcITS architecture is then designed in a way that
prevents any non-compliant data access.

The HcITS architecture presented here consists of three components:

1. Architecture Principles provide the basic ideas that our design is based upon. Archi-
tecture principles are directly derived from Architecture Requirements.

2. The cITS Design Process describes a methodology that should be followed when
designing HcITS. This includes guidelines and methods ensuring that a “privacy by
design” approach is taken when planing for new cITS applications.

3. A cITS Runtime Architecture that provides mechanisms that will ensure protection
of personal information and compliance with privacy policies during runtime.

Both the design process and the runtime architecture will be presented in two steps:

1. The Cooperative ITS Architecture Framework (cITS AF) is a generic and reusable
framework that substantiates the architecture principles. Whereas the AF provides
the basic architecture of our later prototype, it only describes the basic building
blocks and their functionality without detailing how this functionality is actually imple-
mented. So the AF is really a framework for building privacy-verifiable architectures
in the ITS domain but its basic structure can easily be transfered to other domains
like Internet and Web or other forms of Ubiquitous Computing systems.

2. The Cooperative ITS Reference Architecture (cITS RA) provides a specific instantia-
tion of the cITS AF that will later be used to implement a prototype privacy-verifiable
ITS based on the use cases from deliverable D1 [5]. The reference architecture
already specifies the mechanisms that will be used in the implementation to the ex-
tent needed on the architecture level. Complete specifications and analysis are later
provided by D10 and other deliverables.

02.11.2009 IST-224201 10
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1.2 Document Structure

The document is structured as follows: Chapter 2 will outline requirements and principles
that our architecture is built upon. Chapters 3 and 4 discuss the design process of privacy-
verifiable cITS applications, where chapter 3 discusses the architecture framework and
chapter 4 focuses on the reference architecture. Likewise, chapters 5 and 6 present the
runtime architecture, with chapter 5 discussing the architecture framework and chapter 6
the reference architecture. Finally, Chapter 7 summarizes this deliverable with concluding
remarks.

02.11.2009 IST-224201 11



2 Requirements and Principles

This chapter discusses the requirements that our architecture must fulfill and what generic
architecture principles can be derived from it.

2.1 Architecture Requirements

In this section we describe the basic requirements that our architecture must fulfill. These
requirements will govern the structure and functionality of both the design process and
runtime architecture that are described later in these documents and therefore need to be
highlighted first.

We first describe some functional requirements that directly relate to the privacy domain
that the PRECIOSA architecture should address. Next, we also discuss two additional
aspects that have strong impact on architecture, as they are derived from the operational
environment in which the PRECIOSA architecture is to be embedded.

2.1.1 Functional Requirements

In order to comply to the idea of a privacy-verifiable architecture, our architecture must
fulfill the following requirements. These can also be seen as the strategic goals of PRE-
CIOSA.

• The architecture should support both the design-time and run-time of cITS systems.
At design-time, the architecture should support design of privacy-friendly ITS and
comparison of design alternatives to chose more privacy-friendly solutions.

• The architecture should consider organizational, jurisdictional, as well as technical
issues. This can be addressed by a design methodology that ensures such consid-
eration.

• The architecture should address privacy in all domains of the ITS providing system
privacy instead of only communication or storage privacy.

• Privacy should become measurable, i.e., comparison of different systems and de-
sign alternatives should be possible in a measurable and objective way that is not
only based on subjective judgment.

12
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• Privacy should become enforceable, so that data subjects do not need to rely only
on the declared intent of data processors but gets some guarantees that the policies
they set are technically enforced by the system.

These architectural requirements need to be combined with application and validation
requirements presented in deliverable D8 “V2X application specification and validation
requirements”. Deliverable D11 “Guidelines for privacy aware cooperative application” will
provide detailed privacy guidelines for cITS applications beyond what is presented here.
These guidelines must also be fulfilled either by this architecture or by system designers.

2.1.2 Additional Considerations

Embedded Systems Software Deployment

ITS applications are systems which include embedded systems (e.g., a telematics box in
a vehicle, a road side unit). Many such systems have resource constraints and therefore
their design is in many cases static, i.e., the resources are predetermined at design time.

While this approach lacks flexibility with respect to architectures where we can dynami-
cally create resources, it brings two benefits: systems are more aware of resources and
they are often more deterministic. For example, in the AUTOSAR engineering approach,1

engineers configure at build time the resources needed by electronic control units in a
vehicle. This could involve constants that can no longer be changed.

Furthermore, this means that there are a number of configuration parameters that are
hardwired and unchanged. Privacy friendly ITS applications imply that such embedded
systems must integrate features that will ensure that configuration parameters related to
privacy just follow the same approach. Such configuration parameters include in particular
privacy policies. A privacy policy could be the following: “erase this data after one hour”.
In a static system this policy could be hardwired, meaning that once the system is built
up, the policy can never be changed. In more dynamic systems, this policy could be data
meaning that there is the capability to change the policy.

Business stakeholders’ separation of concerns

Future ITS applications will be deployed as businesses. It is therefore important to un-
derstand how those future businesses might impact the PRECIOSA architecture. Future
ITS infrastructures will allow many independent ITS applications to run in parallel (e.g.,
tolling, insurance, traffic information, . . . ). They will likely share some of the computing
resources (e.g., a shared telematics box, a shared RSU, . . . ). From an application view-
point, the architecture must ensure that each component of the system is clearly assigned
to a stakeholder. By associating components with stakeholders, a possible (external) at-
tacker must interact with this stakeholder and the responsibility for privacy protection can

1AUTOSAR website: www.autosar.org

02.11.2009 IST-224201 13
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be assigned to this stakeholder. This links attackers of components, whether external or
internal, clearly to the persons involved with this component. Privacy issues can then be
linked to the respective responsible stakeholder and it is their task to provide a trust model
for the application users.

While the above principle mostly holds for data storage issues, information exchange by
data transmission must also be linkable to responsible organizations. In contrast to data
storage, in the area of information exchange a major threat arises from eavesdroppers.
Their access to information while it is transmitted is more difficult to limit than for stored
data. During the exchange of information, confidentiality and identification and verification
of the recipient is required to ensure that information is accessible only by the intended
destination.

In the design phase of an ITS application, the architecture must reflect that an attack may
arise in anytime when data are stored or transmitted. In all cases, countermeasures to
attacks must be possible and explicitly be foreseen. Extensions to the “basic” functional
architecture by privacy-enhancement features must be foreseen, i.e., the existing data
flows must be protected by privacy enhancing functionalities so that unintended data flows
are suppressed. This sharing also brings the issue of multi-level security. Different sets
of possibly conflicting access requirements might have to be managed. For instance, an
application would require the retention of a data item while a data subject’s policy requires
its deletion.

2.2 Hippocratic cITS Principles

The purpose of this section is to provide guidance for a generic (and later detailed) ar-
chitecture that helps us to implement a privacy aware architecture for ITS. We therefore
introduce several principles that have been proposed in the literature and adapt them to
the requirements of ITS. Based on those principles we develop an example showing that
more aspects need attention. Those aspects relate to the metadata that must be stored
and managed to reflect the privacy policies and preferences of the different participating
actors as well as to requirements addressing how the software development cycle must
be reviewed in the context of privacy aware systems.

2.2.1 Motivation and founding Guidelines

In the following we present general principles that should guide the implementation of any
privacy aware ITS System. They are motivated by several publications, in particular by the
following two documents:

1. In 2003, R. Agrawal, J. Kirnan, R. Srikant, and Y. Xu describe in their paper Hippo-
cratic Databases a set of principles that should guide any privacy aware database
management system (DBMS). We extend this paper for Hippocratic cooperative ITS
systems (HcITS) that should provide the basis for our approach [4]. These principles

02.11.2009 IST-224201 14
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will be used as a basis in Subsection 2.2.2 for defining the hippocratic principles for
cooperative ITS, and are, therefore, not explicitly state here.

2. In its Subsection 7.2 the ISO Technical Report TC 12859 Intelligent transport sys-
tems - System architecture - Privacy aspects in ITS standards and systems provides
recommendations “. . . under which data shall be collected and held in support or
provision of ITS services . . . ” [6]. Those principles are

• Avoidance of harm,

• Fair and lawful processing of data,

• Data collection for specified, explicit, and legitimate purposes,

• Explicit purpose and legitimacy of collection must be determined at the time of
collection of the data,

• No further data processing in a way that is incompatible with the purposes for
which it was originally collected,

• No disclosure of data without the consent of the data subject,

• Data collection must be adequate, relevant, and not excessive in relation to the
data collection purposes,

• Data is kept accurate and, where necessary, up to date,

• Identification of data subject for no longer than necessary for the purposes for
which the data was collected,

• Restriction of data collection to those who have demonstrable “need to know”,

• Clear and accessible practices and policies must be maintained by the data
collectors,

• Data protection must be assured by security safeguards,

• Recommendations are allowed only in a cumulative manner.

2.2.2 The principles of Hippocratic cooperative ITS

As PRECIOSA is driven by the aspects and abilities of current technology our principles
are rooted heavily in the recommendation of the ISO Technical Report and in the paper by
Agrawal et al. Our principles should clearly articulate in an implementation independent
manner what it means for a cooperative ITS system to manage personal information under
its control responsibly. Furthermore, the principles also express for users of a Hippocratic
cooperative ITS (HcITS) what they can expect from the system without being technically
adept.

We define the principles for HcITS as follows:

02.11.2009 IST-224201 15
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1. Purpose specification: for all personal information that is communicated between
or stored by participating components of an ITS system the purposes for which the
information has been collected shall be associated with that information.

The purpose might be explicitly or implicitly specified by the donor – as the data
subject is called here – or might be derivable from the current operational context.
Furthermore, we expect the cITS to answer questions of the data subject such as
why specific information is being operated on.

2. Consent: the donor of the information must provide his/her consent for the usage of
information for a specified purpose. This consent might be restricted to one specific
purpose or to a set of purposes; the data subject should also have the right and
ability to revoke his consent for the future.

3. Limited Collection: Information related to the data subject (i.e., information describ-
ing properties or aspects of the data subject) shall be limited for communication,
storage, and collection to the minimum necessary for accomplishing the specified
purposes.

4. Limited use: The cITS shall execute only those operations on the personal informa-
tion that are consistent with the purposes for which the information was collected,
stored, and communicated.

5. Limited Disclosure: The personal information related to the data subject and oper-
ated on by the cITS shall not be communicated outside the cITS for purposes other
than those for which the data subject gave his/her consent.

6. Limited Retention: Personal Information related to the data subject shall be re-
tained by the cITS only as long as necessary.

7. Accuracy and Context Preservation: Personal Information related to the data sub-
ject and stored by the cITS shall always be accurate, up-to-date, and never be de-
coupled from its context and purpose.

8. Security: personal information related to the data subject shall be protected by
appropriate security measures against unauthorized use or use in conflict with the
consent of the data subject.

9. Openness: A data subject shall be able to access all information that is stored in
the cITS and is related to the data subject.

10. Compliance: A data subject shall – directly or indirectly – be able to verify the
compliance of the CITS with the above principles.

In the following we briefly discuss the principles and give examples for some of them.

The Principle of Purpose Specification is tightly bound to the information provided by the
data subject, therefore this additional information – called describing data or metadata
– should not be separated as many of the other principles rest on that metadata. Of
course this purpose specification is closely linked to Principle 2 (Consent). However, the
Principle of Consent raises the question of how to resolve possible conflicts between the
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purpose specification and/or governmental or legal requirements that might contradict the
data subject’s consent.

The Principle of Limited Collection requires deciding carefully which data is really needed
to perform what kind of service. For example, if a data subject driving a car performs a
hotel reservation, it might be necessary to provide a credit card number. However, it does
not seem to be necessary to provide the current location of the car when making a hotel
reservation.

The Principle of Limited Use means to obey the purpose specification and the consent
given by the data subject. This should be taken as one of the correctness criteria that
need to be verified for a cITS under design or in execution.

The Principle of Limited Retention again complements the purpose specification and the
consent by the user. If the service or operation has been fulfilled there does not seem to
be any reason to keep this information any longer. However, as already indicated before
there might exist legal or governmental regulations that require such information to be kept
longer than for the fulfillment of the purpose. Therefore, additional technical measures are
necessary that help to obey both (possibly conflicting) requirements.

The Principle of Accuracy and Context Preservation seems to be controversial at a first
glance since accuracy of information is closely related to integrity and quality of the cITS
overall. However, we argue that inaccurate information also impacts the data subject’s
privacy – or as stated in the APEC Privacy Framework [7] “Making decisions about in-
dividuals based on inaccurate, incomplete or out of date information may not be in the
interests of individuals or organizations . . . ”.

The Principle of Security requires technical measures that protect the data subject’s in-
formation against “. . . loss or unauthorized access, destruction, use [for which there does
not exist consent] modification, or disclosure of data.” [6].

The Principles of Openness and Compliance pose particular challenges as the cITS is a
distributed system where participating components might change over time. Therefore,
specific technical measures might be necessary to fully comply with this principle for cITS.
In particular, to verify compliance might be technically challenging as well as a costly
task.

2.3 First Steps towards a Privacy aware Architecture

Before using the HcITS principles further, we first review some of the existing architec-
tures that have been developed by other European Projects. This review together with the
guiding HcITS Principles provides us with a solid basis to lay out the first steps towards an
architecture for the PRECIOSA project. The following subsection presents several cITS
architectures that are currently under discussion in various (European) projects. These
architecture do not focus on privacy, however they provide a generic view on the function-
ality and the components of a cITS system. Based on the insight we gain, we propose a
first generic view for a cITS system in PRECIOSA.
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2.3.1 The C2C-CC Architecture

The CAR 2 CAR Communication Consortium (C2C CC) defines itself as ... a non-profit
organization initiated by European vehicle manufacturers, which is open for suppliers, re-
search organizations and other partners. The CAR 2 CAR Communication Consortium is
dedicated to the objective of further increasing road traffic safety and efficiency by means
of inter-vehicle communications. The objectives of the C2C CC are to create and establish
an open European industry standard for C2C communication systems and to guarantee
European-wide inter-vehicle operability, to enable the development of active safety appli-
cations by specifying, prototyping and demonstrating the C2C system, to push the harmo-
nization of C2C communication standards worldwide, and to develop realistic deployment
strategies and business models to speed-up the market penetration.2

In its Manifesto [1], the C2C-CC presented a “draft reference model”, that gives an initial
idea of an architecture for C2C systems. According to Figure 2.1, the architecture consists
of various entities, networks, and interfaces, including those of C2C providers and telcos.
Therefore it already anticipates the idea that vehicles will communicate among each other
via DSRC as well as with backend systems via heterogeneous networks consisting of
RSU equipment or cellular networks.

Figure 2.1: C2C CC Draft Reference Model (from [1])

2shortened from http://www.car-2-car.org/
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2.3.2 The Harmonized European ITS Architecture

The idea of a harmonized European ITS architecture was also followed by the COMe-
Safety project. Its European ITS Communication Architecture [2] provides a baseline ar-
chitecture framework for cooperative systems. It has been developed as a joint effort
together with the EC funded projects COOPERS, CVIS, and SAFESPOT and in coop-
eration with the CAR 2 CAR Communication Consortium, ETSI, IETF, and ISO and with
input from IEEE and SAE. It therefore represents a consensus of all major participants
in this domain. It is currently regarded as an agreed base by many stakeholders. Based
on contributions from the SeVeCom project, the architecture considers basic security and
privacy aspects.

Figure 2.2: COMeSafety European ITS Architecture - Architecture Components (from [2])

Figure 2.2 shows the major components in the European ITS Communication Architec-
ture. While not being as detailed in terms of the communication relationships as the C2C
Reference Model, it provides a more detailed view of the internals of the nodes which is
further detailed in Figure 2.3. The figures reflects the vision of COMeSafety of a software
stack consisting of access technologies, networking, & and transport, facilities, and appli-
cations. Transversal components for security and management augment this stack. This
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same stack is used in all kinds of nodes, be it personal devices, vehicles, central systems,
or roadside units.

Figure 2.3: COMeSafety European ITS Architecture - Station Reference Architecture
(from [2])

2.3.3 Simplified View

Based on the architectures introduced, we develop a simplified view on an cITS architec-
ture as presented in Figure 2.4. This architecture will serve as a starting point for inte-
grating privacy protection mechanisms in Chapter 5. Our initial approach abstracts from
details of the communication system, as it was already done in the COMeSafety archi-
tecture. From a privacy point of view, it is primarily irrelevant what network connection or
network protocol is used for communicating personal information. Sections 3.3 and 4.3 will
present a layered reference model that allows a more fine-grained modeling as part of our
design process when needed. Additionally, we see that we have subsumed the communi-
cation stack, the access technologies and facilities from the station reference architecture
into a block called middleware and extended the model by sensors and data repositories,
as they play a significant role as data sources and sinks in our later architecture.

Given this simple cITS model, we will now motivate how our HcITS principles will influence
the design of our HcITS architecture.
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Figure 2.4: Simplified View on cITS Architecture

2.3.4 Embedding the Hippocratic Principles into the cITS Architecture

Figure 2.4 provides the solid basis to refine the cITS architecture by additional subcompo-
nents such that those embed the ten principles of HcITS as introduced in Subsection 2.2.
We realize that the architecture must allow us to include user privacy preferences in a flex-
ible and dynamic manner. That is, the user should be able to change his/her preferences
over time. In particular, the user must be able to specify (and to express) the purpose for
processing his/her data (Principle 1) and to give consent (Principle 2).

For this reason, we use the concept of policies to specify those privacy preferences which
must be known and processed by the extended middleware. We therefore include into the
Middleware component

• A Privacy Policy Manager

• A Privacy Control Monitor

• A Privacy Trail Manager

To implement Limited Retention Principle (Principle 6) and to guarantee secure data stor-
age and communication (Principle 7) we introduce

• A Data Retention Manager

• An Intrusion Detector

The refinement of the Middleware Component is shown in Figures 2.5. We notice that,
we added a separate "off-line" tool named Data Collection Analyzer & Intrusion Model
Generator. This subcomponent is responsible for generating models for intrusion detection
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Figure 2.5: A generic Architecture for HcITS

at runtime similar to the component derived by Agrawal [4]. More details about those
components will be discussed in Chapter 5.

Furthermore, we notice that the Principles of Limited Collection, Limited Use, Limited Dis-
closure and Accuracy and Context Preservation need a broader approach. To guarantee
these principles, we must ensure that those are already checked during the design and
implementation phase and during deployment phase of the system. They also influence
other parts of the system, e.g. requiring confidential communication and an organizational
framework controlling data access.

2.3.5 Beyond a HcITS Architecture

So far, we extended the cITS architecture with additional components to implement the
privacy principles functionally. However, we also realize that additional extensions are
necessary to fully ensure that the system obeys the privacy specifications provided by the
user. Those are:

The use of metadata The Hippocratic principles clearly show that user data must be ac-
companied with additional data that go beyond determining possible domain values
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or structural properties in order to be able to enforce privacy. In the context of Hc-
ITS, those kind of metadata must be extended to guarantee the proper access and
dissemination of data within a cITS. A comprehensive schema design for all meta-
data necessary in an HcITS is central for successfully enforcing privacy policies and
privacy preferences in an HcITS.

Obviously, the source of this kind of metadata should be the result of analyzing pri-
vacy preferences expressed by a privacy policy language and deriving the meta data
from expressions of this language. We discuss aspects of such a policy language
further in Section 4.2.

The definition of system privacy As cITS is a distributed system consisting of several
components and an underlying (communication) network, it becomes especially im-
portant to understand how to build such a system from basic components. Similar
to building correct distributed systems from correct components (independently of
the definition of correctness), we must understand and ensure how to build HcITS
from individual components that already exhibit privacy properties that are known.
That is, the composition of a cITS from different components must include a clear
process that derives and guarantees a level of privacy for the cITS based on the
privacy properties of the individual components. Only such a composition approach
guarantees that the overall system enjoy a verifiable level of privacy.

2.4 Summary and Outlook

This section provides the solid foundation for Hippocratic cooperative ITS systems by
introducing implementation independent principles that should guide any future design
and development process for such systems.

In today’s systems the principles of purpose specification, consent, compliance, and open-
ness are often addressed only implictly. Therefore, systems are built for a given purpose
where the consent of the user is assumed by the system and compliance verification
or checking of openness is often not supported. We envision a design process, where
processing those information is an inherent design feature of the system to be built and
therefore needs to be considered as explicit requirements.

The principles of limited collection, limited use, limited disclosure, and limited retention are
to be considered already during design, meaning that the design process should assist a
designer in finding that system architecture that best combines the desired functionality
with those constraints. Finally, accuracy and context preservation and security need to be
modeled as explicit requirements that the system must consider.

Furthermore, we also motivated the need for describing data (metadata) are necessary to
enforce privacy policies as specified by the user, and for the concept of system privacy to
guarantee that privacy specifications are not only handled correctly by each component
in a distributed system, but by the overall system as well. We shall discuss these aspects
more in later chapters of this document.
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Therefore, we investigate the following important aspects even further :

• a detailed description which metadata are needed to maintain a HcITS;

• when to enforce privacy policies during the different phases of the life cycle of a
cITS;

• how to maintain an overall privacy level (which we call system privacy) based on the
assumed and specified privacy specifications for each component in a cITS.

A more detailed, design and implementation based discussion about the necessary tech-
nical properties is left to later Chapters and deliverable D10.
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3 cITS Design Process - Architecture
Framework

As part of the general architecture framework, this chapter outlines the PRECIOSA de-
sign process for designing privacy-aware and privacy-verifiable ITS systems. The purpose
of the architecture framework is to provide general guidelines and processes for design-
ing arbitrary privacy-aware architectures, to fulfill this goal the discussion of the design
process is kept on an abstract level. This way, it can also be adapted to develop privacy-
verifiable architectures for other domains.

3.1 Design Process Methodology

The design process of the cITS architecture framework is founded on the requirements
and principles discussed in Chapter 2. It facilitates the design and development of privacy-
verifiable architectures.

Hereby, we distinguish between design time and runtime and incorporate both into the
architecture framework. At design time, it is important that the design process, which is
described in this chapter, is privacy aware. However, this does not only mean that privacy
should be considered from the beginning of an architecture design but also that verifiability
of privacy is taken into account. Addressing privacy verifiability at design time facilitates
the assessment of the level of privacy provided by a system architecture at runtime. The
distinction of design time and runtime also enables the development of distinct processes
that may be applicable for only design time, only runtime, or both. Hence, the distinc-
tion of design time and runtime is a recurring and important aspect of the architecture
framework.

3.1.1 Guidelines for Privacy-Aware Applications

While it is highly important to provide a thorough design process for privacy-aware ar-
chitectures, it is also an aim of PRECIOSA to derive guidelines for the design and de-
velopment of privacy-aware applications. These guidelines provide application designers
and developers with a concise set of rules that can be followed to enhance the privacy
friendliness of their applications.

In the previous chapter, preliminary design guidelines have already been formulated but
they are still quite general. They must be refined and structured in various ways:
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• The guidelines must address and support all phases of the life cycle by extensions
and refinements to create privacy aware systems. These guidelines must take into
account potential threats to privacy, available privacy-enhancing technologies, and
also concepts to measure privacy such as k-anonymity, l-diversity and others.

• Furthermore, we also envision guidelines of less technical matters. Such guidelines
could help to promote privacy aware systems focusing on organizational or legal
matters in a company organization. They could also support the awareness and
sensitivity for privacy and privacy aware systems.

• The guidelines should also help users to express their privacy needs and expecta-
tions using a given policy language.

These guidelines will be derived from the design process which is presented in the fol-
lowing and reflect legal regulations as well. Thus, we shall further focus on these various
aspects in deliverable D11 “Guidelines for privacy aware cooperative application”.

3.1.2 Structure of Design Methodology

To design privacy aware systems we suggest a methodology consisting of four steps
as shown in Figure 3.1. We first perform a system design using currently available ap-
proaches. Separately, we identify the different needs for privacy protection using an
appropriate policy language as discussed in the next section. In a third step, those re-
quirements must be mapped into the (technical) mechanisms provided by the underlying
design and runtime environment. In a last step the different mechanisms and components
must be combined to result in the specified system. How to perform the composition will
be discussed in a later deliverable. It should also be noted that the whole design process
potentially needs to be traversed multiple times, as identified privacy requirements and
mechanisms might require changes to the system model. Additionally, for the Information
Flow Analysis we propose to design different alternatives for comparison in any case.

We adapt this basic design methodology for privacy aware systems

1. by using various metamodels and schemata to guide the overall system design (Step
1);

2. by refining step 2 as follows (see Figure 3.2)

• create or adapt an adversary model that describes what kind of attacks should
be taken care of;

• use this adversary model to identify points of control and observation (PCOs)
for privacy protection, as described in Section 3.4;

• based on the identified PCOs describe the kind of operation and the kind of
measures necessary to protect privacy;

• based on the selected measure derive a value that reflects (measures) the level
of privacy protection.
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Figure 3.1: Methodology for designing a privacy aware system
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Figure 3.2: Methodology for designing a privacy aware system - PCOs

Figure 3.3 slightly varies the previous approach for applying similar steps to existing sys-
tems. Here the goal is to verify if the requirements derived in the first two steps match
the existing system. Of course, this step might be undecidable in general; therefore it
is necessary to understand how far such an verification methodology will help to detect
mismatches.
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Figure 3.3: Methodology for verifying an existing system regarding privacy

3.2 Policy Design

Specifying the requirements regarding privacy is one major aspect for a privacy aware ar-
chitecture. These requirements are specified by users (data subjects), service providers,
providers for privacy aware components and systems, public authorities, law, data con-
troller and others. Measurements of the utilization of systems, components, and appli-
cations regarding privacy are always based on specified privacy requirements. Thus the
description of privacy requirements have to be unambiguous. Thus the use of well de-
fined (standardized) metamodels and models is necessary. To support the creation and
evaluation/verification of such model based descriptions ontologies can be used to check
for inconsistencies and contradictions. Furthermore, standardized vocabulary description
languages like the Web Ontology Language (OWL) are powerful enough to express a big
variety of terms and conditions.

Existing approaches to describe privacy requirements (like P3P) are mostly not flexible
enough to deal with changing situations. Specified rules cannot be used to capture new
situations that are similar to ones previously defined. For instance syntactical differences
like the usage of synonyms or specializations of situations are not addressed. With the
use of machine processable descriptions in OWL we are able to infer new situations and
to apply previously defined rules to the inferred ones. New challenges can easily be
addressed by just updating the ontology descriptions.

Privacy policies can be specified and published both at design time and at runtime. At
design time, we have to specify the expressiveness of such a policy language. As men-
tioned above the privacy requirements have to be based on a well defined metamodel.
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Such a metamodel has to define clearly the terms and its relationships used to express
requirements.

In deliverable D6 we define metamodels for the domain of privacy in cooperative ITS.
Thus a policy language for the HcITS architecture can use this metamodel to adequately
express the privacy requirements. Evaluating system policies (for instance derived from
the principles) at design time is not challenging. At runtime the evaluation has to be just in
time. Therefore it is not possible to use a logic like OWL Full because in general with OWL
Full we can express statements that are not decidable, and thus may not terminate. The
challenge is to define a policy language that is expressive and flexible enough to capture
all necessary privacy requirements and at same time can be efficiently evaluated. To ease
the definition of appropriate policy languages we investigate in deliverable D6 the use of
a meta policy language and exemplary define a policy language for our prototype of the
HcITS architecture.

Translating “abstract” privacy policies to concrete usage policies can be one approach to
deal with the complexity of online inference and the complexity of compliance check for
the specified privacy policies. The main idea is to perform extensive computations like
inference offline or in parallel and to use simple access patterns for the access right man-
agement at runtime. For instance the process of updating the ontologies or the inference
of new situations does not directly influence the running system. One main challenge of
this approach is to update the access policies periodically and to correctly translate the
privacy policies. As a result we derive the access model of applications/services from the
specified privacy policies. Another challenge is the handling of privacy policies that do not
directly translate to access policies, but require modification of stored data, e.g. limited
retention of data items or the decrease of detail of information after a certain time.

Most of the principles can be expressed by creating policies. For instance, limited retention
can be defined in general, so that data will never be stored longer than two years or, in
special cases, the data will be deleted after 1 minute. Depending on the sensitivity of data
there are different requirements on how to protect information. For instance, for some type
of information it might be necessary to guaranty a high level of anonymity while for other
information it is important that it is never combined with another special type of information
resulting in the identification of individuals.

Furthermore, the requirement for privacy depends on the type of operations that are per-
formed on the information. For example, there could be privacy issues regarding the
communication of information, while a secure data store may ensure the protection of
privacy-relevant data, thus it might not matter at what detail-level information is stored
because the storage is trusted. On the other hand, it could also be that a secure com-
munication channel protects privacy-relevant data, but that only insecure data storage is
available which in turn requires that data is stored in a privacy aware manner.

The example in Figure 3.4 demonstrates the definition of a policy describing a situation
where it is forbidden that two abstract components (component 3 - c3 and component 4 -
c4) receiving some special kind of information (s12 - not sensitive, s13 - not sensitive) are
realized/implemented by one instance. In the example the reason for this restriction results
from the possible inference of personal information from the received information of both
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components. For identifying such relationships deliverable D6 introduces a model that can
be used to describe (a) personal information, (b) identifiers, (c) the inference of information
and identifiers, and (d) the connection from identifiers with personal information resulting
in personal information.

Policy
Component 3

Component 4

send data 
of type s13

C1 sends nsd1 to 

C2 and C3 sends 

nsd2 to C4 and 

nsd1+nsd2 infer sd

 C2 ≠ C4

Component 1

Component 2

send data 
of type s12

s12 – not sensitive

s13 – not sensitive

s14 – sensitive

s12 + s13  s14

Component 3

send data 
of type s13

Component 1

Component 2/4

send data 
of type s12

Figure 3.4: Policy that forbids the combination of information in one component

3.3 Layered Reference Model

In order to analyze ITS during the design process, we need to build a model. The basic
ideas of this model have already been outlined in deliverable D4 [8]. In this deliverable we
will describe the model’s expressiveness to allow for later investigation of privacy relevant
points in the system design.

We decided to use a graphical model to allow the designer to visualize the ITS in order
to gain a deeper understanding of the information flows within the system. One important
goal of this modeling is to be able to compare various designs of an ITS. For example, data
processing could happen more centrally in the backend or in a distributed manner closer
to or on the mobile nodes. This has significant privacy implications as in the first case
data is centrally collected whereas in the second case data is dispersed in the system and
nodes only see a small subset or aggregated data. By visually comparing the models of
different design alternatives, the system designer gets an intuitive idea of their advantages
and disadvantages in terms of privacy protection. In addition, the information flow layer
even allows a kind of privacy measurement to compare the level of privacy provided by
different system designs as discussed in Section 3.4.
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As it is virtually impossible to combine all different aspects of such a model into a single
figure we decided that our model supports multiple layers, or views, that each describe
different aspects of the same ITS.

A given ITS scenario is modeled in different layers or views, where each view highlights
certain aspects of the system. Those models will then serve as the basis for a privacy
analysis.

• Entity View: The entity view shows all participating entities and their relationships
or interfaces. Entities can be devices, persons, or organizations. A link between two
entities symbolizes a direct exchange of information between those entities during
system operation. Entity views allow for a quick overview over participating entities
without detailing the nature of their interaction.

• Deployment View: The deployment view describes available ICT devices in the ITS
that can be used for deployment of system functionality. These can be road-side
units or on-board units, but also servers that system operators use in the backend.
Links between devices represent communication channels over which information
can be exchanged. The deployment view becomes especially important for PRE-
CIOSA as the same functionality within an application can often be deployed in dif-
ferent parts of the system being under the control of different stakeholders. This
deployment decision then controls where personal information is stored or sent to
and which stakeholders have access to it.

• Logical Function View: The logical function view splits the overall application into
different functional units and models the relations and interfaces between those
units. Links between functions represent interfaces where information is exchanged.
Interfaces can be APIs, network protocols, etc.

• Information Flow View: The information flow view is based on the logical function
view, but emphasizes the exchange of data between entities. It is somewhat compa-
rable to dataflow diagrams [9] as they are used in the Structured Systems Analysis
and Design Method (SSADM) [10] or the activity diagrams in UML [11], however, we
have adapted the graphical syntax to give a better expressiveness for our goal of
visualizing the flow of personal information in an ITS system.

The different views can be described using diagram types that we already introduced
in Deliverable D4. Focusing the descriptions on the ITS domain we identified the three
specific subdomains vehicle domain, access domain, and backend domain. Each of the
domains describes parts of the systems which are logically separated by system bound-
aries.

The Vehicle Domain contains all elements that are located in the vehicle(s) and are thus
mobile and legally or physically belong to the driver(s) or other passengers. All elements
that have the primary function of enabling communication between the vehicle domain and
the backend domain belong to the Access Domain. Finally, the Backend Domain groups
elements that are centralized and store or process data provided by the other elements.
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Combining the different views allows a detailed analysis of the architecture of an ITS appli-
cation and the interaction of its parts. In the next section, we describe how especially the
information flow view can be used to analyze the privacy issues and protection of privacy
in an ITS system design. Section 4.3 describes the graphical syntax of our model and pro-
vides some examples. Finally, Section 4.4 demonstrates the information flow analysis.

3.4 Privacy Analysis of Information Flows

When modeling an ITS with this layered reference model, one may identify points of con-
trol and observation (PCOs). PCOs are specific points in the information flow of a certain
application use case where the level of privacy provided by the system should be mea-
sured and verified.

In general, privacy effects should be analyzed when information is being processed as
well as when information is flowing from one entity to another and especially when infor-
mation crosses domain boundaries. The reasons why privacy has to be verified when
information is being processed and when information from different sources is being com-
bined is obvious – additional information and data fusion may alter the level of privacy at
this point. Analyzing the level of privacy when information leaves an entity is important for
determining the effectiveness of applied privacy mechanisms. Analyzing the level of pri-
vacy when information crosses domain boundaries is important because once information
reaches a different domain more information may be available it could be combined with,
thus reducing the provided level of privacy, e.g., when service operator in the backend
generate large centralized databases containing data about large populations of users.

PCOs at entity and domain boundaries can be identified based on the entity and deploy-
ment views. However, the logical function view, and especially the information flow view,
provide more fine grained information about the amount and kind of information being
transfered throughout the system. This enables to determine more specific PCOs at crit-
ical points in the system, e.g., when information from different sources is combined or
processed together.

Additionally, to ensure that privacy is verified at all crucial points in the modeled information
flow, potential attacks on privacy can be identified to determine further PCOs. Several
methodologies for attack analysis and risk assessment exist that can be utilized for this
purpose. Most of them require a prior definition of an adversary model to estimate the
capabilities of a potential adversary. The attack analysis should be based on the modeled
information flow, and facilitates the identification of PCOs other than those at entity and
domain boundaries.

Now, the basic concept of privacy analysis of information flows is to model various al-
ternatives of system architectures using the layered reference model, and use the recom-
mended metrics described in deliverable D2 “V2X measurement approach” [12] to quantify
the provided level of privacy via the identified PCOs. Of course only metrics that can be ap-
plied during design time are applicable here. Alternatively, real-world tests need to provide
at least statistically significant estimates. Applying this approach then allows a qualified
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selection of the most privacy-friendly system design. Backes et al. [13] demonstrate the
possibilities of the analysis of information flows on a more theoretical level but restricted
to the information flow of locally executed source code using a line-by-line analysis.

In summary, the following steps are required for a full privacy analysis of information
flows:

1. Model system architecture using layered reference model (entity, deployment, logical
function, information flow views).

2. Identify attacks based on the modeled views and previously created adversary model.

3. Identify PCOs based on modeled views and identified attacks.

4. Evaluate PCOs and measure privacy level of system design with privacy metrics.

5. Repeat steps 1 to 4 with alternative system designs.

6. Use the results to either select the best candidate for implementation or to develop
more alternatives.
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4 cITS Design Process - Reference
Architecture

4.1 Methodology-Guided Design and Implementation
Process

The design and implementation process of privacy-verifiable cITS applications is based
on the process discussed in the architecture framework (see Section 3.1). This general
approach needs to be integrated with existing software design methodologies, e.g., the
classical waterfall model or the Rational Unified Process (RUP) [14]. During the software
design process of an ITS, privacy aspects need to be taken into consideration at various
stages. We will use the waterfall model only as an example and discuss the privacy-related
activities during the different phases:

Requirements specification: The requirements should also include privacy requirements
deduced from the privacy guidelines, i.e., it should be described what personal infor-
mation is processed by the system, what are the specific protection requirements,
what stakeholders and entities are involved, and so forth.

Design: During the design phase, the application or different alternative application de-
signs should be modeled using e.g. the layered reference model described in Sec-
tion 4.3. Alternatively, comparable approaches from model driven development can
be used, for instance activity diagrams, data flows, and requirements engineering
mechanisms. Independent of the approach used, an information flow analysis is car-
ried out for each alternative (see Section 4.4). This allows a qualified selection of the
best alternative from a privacy point of view. Design should also respect the privacy
guidelines described in deliverable D11 “Guidelines for privacy aware cooperative
application” which includes implementing the PeRA architecture (see Chapter 6).

Implementation and Integration: During implementation and integration, compliance with
guidelines and the design has to be monitored.

Validation: During validation, a trusted third party needs to verify and certify compliance
with guidelines and correct implementation of the PeRA architecture.

Installation: Installation also includes setting and configuration of privacy policies with
respect to user preferences. Albeit policies should be adaptable and users should
be able to easily customize them to their needs and wishes, reasonable defaults
tuned to the initial interests of individual users at installation and deployment time
will safe users the effort of making big changes later on.
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Maintenance: Maintenance and regular operation includes re-certification of the system
and regular audits using the audit component to ensure compliance of the system.

As previously stated, these steps need to be integrated with the system design process
that is in use in the specific organization implementing an ITS. There will also be the
need to implement tool support to efficiently include guideline verification with design and
testing procedures. This will also be covered in deliverable D13 “V2X privacy mechanisms
and verification support tools”.

In addition to extending the classical software development cycle, we must also address
the challenge of how application developers are able to design privacy aware ITS appli-
cations that make use of the features of the PRECIOSA architecture framework (design
process and run-time architecture). As possible starting points we envisage the following
two approaches:

1. In the short run we envisage a concerted approach (e.g., discussion in application
security groups and with data protection agencies) to describe generally agreed
privacy profiles. Those consist of:

• policy profiles, and associated assurance and verification approaches (follow-
ing the PRECIOSA verifiable architecture approach);

• rules and methods for integrating privacy requirements into application design,
generation, and application deployment.

2. Define a privacy aware ITS design discipline. This could mean that privacy and
privacy policies can be designed at an early stage and then taken into account at
each step of the design of an ITS application. PRECIOSA is currently investigat-
ing scenarios based on model-driven engineering, whereby a privacy metamodel is
defined, instantiated into application specific privacy models, further instantiated in
privacy friendly ITS applications.

4.2 Policy Design

As already discussed in Section 2.2 we must provide the user with a language that allows
her to express her preferences to maintain the desired privacy level. In the following
we do not describe a detailed language but rather discuss certain guiding principles for
designing (or choosing) a policy language for expressing privacy preferences. Such a
language should satisfy the following requirements

1. to express or to handle all aspects of all Hippocratic principles as introduced in
Subsection 2.2.2;

2. to be simple enough such that the user can express her/his privacy preferences
without being a privacy expert;

3. to be powerful enough such that experts are able to determine their individual privacy
preferences on a fine grained, technical level.
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Since the latter two requirements seem to be contradictory we envisage a policy language
with (at least) two sublanguages: one for the novice, non-expert user, and one for ex-
pert users. Rather than keeping both languages disjoint we envisage to map the former
language into the latter before generating the necessary metadata (as outline in the ex-
ample of Section 3.2 from those expression. The leveled approach is shown in Figure 4.1.
Details on the design of the policy language will be given in deliverables D6 and D10.

Scale-based privacy 
policy language

Concept-based privacy 
policy language

privacy metadata

Generated by 
language analyzer

Figure 4.1: Two-level privacy policy

4.3 Layered Reference Model

While Section 3.3 described the more abstract model applicable to cooperative ITS in
general, we now define a specific layered reference model for the design of privacy-aware
ITS applications.

In deliverable D1 [5] we already did some analysis of privacy aspects/issues. Now we
extend the analysis and introduce additional mechanisms to describe the applications and
to identify its privacy issues and appropriate requirements for protecting privacy. For this
purpose, we develop a graphical syntax based on the early ideas presented in deliverable
D4 [8], that can be used to model the entity view, deployment view, logical function view,
and information flow views of the layered meta model.

Each view has different semantics that have to be reflected in the modeling syntax. There-
fore, we first describe general modeling aspects applying to all views, before separately
describing the syntax for each view. Thereby, the syntax for the different views are kept
coherent to ensure consistency. To facilitate better understanding of the presented syntax,
for each view the syntax description is followed by a specific example. The floating car
data use case outlined in deliverable D1 [5] will serve as an example and will be modeled
with all views of the layered reference model in the following sections.
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4.3.1 General Modeling Aspects

Each view has to take the three domains – vehicle domain, access domain, and backend
domain – into account. All diagrams have to clearly visualize the boundaries of these
domains to indicate the most important system boundaries. The purpose of the domains
and what is contained in them has already been discussed in Section 3.3. In the view
diagrams, domains are represented by markers at the bottom of the diagram. All three
domains have to be present in every diagram. If one of the domains is not relevant for the
diagram at hand it cannot be omitted but reduced in size. The reason for this is to ensure
comparability between diagrams modeling different architecture alternatives for the same
application.

4.3.2 Entity View Modeling Syntax

V 

(a) (b) (c)

OBU  NET 

(a) (b) (c) (d)

OBU 

(a) (b)

I  W  NAV DB 

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.2: Syntax elements of the entity view: entity (a), relationship (b), self-referential
relationship (c).

The entity view is concerned with all entities that are part of a system and their relations.
Entities are represented as rectangular boxes (Fig. 4.2a). A box can represent a single
instance of an entity or a class of entities if several entities of the same kind are partici-
pating in the system, e.g., a number of vehicles would be represented by a single entity
box.

Relations between entities are understood as interfaces or communication links that sym-
bolize direct exchange of information between these entities. The entity view does not
distinguish between uni- and bidirectional information exchange, therefore relations are
expressed by undirected connecting lines between entities (Fig. 4.2b). Relations between
entities of the same class, e.g., communication between two vehicles, can be modeled
with an undirected line starting and ending at the same entity (Fig. 4.2c). Interfaces and
connections are not labeled, but can be easily referenced by the two entities they con-
nect, e.g., V − NP refers to the link between a vehicle and the network provider. Such
references are unique because each relationship only connects two entities.

The entity view provides a quick and high level overview over participating entities without
describing interactions between them in detail.
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Vehicle domain  Access domain  Backend domain 

V  NP  TOC 

FCD En,ty view 

Figure 4.3: Entity view of the floating car data use case

Example: Floating Car Data

Figure 4.3 depicts the modeled entity view of the floating car data use case. Three entities
are involved: vehicles (V ), a traffic operation center (TOC), and a network provider (NP )
that connects the vehicles and the TOC. Vehicles may also exchange information on traffic
status among each other via inter-vehicle communication (V − V ).

4.3.3 Deployment View Modeling Syntax
V 

(a) (b) (c)

OBU  NET 

(a) (b) (c) (d)

OBU 

(a) (b)

I  W  NAV DB 

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.4: Syntax elements of the deployment view: device (a), communication channel
(b), self-referential communication channel (c), opaque system parts (d).

The deployment view provides a more detailed and more technical view on available ICT
devices in the ITS that can be used for deployment of system functionality, e.g., RSUs,
OBUs, or servers. Similar to entities in the entity view, devices are represented by rectan-
gular boxes (Fig. 4.4a). Links between devices (Fig. 4.4b) represent communication chan-
nels available for communication exchange and can again be self-referential (Fig. 4.4c),
e.g., for V2V communication. Communication channels can be referenced by the two de-
vices or deployment points they connect, e.g., OBU − RSU references a communication
channel between a vehicle OBU and a roadside unit.

Opaque parts of a system can be symbolized by a cloud (Fig. 4.4d). This may be required
for parts that are not under the control of the system designer, e.g., devices in an access
network provided by a network provider are opaque and can therefore not be utilized for
deployment.
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Example: Floating Car Data

Vehicle domain  Access domain  Backend domain 

NET OBU  RSU  SERVER 

FCD Deployment view 

Figure 4.5: Deployment view of the floating car data use case

The deployment view for floating car data, depicted in Figure 4.7, includes OBUs (OBU ) in
vehicles communicating with other vehicles (OBU−OBU ) or roadside units (RSU ). RSUs
are connected to an opaque access network (NET ). This network provides a connection
to the TOC server (SERV ER) in the backend.

4.3.4 Logical Function View Modeling Syntax

V 

(a) (b) (c)

OBU  NET 

(a) (b) (c) (d)

NAV 

(a) (b)

I  W  NAV DB 

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.6: Syntax elements of the logical function view: functional unit (a), interface (b).

The logical function view models an application on the system development level by
splitting the overall application into different functional units and modeling the relations
and interfaces between them. Functional units are represented as rectangular boxes
(Fig. 4.6a). Interfaces between functional units are represented as undirected connecting
lines (Fig. 4.6b) that can be referenced in the same way as for the entity and deployment
views.

Example: Floating Car Data

Figure 4.7 depicts the logical function view of the FCD use case. Two main functions are
supported: vehicles report probes of road status data to a traffic operation center (TOC)
and vehicles consume up-to-date road status information from the TOC.

For the data probes to be sent to the TOC, vehicles determine their location using a lo-
calization or positioning service (LOC), data about the current road and traffic status has
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Vehicle domain  Access domain  Backend domain 

LOC 

TDATA 

NAV 

V2X  TRANS  STORE 

RCALC 

PROC 

Figure 4.7: Logical function view of the floating car data use case

to be gathered and merged into a report (TDATA) which may also require localization
(LOC). Via a V2X communication unit (V 2X) the data is sent out and reaches the TOC
server by means of a transportation service (TRANS), which abstracts from specific com-
munication and transportation protocols. At the TOC server data is stored in a database
(STORE). The individual probes are processed and analyzed together (PROC) to de-
termine the current status of the road network. The results of the analysis may also be
stored again.

Subsequently, route planning requests from vehicles can be processed and corresponding
routing information can be computed (RCALC). This information can then be returned to
vehicles whose navigation system (NAV ) can take into account the received information
for optimal routing decisions. Navigation (NAV ) obviously also requires position informa-
tion (LOC).

4.3.5 Information Flow View Modeling Syntax

V 

(a) (b) (c)

OBU  NET 

(a) (b) (c) (d)

NAV 

(a) (b)

W 

(g)

DB 

(h)

NAV 

(i)

I 

(a) (b) (c) (e) (f)(d)

Figure 4.8: Syntax elements of the information flow view: data item (a), information flow
(b), multiplexing data items (c), demultiplexing data items (d), send and receive
(e), secure communication (f), information processing (g), data storage (h),
information consumer (i).
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The information flow view models the flow of personal information of an application. Data
items that are newly created are depicted by a circle (Fig. 4.8a). Information flow is sym-
bolized by unidirectional arrows (Fig. 4.8b). The combination, or multiplexing, of several
data items into one message is symbolized with a triangle (Fig. 4.8c), hereby the single
information items are only grouped together but not modified. Similarly, a message can
be ungrouped, or demultiplexed, again (Fig. 4.8c).

Sending and receiving of information are depicted by a closing and an opening half circle,
respectively (Fig. 4.8e). Thus, the internal information flow of an entity is always enclosed
in these symbols. In case multiple entities of the same kind may participate in the applica-
tion, a flow arrow can point from the sending symbol back to the receiving symbol of the
same entity.

To symbolize a secure communication channel the symbols for sending and receiving
information are filled, and the connection between them is represented by a black tube
with a white information flow arrow (Fig. 4.8f). For secure communication channels it
is assumed that the security holds from end to end, therefore intermediate nodes that
forward encrypted data can be omitted.

Information processing, fusion, and aggregation are described with a diamond shaped
symbol (Fig. 4.8g). Note, that information processing always results in a new data item
that has to be modeled accordingly.

Information may also be stored, data storage is represented by a rectangle with rounded
corners (Fig. 4.8h). Mere caching of information has to be modeled the same way. Finally,
information consumers, e.g., a navigation system or a warning display, are symbolized by
rectangles with pointed corners (Fig. 4.8i).

The graphical syntax for information flow modeling is clearly more expressive than the
syntax of the previous views. Nevertheless, the syntax is only comprised of the items
necessary to fully model information flow of arbitrary applications while retaining clarity of
resulting diagrams.

Example: Floating Car Data

Figure 4.9 shows the modeled information view of the FCD use case. The Figure models
information flow for reporting of traffic status data as well as for requesting and receiving
routing information.

When contributing floating vehicle information, vehicles combine their vehicle identifier (I),
the vehicle’s current position (P ), and traffic or road status data (T ), e.g., information about
traffic flow or icy road surfaces, into a message. Such a message may either be forwarded
(and potentially cached) by a number of vehicles or directly reach the access domain, e.g.,
by a RSU receiving the message. In the access domain, messages are forwarded and
potentially cached by an unknown number of intermediate nodes. When floating car data
reaches the traffic operation center in the backend domain, it is demultiplexed and stored
in the TOC’s database (DB) for later processing and data fusion. Note that caching of
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Vehicle domain  Access domain  Backend domain 

I 

W 

NAV 

P 

T 

Cache  Cache  DB 

I 

P 

D 

Cache  Cache 

Cache Cache 

R I 

Figure 4.9: Information flow view of the floating car data use case

data can happen both in vehicle and access domain, thus it has to be modeled twice to
account for potentially different characteristics of these domains (see Section 4.4.2).

For the consumption of floating car data, the individual probes stored in the database
(DB) are analyzed and fused with each other and other information to model the current
real-world traffic situation (W ). Vehicles can request traffic information from the TOC
by sending a request consisting of their identifier (I), the current position (P ), and their
destination or direction (D). When receiving such a request, the TOC processes P and
D together with information from the database (DB) resulting in some routing information
relevant for the vehicle (R). R and I are combined to a message and returned to the
vehicle via the access network. The FCD client of the vehicle’s navigation system (NAV )
consumes the received information by calculating the optimal route to D with respect to
the current traffic situation.

4.4 Information Flow Analysis

The basic idea of information flow analysis has been introduced in Chapter 3. We use the
layered reference model defined in the previous Section (Section 4.3) to model a proposed
system architecture or application. We then identify potential privacy attacks based on
the modeled views and an adversary model. The knowledge gained this way facilitates
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the identification of points of control and observation (PCO) in the information flow view,
which are subsequently evaluated to assess the privacy level provided by the underlying
system design. Afterwards, the process can be repeated for alternative system designs
for the same application to compare the impact of different designs on privacy. Such an
alternative could, for example, be the shifting of a logical function onto a different device
based on deployment and logical function views.

In the following, we will discuss each of these steps in detail, thus outlining a methodology
for privacy analysis of information flows that can be applied to arbitrary applications. As
in Section 4.3, we use the floating car data use case as an example to demonstrate the
process of information flow analysis.

4.4.1 Modeling a System Design

The first step of information flow analysis is modeling a system design for a specific ar-
chitecture. Utilizing the layered reference model of Section 4.3, derived from the layered
meta model introduced in Section 3.3, a system design can be modeled in several views.
These views all describe the same design but at different layers of abstraction.

As the name implies, we are mostly interested in the information flow view for information
flow analysis. However, entity view, deployment view, and logical function view are also
important because they facilitate the accurate modeling of information flow and provide
useful clues for modeling alternative, more privacy friendly system designs. Therefore, all
views are modeled in this step.

For the specific modeling syntax of each of the four views we refer to Section 4.3 and its
Subsections.

Example: Floating Car Data

The modeling of a system design with the layered reference model has already been
exemplified in Section 4.3 with the FCD use case. Figure 4.3 shows the entity view of
FCD, Figure 4.5 shows the deployment view of FCD, Figure 4.7 shows the logical function
view of FCD, and Figure 4.9 shows the information flow view of FCD. It is the latter one
we will be mostly referring to in the following.

4.4.2 Adversary Model

Before the information flow of an architecture can be analyzed for attacks an adversary
model has to be defined that describes the assumed capabilities of a potential attacker.
The capabilities and exhibited characteristics of an adversary depend on the chosen kind
of attack. In Chapter 3 we identified three interlinked domains that are part of Intelligent
Transport Systems:
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• Vehicle domain. In-vehicle communication and inter-vehicle communication, also
including data stored in vehicles (e.g., communication with mobile devices and other
vehicles).

• Access domain. All means and devices that provide communication and caching
between vehicle and backend domain (e.g., RSUs or proxy servers).

• Backend domain. Storage and processing of data provided by the other domains,
as well as communication between backend servers and services (e.g., database
servers or service providers).

Each of these domains includes several potential points of attack for an adversary and an-
alyzed independently. This way, a specific adversary model for each domain can be com-
piled that well reflects the required capabilities of an adversary. Depending on the domain,
an adversary may require more extensive capabilities to be able to mount a meaningful
attack, which may also result in different costs associated with an attack. Domain bound-
aries are potential attack points as well. If the adversary models of two adjacent domains
diverge the stronger1 adversary model should be assumed for the boundary as well. At
the same time, it is also important to have a consistent adversary model for the whole co-
operative ITS. Therefore, the same methodology is chosen for all three domains to model
a potential adversary. This allows us to either focus on domain-specific adversary models
or generalize to a system-wide adversary model.

In this example, we use the adversary model the classification approach of Raya and
Hubaux [15] as the basis. They classify adversaries along the dimensions membership,
method, scope, and motive. We reduce the adversary model to the first three dimensions,
because in terms of privacy an adversary’s motive is irrelevant: regardless if an adver-
sary is acting with malicious or self-benefiting intent, user privacy will be breached by a
successful attack either way. The dimensions for the adversary model are therefore:

• Membership. An adversary can be an insider or an outsider. An insider is a valid
member of the communication network, e.g., a vehicle, and possesses valid au-
thentication credentials and other inside knowledge. An outsider is not part of the
network and cannot take part in authenticated communication.

• Method. An adversary can be either active or passive. An adversary is actively tak-
ing part in communication when sending or retransmitting messages. A deliberate
intrusion attempt into a system component is also an active attack. An adversary
that only eavesdrops on communication or silently gathers information on communi-
cation partners is acting passively.

• Scope. An adversary can have local or extended scope. With local scope an ad-
versary’s capabilities are limited in reach, so that only certain parts of the system
can be attacked at once, i.e., an adversary can mount an attack against one back-
end server, or eavesdrop on vehicle communications at a specific road intersection.
An adversary with extended scope can mount attacks against several parts of the

1Note that stronger refers here to an adversary with more capabilities such as wider coverage of the network,
more receivers along the roads, more advanced data storage and processing power etc.
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system in parallel and is not restricted to a specific region. An adversary with ex-
tended scope is also called a global adversary. In keeping with the layered meta
model, scope can also be understood in terms of domains. An adversary with local
scope attacks only one domain or parts of it, either vehicle domain, access domain,
or backend domain; while an adversary with extended scope may attack two or all
three domains at once. How scope is understood depends if the adversary model is
domain specific or system wide.

The adversary model is now adapted to the three domains in terms of attacks against
privacy. The results are summarized in Table 4.1.

In the vehicle domain, network membership does not provide advantages for the adver-
sary. An insider would not be able to gain additional information from messages compared
to an outsider, because safety messages would usually not be encrypted so that all traf-
fic participants can benefit from it. Messages addressed to service providers may be
encrypted, but network membership could not provide access to these messages. Fur-
thermore, it is sufficient for an adversary to act passively in the vehicle domain, because
active attacks would not yield more personal information than passive eavesdropping. An
extended scope, however, provides an advantage over local attacks, because more data
can be collected this way. More data, especially positioning information, facilitates tracking
of vehicles for a longer time. Thus, we assume an adversary with extended scope.

For the access domain, membership makes a difference for the adversary. An insider
may be able to control roadside units or intermediate communication nodes and collect
data before it reaches the backend domain. For an outside adversary, data collection is
more difficult if link encryption is utilized. An inside adversary is therefore a stronger as-
sumption. The utilization of encryption also influences the method of an attack. In case of
unencrypted communication between intermediate nodes, passive eavesdropping is suf-
ficient to gather information. With encrypted communication an adversary has to actively
gain access to the communication channel, either by taking control of a node, or imposing
an intermediate node in a man in the middle attack [16]. Thus, active adversaries pose
a higher risk. The scope of attacks against the access domain has implications similar to
attacks against the vehicle domain. A successful local attack may provide an adversary
with information that may be privacy sensitive. In a successful attack with extended scope
more personal information can be gathered. Considering that we are assuming active at-
tacks, attacks with extended scope in the access domain may be costly and may also be
discovered more easily. Therefore, attacks with extended scope may be less likely than
local attacks. We take the stronger assumption of extended attacks nevertheless. Note
that attacks against the access domain can be mostly thwarted by utilizing end-to-end
encryption between vehicles and servers (or service providers) of the backend domain.

The backend domain is where data is processed and probably stored for further usage.
Typical components of the backend domain are traffic operation centers (TOC), databases,
and service providers etc. An outside adversary may try to gain access to such a system
by exploiting vulnerabilities. An insider may have to operate similarly, depending on the
access control scheme in place. An insider may use additional knowledge which may
facilitate an attack, thus an inside adversary is assumed. Attacks against backend nodes
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have to be active, because it can be assumed that at least some security mechanisms are
in place to protect client data. A successful local attack, i.e., an attack against a single
backend node, already has a significant impact on the privacy of the original donors of the
stolen personal information. However in an attack with extended scope, data stolen from
several backend nodes could be combined and enable more detailed profiling. Therefore,
we assume adversaries with extended scope.

Vehicle domain Access domain Backend domain Overall system
Membership outsider insider insider insider
Scope extended extended extended extended
Method passive active active active

Table 4.1: Summary of the adversary model for vehicle, access, and backend domain.

As is apparent from Table 4.1, the adversary models for the access and backend domain
are stronger than the one for the vehicle domain. A generalized adversary model for
the whole system has to reflect this. This implies that strong privacy protection must be
provided in the vehicle domain already, and has to be extended throughout the access
and backend domains. Therefore from an overall system perspective, an active, inside
attacker with extended scope has to be assumed (Table 4.1, rightmost column).

4.4.3 Attack analysis

The information flow view and the adversary model are input for an analysis of potential
privacy attacks. Therefore, we limit the attack analysis to potential information disclosure2.
The attack analysis methodology employed by PRECIOSA is outlined below.

Attack trees [18, 19] are an established method for modeling security threats. They have
already been successfully utilized for the modeling of attacks on inter vehicle communica-
tion systems [20], and will be used to model attacks on privacy for selected use cases in
the following.

The main idea of attack tree analysis is to choose an aim or motivation of an adversary
and to identify potential attacks that can be mounted to achieve that goal, and further
assess the likelihood of these attacks. For that purpose, subgoals are defined for each
attack that could lead to the specified goal. Subgoals are any means that are required
to be successful with the attack on the level above, and can themselves be composed
of more detailed subgoals. As a result, a tree structure evolves that defines a hierarchy
of attack goals and subgoals. The root of the tree is the asset or attack aim, and nodes
on lower hierarchy levels represent subgoals. The further down in the tree a node is, the
more detailed and narrower is its description. Leaf nodes represent atomic subgoals that
cannot (or do not require to) be further divided.

2General threat modeling approaches like STRIDE [17] consider a broader range of threats and potential
attacks, not relevant to privacy. Note also that any non-policy-compliant access to personal data is here
considered a information disclosure attack.
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Steal car

Find ignition 
cablesGet inside car Connect 

cables

Obtain key 
copy

Short-circuit 
car

Goal: Steal car (OR)
Obtain key copy
Short-circuit car (AND)
 Get inside car
 Find ignition cables
 Connect cables

Figure 4.10: An example of a simple attack tree: tree representation (left side) and textual
representation (right side) side by side.

Goals on the same hierarchy level either have an OR or an AND relation. In case of an
OR relation, the nodes are independent attack alternatives that all can lead to the goal
on the hierarchy level above. In case of an AND relation on the other hand, all subgoals
have to be fulfilled in order to fulfill the goal above.

The concept of attack trees becomes clearer with a short example. We present the steal-
ing a car example by Aijaz et al. [20]: The attack goal, and therefore the root of the attack
tree, is stealing a car. To achieve this goal and drive away with someone else’s car, an
adversary can either obtain a copy of the key OR short-circuit the car – two alternatives
that are both independently sufficient to meet the attack goal. Short-circuiting can be fur-
ther split into a number of subgoals: an adversary has to get inside the vehicle, find the
ignition cables, and connect the cables – all three subgoals have to be fulfilled together for
the short-circuiting to be successful, they are part of an AND relation. Of course, obtain a
key copy could be also further divided into subgoals, but we refrain from doing so for this
short introductory example. Figure 4.10 depicts the resulting attack tree (left side). It is
obvious that real-world and more detailed attack trees would become rather large, thus a
textual representation can be used (right side of Figure 4.10) which is more compact than
the tree representation. Then, subgoals are indented to reflect the hierarchical structure.
OR and AND relations are specified for a goal and apply to the subgoals on the level
below.

Attack trees can also be extended by assigning attributes to vertices, e.g., costs. Such
information can be utilized to assess the likelihood or total costs of an attack branch in
order to identify more serious attacks. For example, the seriousness of security threats
could be classified using the DREAD methodology [21]. However, for our purposes of
assessing privacy attacks cost attributes can be omitted. The intuitive attack tree approach
is sufficient, because we are mainly interested in identifying privacy breaches without
prioritizing between them.

Attack trees are used to analyze modeled architecture designs for potential privacy breaches.
We utilize the textual representation rather than the graphical tree-like one in order to main-
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tain clarity. Subsequently, the resulting attack trees are used to identify appropriate points
of control and observation (PCOs) which can be used for measurement and evaluation
to assess the privacy level provided by a given architecture. The details of this selection
process will be discussed in the following section.

Example: Floating Car Data

In general, an adversary could either attack the identity privacy or the location privacy
of a vehicle or its driver. While in the first case the aim of the attack is to obtain the
real identity of a vehicle or driver, the recording of a moving pattern without learning the
vehicle’s identity may be sufficient for the latter. As a result, two attack trees have to be
modeled for the FCD use case. One with the goal of determining the vehicle identity, and
one aiming to track a vehicle. Note, that the tracking vehicle attack tree is also a sub-tree
of the first one. The variables used correspond to the information flow view of the FCD
use case (Fig. 4.9).

1. Goal: Determine vehicle identity V (OR)

1.1. Link identifier I to V (OR)

1.1.1. I is unique to V

1.1.2. Anonymity set is too small (e.g., Swiss pseudonym in Sweden)

1.1.3. Gain access to resolution authority that can map I to V

1.2. Link position P to V (OR)

1.2.1. P is specific to V (e.g., V is known to be there often)

1.2.2. Link V to point of interest (POI) (e.g., home, or work) (AND)

1.2.2.1. Track vehicle (see goal 2)

1.2.2.2. Recognize POI specific to V

1.3. Infer V from traffic status data T (e.g., T contains quasi-identifiers of V )

1.4. Link destination D to V (e.g., D is specific to V , only V ever goes to D)

1.5. Infer V from routing information R (e.g., R contains quasi-identifiers of V )

2. Goal: Track vehicle (OR)

2.1. Link messages with spatio-temporal correlations (e.g., multi-hypothesis track-
ing)

2.2. Link messages with different identifiers (e.g., observe identifier changes)

2.3. Link messages with different traffic data (e.g., similar message content)
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The attack tree shows that with the exception of corrupting a resolution authority (1.1.3),
which requires active engagement, an active adversary does not gain any advantage over
an adversary passively eavesdropping on communication. Subgoals for determining a
vehicle’s identity (goal 1) only require local scope, except for 1.1.2. Tracking a vehicle on
the other hand requires an adversary with extended scope to be able to successfully link
position samples or identifiers over time. An adversary does not have to be an insider for
both attacks to succeed, and inside knowledge may only be helpful for gaining access to
a resolution authority’s identity mappings. However, gaining this knowledge would require
strong determination and resources to become a legitimate insider of such an authority
without being identified as an adversary.

4.4.4 Identification of PCOs

Based on the modeled information flow and the attack analysis, we can now determine
places in the system which are suitable to measure and verify the privacy of the modeled
architecture. These points are called points of control and observation (PCOs).

In a first step, data items containing personal information are identified from the results of
the attack analysis and privacy goals are formulated for these items.

Subsequently, the identified attacks and privacy goals are matched to the information flow
view. Whenever privacy goals collide with potential attacks as well as at identified high risk
attack points a point of control and observation (PCO) should be set to be able to assess
and evaluate the provided level of privacy at these points.

As already outlined in Section 3.4, some generalized PCOs can be identified that are
applicable to arbitrary architectures. The level of privacy should always be measured when
personal information leaves the entity it originated from, e.g., the vehicle. Furthermore,
PCOs should be set at domain borders to ensure that privacy is not subdued in the next
domain. Most importantly, privacy has to be assessed with PCOs whenever information is
being modified, processed, stored, or combined with other information.

Example: Floating Car Data

The attack analysis performed in the previous Section provides valuable information about
which data items pose potential privacy risks in the FCD use case. Using this information
we can formulate the following privacy goals for this use case:

• The identifier I should not be linkable to the vehicle V or other identifiers used by V
at a previous or later point in time.

• Position information P should not be linkable to vehicle V or other position samples
corresponding to V .

• Traffic probe information T should not contain information linkable to V .

• The destination information D should not be linkable to vehicle V .
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• Routing-relevant information R from the TOC should not be linkable to identities of
data subjects.

The first three points are concerned with the privacy of data items originating from the
vehicle (I, P , T ) when reporting floating car data to the TOC. Therefore, it is necessary to
verify the privacy of these data items when they leave the vehicle. The items should be
considered together for measurement and evaluation because the relationships between
the items could also help an adversary to identify a vehicle and thus likely also a data
subject.

In inter-vehicle communication (I,P ,T ) may be modified in some way or cached before the
data is forwarded to a TOC. For example, vehicles receiving the data may aggregate it with
their own sensor values, thus changing I (e.g., replace it with own identifier, or add own
identifier to a list of identifiers), modifying P (e.g., an extended region instead of a single
position sample), and T (e.g., supporting T or averaging with own values). Thus, privacy
has to be also measured whenever the data passes through another vehicle, regardless
of the actual operations on the data.

The access domain provides a channel controlled by the network provider. It is essential
to measure and verify the privacy of data that enters the access domain to guarantee that
caching of that data does not pose additional privacy risks. Privacy has to be verified at
each intermediate node from vehicle to the backend domain. In some cases other vehicles
may forward messages as well. Because different additional information may be available
in vehicle or access domain, two separate PCOs are recommended to properly measure
the privacy level at forwarding nodes.

When data is received in the backend domain, privacy has to be verified when data is
stored in the TOC’s database, because storing it together with other traffic probe data
may enable inferences of quasi-identifiers. Privacy should also be measured when stored
probe data is processed and fused with other data to model the real-world traffic situation.
The resulting model must maintain privacy.

The fourth and fifth privacy goals, specified above, apply to the logical function of request-
ing and consuming up-to-date traffic information from the TOC. For the request message
(I,P ,D) the same PCOs apply as for reporting traffic status data.

In the backend domain, the TOC processes the request results using a relevant subset of
information on the current road and traffic situation relevant for route calculation from the
vehicle’s current position P to destination D. The processing (W ) of the request (I,P ,D)
together with stored traffic probes may enable privacy breaching inferences and therefore
has to be measured. For the resulting information R the privacy with respect to the original
data subjects has to be measured before it is send back through the access domain to the
requester.

Table 4.2 provides a summary of the recommended PCOs for the floating vehicle infor-
mation use case together with information about where they have to be integrated and
what data has to be measured. Figure 4.11 integrates the PCOs with the information flow
model of Figure 4.9.
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PCO Domain Integration point Critical data items
1 Vehicle prior to sending (I,P ,T ), (I,P ,D)
2 Vehicle message forwarding (I,P ,T ), (I,P ,D)
3 Access message forwarding (I,P ,T ), (I,P ,D)
4 Backend prior to storage or processing (I,P ,T ), (I,P ,D)
5 Backend on data fusion (I,P ,T )
6 Backend after processing R

Table 4.2: Recommended PCOs and their integration for the floating vehicle information
use case.

Vehicle domain  Access domain  Backend domain 

I 

W 

NAV 

P 

T 

Cache  Cache  DB 

I 

P 

D 

Cache  Cache 

Cache Cache 

R I 

1  2  3  4 

4 1  2  3 

5 

6 

Figure 4.11: Recommended points of control and observation (PCO) for the FCD use
case. The information flow model of Figure 4.9 is overlaid with PCOs (red,
Table 4.2) that are suitable to measure, assess, and verify the provided level
of privacy.

4.4.5 Evaluation of PCOs

Having identified all PCOs representing points where a privacy breach is possible, we will
now evaluate the system design using several metrics. The choice for a given metric may
depend on the given application as well as the statistical background information available
for verification and can be different for each identified PCO. We will now evaluate the
PCOs that have been identified in the FCD example application in the previous sections
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using the metrics defined in deliverable D2 [12]. In summary the following steps will be
taken to judge a system:

1. We can observe the number of PCOs identified in a given system. This number
will give us a first rough estimate of how privacy preserving the system is. The
more occasions there are where a certain privacy level has to be ensured by taking
measurements, the less probable it is that a given system is privacy friendly.

2. For each PCO, the involved data can be traced back to the identified attack goals
using the attack trees defined in Section 4.4.3. This gives us a sense of which
involved data items are sensitive. Thus we call this approach the tainting of sensitive
data. Having identified sensitive data, the attacker model can then be used to decide
whether an attack is feasible at a certain PCO. This gives an overview of privacy
issues in the system design and unveils at which points more fine-grained analysis
is required. The tainting metric complements the approach presented in deliverable
D2 Chapter 6 [12] from a PCO centric point of view.

3. Depending on the results of applying the first two very general metrics to a given
application, more sophisticated metrics can be looked at. Candidates here are the
concept of k-anonymity and entropy based measures. It needs to be decided per
application which metrics are applicable at each PCO; deliverable D2 [12] gives
several guidelines on how to select appropriate metrics.

All steps will be further discussed and exemplified using the Floating Car Data use case
that has already been used throughout this chapter.

Example: Floating Car Data

Number of PCOs As detailed in Table 4.2, a total of 6 PCOs has been identified. Be-
cause information travels through vehicle, access, and backend domain mostly unen-
crypted, a potential attacker can extract information at all domain borders and several
points of data aggregation.

Tainting of Sensitive Data To get a general idea of the flow of private data, we will next
measure how personal or potentially linkable data travels the network. That is, we trace
each goal of a potential adversary back to the required information using the attack trees
that were modeled by following the tree’s edges down to the required data items. We can
then use this knowledge to look at each PCO in turn to see which potentially personal
information is involved and to what entities it is sent. Comparing this to the abilities of a
possible adversary as defined by the adversary model (cf. Section 4.4.2) will give a sense
of which attacks are feasible at certain points in the system. In deliverables D2 (Chapter
6) [12] and D6 [22], a similar metric is presented to measure system privacy as a whole.
At this point however we are concerned with whether a given attack is feasible at a certain
point of the system. The higher the uncertainty using this general metric is whether an
attack is feasible, the more likely we need to employ a more sophisticated metric.
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PCO 1 The data items involved at PCO 1 are an identifier of some kind (I) – not to be
confused with a vehicle identity (V ) –, a vehicle’s current position (P ), a traffic status
report (T ) and a destination (D). Assuming that T does not contain any quasi-
identifiers of V , the traffic status report T will be of little to no interest for an adver-
sary. All of I, P , T and D however can be traced back to a potential goal given the
modeled attack tree.
PCO 1 is located in the vehicle domain. The information flow view shows that data
is not encrypted at this point in time and that its destination is other vehicles – or
caches – in the vehicle domain. Because of the missing encryption, an adversary
without insider privileges can freely access and read the data. Assuming an adver-
sary with extended scope as detailed in Table 4.1 he will be able to collect several of
the said data items in a larger area and over an extended time.
We can therefore deduct, that goal 2 – the tracking of a vehicle – is feasible for an
adversary given the assumed membership, method and scope. Goal 1, determining
a vehicle identity (V ), can in general be assumed to be possible considering the type
of data going through PCO 1 and the assumed scope of an adversary. For example
an attacker can learn typical destinations of vehicles by observing D. But detailed
elaboration requires more complex metrics and further knowledge about the spe-
cific application and the setting in which it runs, like the scope of deployment (i.e.,
state-wide, or country-wide) or the number of users.

PCO 2 At PCO 2, the same data items as for PCO 1 are involved and it is located in the
vehicle domain as well. The way the given example system was modeled, there is no
data fusion in the vehicle domain. That means that forwarded information passing
PCO 2 is an unaltered version of the items passing PCO 1. The more forward-
ing steps are present however, the more potentially personal information is spread
throughout the network.
As for the feasibility of attacks, the same arguments as for PCO 1 hold, augmented
by the aforementioned further spreading of information which makes successful
tracking more probable.

PCO 3 Here, again, the same data as for PCO 1 and 2 is involved. PCO 3 is located
in the access domain however. In the access domain we assume an attacker that
has insider privileges, again extended scope and is able to perform active attacks.
Thus, since no information alteration or fusion has happened so far, we have to
assume that it is feasible for an attacker to gain knowledge about several location
samples of an identifier thus making tracking possible. This is especially bad at
the access domain because location information of several vehicles is decoupled
from the physical location of the vehicles. That is, an attacker does not need to be
physically present in the vicinity of the tracked vehicles but can intercept tracking
data at other points in the access domain which might be more convenient to attack.
All other possible attacker goals as well remain generally feasible. Moreover, an
active attacker might even inject false or specially crafted data in the forwarding
process to evoke the sending of more possible sensitive data of a vehicle.

PCO 4 By now the aforementioned information – still in its unaltered form has entered the
backend domain. Because of the same assumed attacker model in the access and
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backend domain, the same argument holds as for PCO 3. But, again, information is
even more decoupled from the physical entities it is about. Thus, it is even easier for
an attacker to collect data at this PCO.

PCO 5 This PCO is located at the first point where collected data is fused to gain a new,
higher level information. The data items used here are I, P and T . It can be as-
sumed that many information triples of this kind travel through this PCO to be fused
into traffic information about a certain road segment in the next step. That of course
means that an attacker at this point gains knowledge about already complete tracks
of several vehicles. Goal 2 therefore remains feasible. The same argument can
again be made for Goal 1 because of the amount of data involved at this PCO. If
however the database is queried only for averaged data to be applied to the traffic
status calculation, this is the first PCO for which tracking of singular vehicles will
become infeasible for an adversary.

PCO 6 Now, after data fusion, a new information item, namely the route information R
has been generated. An attacker observing R at PCO 6 with the adversary model
assumed in the backend will not be able to infer information about the vehicles con-
tributing information to R anymore given that enough vehicles have contributed or,
more precisely, that enough information has been passing PCO 5 recently. This al-
ready implies that those two PCOs again need to be further discussed using more
complex metrics. Apart from the traffic information contained in R, an attacker might
infer information about the possible destination of a driver. This information is how-
ever not directly contained in the information passing PCO 6 anymore.

k-Anonymity Measurement

The previous discussion showed that the nature of the data at several PCOs is very similar.
Thus, the discussion for the application of k-anonymity will be grouped in the following. For
general guidelines on how to apply k-anonymity based measurement to PCOs we refer
the reader to deliverable D2 [12].

PCO 1–3 As outlined in the previous Section, the data items I, P , T and D can be ob-
served at these PCOs. For the measurement of k-anonymity we either need current
traffic status information or statistical data that gives us the minimum amount of ve-
hicles passing a certain region in a specific time interval. Given that data we can
measure the k-anonymity regarding the observed time and position tuples of vehi-
cles based on the granularity of information provided. Suppose for example that in
case of the FCD application, a minimum of 20 vehicles pass any given 1000 m road
segment in a one minute period. If vehicles only send out their current position with
a precision of 1000 meters, we can then deduct that k = 20. While this adaption of
location granularity might be acceptable for the FCD application, it might be far to
coarse-grained for safety applications. Another aspect is that the assumption of a
certain minimum amount of vehicles passing at a given time interval might be hard
to make because even roads with known high vehicle density might drop during a
certain threshold over night.
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If no assumptions can be made about minimum vehicle density or an acceptable
amount of artificially coarse-graining location information, we have to assume k = 1
regarding location privacy given that no information fusion or obfuscation happens
in the example FCD information flow at any of the PCOs 1–3.

PCO 4–5 In general, the same argument regarding k-anonymity holds as for the PCOs
1–3. However, being located in the backend domain, PCO 4 offers an easier ac-
cess to larger amounts of data at the same time. That is, we do not need to make
observations for a longer time to deduct statements about k-anonymity here. Note
that, as already hinted at in the last section, only average queries are allowed to
the database, k-anonymity will rise dramatically at PCO 5 because an adversary will
only get information about longer tracks that involves indistinguishable information
about several vehicles.

PCO 6 The only data item observed at PCO 6 is the calculated route information R. Be-
cause of the data fusion that has happened to generate the route information, the
anonymity set is likely to be high for the vehicles that donated the traffic status infor-
mation which served as input to the route calculation. In general one can say that
once data has been averaged or fused in some other way which makes the single
data items that went into the calculation indistinguishable, the size of the anonymity
set k will be as high as the number of data items that were fused.

Entropy-based Measures

Similar to the calculation of k-anonymity we will group the discussion of entropy based
measurement in the following according to the data items that can be observed at the
PCOs.

PCO 1–3 Again, the data items I, P , T and D can be observed at these PCOs. The
following will outline how each of them can be used to serve as input to an entropy
based metric presented in deliverable D2 [12] that gives the entropy in a system
based on the certainty about a mapping from an individual to an origin to a destina-
tion and back to the individual again. If an adversary can observe a pair of P and D
he can deduct with high probability that P is the origin of a certain trip and D will be
the destination. It then only depends on the implementation of I (e.g., pseudonym
or unique identifier) and on other knowledge of the adversary about P or D which
might be known to belong to a certain individual how much entropy is still left in the
system.
If an adversary does not observe D but only several pairs of time and location in-
formation, this too can be used to track individuals and thus reduce the uncertainty
about how origins map to destinations.

PCO 4 As for the k-anonymity measurement, an adversary needs to observes several
messages over time to deduct useful information for entropy based measurement.
This amount of time can be reduced if an adversary observes messages at this PCO
because more data is available in a shorter time period.
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PCO Tainting k-anonymity Entropy
1 privacy relevant data

freely available
likely to be small likely to be low due to

(P,D) pairs
2 privacy relevant data

freely available
likely to be small likely to be low due to

(P,D) pairs
3 privacy relevant data

freely available
likely to be small likely to be low due to

(P,D) pairs
4 privacy relevant data

freely available
likely to be small likely to be low due to

(P,D) pairs
5 privacy relevant data

hidden if database
only allows aggre-
gated queries

high if database only
allows aggregated
queries

might reduce k-anon.
if earlier PCOs ob-
served as well

6 only indirect deduc-
tion of privacy relevant
data possible

likely to be high might reduce k-anon.
if earlier PCOs ob-
served as well

Figure 4.12: Privacy level of the example FCD system.

PCO 5–6 Here, the combination of observations at different PCOs can lead to reducing
the entropy of a k-anonymity measurement. As discussed before, it is possible that
at PCO 5 only already averaged or otherwise fused data can be observed. If not at
PCO 5 due to database implementation, this is definitely the case at PCO 6. It was
argued that in this case the size of the anonymity set k will be equal to the number
of data items that were fused at this point. However, if an adversary has observed
further information at other PCOs, this might lead to a lower entropy value than the
value of k implies. Suppose for example that by observing data at earlier PCOs an
adversary already knows that certain vehicles contributed to a fused value. Then the
overall entropy is less than the theoretical maximum of log k. Thus the anonymity
of the other vehicles also contributing to the fused value whose data has not been
observed before is also reduced.

The previous elaborations have shown that first of all, there are many points of control
and observation in the example information flow for the FCD application. Many of those
make it feasible for an adversary to breach privacy of the system’s users. Table 4.12 gives
an overview of the PCO evaluation. The main problem of the modeled system is that
no encryption is in place at any point so that data is freely accessible by many possible
adversaries in the vehicle, access and backend domain. An alternative to encryption of
data would be fusion (e.g., averaging) of data over certain location intervals as early as
possible thus raising k-anonymity values at later PCOs. In conclusion this analysis already
shows at design time that the resulting system would likely have a low privacy value during
runtime.

Note that while it is not possible to do exact measurements at design time of the sys-
tem, this analysis can serve as input for more precise measurements during runtime.
Furthermore, during a runtime analysis, the system can dynamically adapt to ensure con-
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formance to k-anonymity thresholds or other measures by making forwarded information
more coarse-grained.

4.4.6 Comparison of Alternative System Designs

Sections 4.4.1 to 4.4.5 already outlined how the privacy level of a given system design
can be evaluated based on information flows. As a result of the last step, the evaluation
of PCOs, one gets a good idea of a system’s privacy value. A system that provides no or
only weak privacy will have a low value, while systems providing strong privacy will have
a corresponding high privacy value. Privacy values at the design phase of a system are
mostly determined by the number of PCOs, the estimated k-anonymity values as well as
the estimated entropy values.

This way, different system or architecture designs for the same application can be modeled
independently, but their privacy levels can be easily compared with information flow anal-
ysis. The information flow of each variant is analyzed accordingly and resulting privacy
values help to assess which solution is the best in terms of privacy for the user.

However, a system design may be privacy-friendly in most parts but provide only weak
privacy protection at certain subsystems. Rigorous information flow modeling with the
previously outlined approach should detect such weaknesses by placing PCOs at critical
components. While a resulting low privacy value alone would not be useful for a system
designer, in combination with the detailed information flow analysis and the PCOs as
verification points the privacy flaws in a given design can be pinpointed quite accurately.
This enables a system designer to revise a given design to enhance its privacy properties,
e.g., considering a different deployment strategy of logical functions. The new design can
then be modeled in the layered reference model and information flow analysis can be
applied. By comparing the privacy level of the new design with the privacy level of the old
one it is immediately apparent which solution provides better privacy.

So information flow analysis can serve two purposes: it can be employed to compare the
privacy levels of independent system designs for the same application, or the privacy of
one system design can be iteratively enhanced by identifying weaknesses, revising the de-
sign, and evaluating the result again with information flow analysis. How information flow
analysis is used, depends strongly on the development methodology that is employed.

For the analysis of several system designs parts of the information flow analysis of the
first variant may be reused. The information flow of each system design variant can be
modeled on its own or adapted from previous designs. PCOs have to be identified and
evaluated separately for each variant, as different designs might have different ways of
attacks. However, it may be possible to reuse previous work from one variant only adapt
them to the new variant. Attack trees have actually been developed with reusability in
mind, either of the whole tree or certain subtrees. The adversary model on the other
hand, should always be reused in order to maintain comparability between different anal-
yses. Assuming a different adversary would prevent straightforward comparison between
analyses.
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Vehicle domain  Access domain  Backend domain 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Figure 4.13: Information flow view of an alternative system design for the floating car data
use case with a secure channel between vehicle and server.

Example: Floating Car Data

In the previous Sections, floating car data served as a continuous example for information
flow analysis. The given system design for FCD has been fully modeled and analyzed.
In this Section, we introduce an alternative system design for the FCD use case that
employs encryption to establish a secure channel between vehicle and TOC server. We
shortly discuss the information flow analysis of the alternate version and then compare
the privacy of both variants in order to determine which solution is more privacy friendly.
In the following, we will refer to the FCD system design discussed in the previous Sections
as basic FCD and to the alternate version with encryption as enhanced FCD.

Information flow of enhanced FCD. In the enhanced FCD use case, the same infor-
mation items are created at the vehicle but a secure channel to the server is established
before traffic data is sent, e.g., encrypting the message asymmetrically with the well-
known public key of the TOC. Similarly, a secure channel is established before a vehicle
sends a route request, and the server would also use a secure channel to the vehicle to
return routing-relevant information. Figure 4.13 depicts the information flow for enhanced
FCD.
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Attack analysis of enhanced FCD. The same adversary model is used for basic FCD
and enhanced FCD. Because the information items remain the same for enhanced FCD,
the attack tree for basic FCD can be reused as well. However, due to the utilization
of secure channels between vehicle and server the number of potential attack points is
reduced. See Section 4.4.3 for the corresponding attack tree.
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 Access domain  Backend domain 

I 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NAV 

P 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P 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3 

4 

2 

2 

Figure 4.14: Information flow view of enhanced FCD use case with corresponding PCOs.

Identification of PCOs of enhanced FCD. The identification of PCOs is analogous
to the basic FCD use case. Privacy-relevant information items remain the same and,
therefore, privacy goals do too. Due to the secure channel between vehicle and server
less PCOs are required. Forwarding nodes in vehicle and access domain can be ignored
because transferred information is opaque to them. Figure 4.14 depicts the PCOs for
the enhanced FCD, determined based on the process outlined in Section 4.4.4. Before
information leaves the vehicle privacy has to be measured. In transit, data is encrypted
and privacy verification is not required until data is received by the server and inserted
into the database. PCOs 3 and 4 correspond to PCOs 5 and 6 of the basic FCD. Table 4.3
summarizes the PCOs for the enhanced FCD use case.

Evaluation of PCOs of enhanced FCD. The identified PCOs for the enhanced FCD
use case are a subset of the PCOs of the basic FCD. Table 4.4 shows the mapping of
the PCOs to each other. The evaluation of the four identified PCOs is analogous to the
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PCO Domain Integration point Critical data items
1 Vehicle prior to sending (I,P ,T ), (I,P ,D)
2 Backend prior to storage or processing (I,P ,T ), (I,P ,D)
3 Backend on data fusion (I,P ,T )
4 Backend after processing R

Table 4.3: Recommended PCOs and their integration for the enhanced FCD use case.

evaluation of the corresponding PCOs of the basic FCD discussed in Section 4.4.5. Note,
that no PCOs are required in the access domain, reducing the total number of PCOs from
6 to 4.

basic FCD PCO1 PCO2 PCO3 PCO4 PCO5 PCO6
enhanced FCD PCO1 - - PCO2 PCO3 PCO4

Table 4.4: Relationships between PCOs of enhanced FCD and basic FCD.

Comparison of results. When comparing basic and enhanced FCD designs, it be-
comes apparent that the enhanced FCD system design provides better privacy than the
basic FCD design. The enhanced FCD requires less PCOs, completely eliminating the
necessity to verify privacy in the access domain. While in the basic FCD design all in-
termediate forwarding nodes had access to the information, only vehicle and destination
server have access to the information in the enhanced version. For the remaining four
PCOs privacy evaluation is equivalent to their counterparts in the basic FCD design, thus
the enhanced design does not provide any further privacy enhancements here. Neverthe-
less, by reducing the number of entities that handle privacy information to the information
origin and the information sink the chance that privacy-relevant information will be exposed
is reduced.

Further optimizations of the system would be possible by introducing data fusion in the
vehicle domain eliminating the need to send exact information to the backend domain.
However, the following Chapter will outline how mandatory privacy control and integrity
protection of the mandatory privacy control in the backend system will allow to ensure
that no privacy infringements are possible for operators of the backend system. Thereby
the introduction of end-to-end encryption from vehicle to backend domain in combination
with runtime enforcement of privacy protection at the backend domain can be enough to
achieve a high privacy level of the system.
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5 cITS Runtime Architecture - Architecture
Framework

5.1 Overview

Chapters 3 and 4 are concerned with the design of a privacy-friendly ITS architecture
and introduced the basic concepts of a design methodology that allows creation of such
architectures and respective applications. In this section, we will introduce those parts of
our cITS architecture framework that concern runtime components.

Chapter 2 defined hippocratic principles for privacy-aware cITS, or HcITS. From these
principles some major conclusions were drawn on how these principles can be integrated
and reflected in a cITS architecture. In the following, we refine these general concepts and
give an overview of components required to implement our privacy principles and, thus,
achieve the following goals:

From faith to guarantee: In today’s systems, users normally do not get technical privacy
guarantees. When they provide personal information or person-related data, e.g.,
on a web site or to a navigation provider, the provider of this service might – in the
best case – publish a privacy policy that declares how that provider intends to use
that data. More often than not, even this is missing and the user can only hope that
the provider respects national privacy laws. His only other option is not to use the
service. We intend to reverse this situation: the user should specify policies, give
the data to the provider, and the system should guarantee that these policies will be
respected.

System privacy: The PRECIOSA runtime architecture covers the whole cITS, i.e., the
vehicle domain, the access domain, and the backend domain. It is not limited to any
single area and will be flexible enough to also cope with future application demands.

An architecture that realizes these goals will be able to enforce privacy protection in the
complete system at runtime. We therefore term it the Privacy-enforcing Runtime Architec-
ture or PeRA. We will now first outline fundamental concepts we derived from the hippo-
cratic principles and requirements on which our runtime architecture is based. Afterwards,
major architecture building blocks are outlined which extend the generic cITS architecture
of Chapter 2 and transform it into a truly hippocratic cITS architecture.
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Figure 5.1: PeRA Protection Mechanisms that define the policy enforcement perimeter.

5.2 Policy Enforcement Perimeter

In Chapter 2, we outlined a generic cITS system architecture as it can be found in many
ITS systems. However, this generic architecture lacks inherent support for privacy pre-
serving mechanisms. At the same time, hippocratic principles and privacy requirements
have been defined. In order to realize these principles and requirements we first have to
establish trust in other nodes by verifying that they implement and follow these principles.
It needs to be guaranteed that users can set policies for their personal information and
that these policies cannot be broken by any data processing entity. For this, we need
to establish a trust domain that extends beyond local system borders. We call this trust
domain the policy enforcement perimeter (PEP). Inside this perimeter, data is guaranteed
to be always coupled with according metadata, i.e., policies. Further, adherence to the
policies contained in the metadata is mandated throughout the PEP. This is achieved by
two fundamental concepts, derived from the hippocratic principles and requirements.

The first function is termed Mandatory Privacy Control (MPC) which is a reference to
the Mandatory Access Control (MAC) schemes found in access control architectures like
Bell-LaPadula [23]. Just like it is not at the user’s discretion to change access policies in
mandatory access control schemes, it is not at the application’s discretion to change pri-
vacy policies in our mandatory privacy control system. To the contrary, it is mandatory that
applications have to obey the user-defined privacy policies whenever personal information
is accessed. The second function is termed MPC Integrity Protection (MIP). The goal of
MIP is to establish trust in remote systems and to ensure that only qualified applications
are able to access and process sensitive data.

If the application or the MPC mechanism is tampered with, the MIP will detect the integrity
violation and will prevent further data access. Starting from the personal data and the
related policy, the functions form a chain of control instances, as shown in Figure 5.1, that
defines the Policy Enforcement Perimeter, in which non-policy-compliant data access is
prevented.
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5.2.1 Mandatory Privacy Control

We assume that access to personal information is exclusively done via a query-based
API. It is the responsibility of the MPC to ensure that only those queries are executed
that are in compliance with the accessed data. The query interface is accessed by so
called uncontrolled applications, that is, applications running outside the PEP. Data that is
returned as results to such queries is guaranteed to be policy compliant, however, it will not
be further protected by the PeRA. Therefore, an unrestricted application is able to process
and share the query results in any way it wants. Nevertheless, query results are still
accompanied by a privacy policy. While enforcement of the policy cannot be guaranteed,
some applications may still choose to comply. The result is best effort policy compliance
outside the PeRA protection perimeter. If an application needs broader access to sensitive
data, the concept of controlled applications can be used (see Section 5.3.4).

To guarantee that the MPC is implemented correctly at each cITS node, a (potentially
manual) certification process is necessary. Vehicles will encrypt and transmit their sensi-
tive data only to other systems that are certified accordingly. We argue that the verification
process is performed manually, as automatic verification of correct implementation of MPC
is extremely hard to achieve as it would require an automated correctness proof of cor-
responding architecture components. Therefore we envision that a trusted third party will
examine the MPC implementation and integration in the overall system. The correct veri-
fication will then be expressed by a cryptographic certificate issued for the public keys of
this system. Note, that this manual certification process only applies to the generic PeRA
core and is not needed for specific applications. All access to sensitive data by the PeRA
itself will then be bound to the exact functional state in which the architecture components
have been certified.

Note further, we assume that we have to guarantee the compliance of the system regard-
ing any given set of policies. At this point we do not consider the correct specification of
such a set of policies for a given application. That would be another verification process
for the application at design time.

5.2.2 MPC Integrity Protection

The concept of MIP requires that all personal information is kept confidential for instance
by using encryption, when it leaves the data subject’s immediate control. We assume that
this is the case as soon as it leaves a cITS node, e.g., a vehicle. If data would be sent
unencrypted, any receiver of this data would be able to use it for arbitrary purposes and
the compliance to a privacy policy could not be guaranteed any more.

Besides confidential unicast communication, some applications may also require other
types of trusted communication, e.g., in a certain group of vehicles. If for reasons of
application characteristics, data needs to be sent in an unencrypted way, it has to be
anonymized or otherwise altered beforehand so that it does not constitute personal infor-
mation anymore.
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Figure 5.2: High level view of PeRA and its architecture building blocks.

Data encryption must be realized in a way that only cITS nodes that implement the MPC
and therefore guarantee to comply with the privacy policy can decrypt and work with the
data. In other words, MIP must guarantee the integrity of system components that are
able to decrypt the data and provide policy-compliant access for applications. If there is
any modification or tampering of the MPC component, decryption and access to the data
must be refused by MIP.

5.3 Architecture Building Blocks

So far, we have defined the fundamental concepts necessary for establishing a Policy
Enforcement Perimeter. Now, we extend the generic cITS architecture from Chapter 2 ac-
cordingly. Figure 5.2 shows the resulting HcITS architecture. The PeRA introduces several
new components and major building blocks to realize the hippocratic principles. Note that
all interacting cITS nodes should run the PeRA. As already discussed in Chapter 2, per-
sonal information should always be combined with a privacy policy that governs how this
data can be used. It is the objective of PeRA that this policy can never be violated.
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The policy enforcement perimeter requires confidential communication between different
nodes for data exchange as well as request-reply style communication. But public com-
munication needs to be considered, too. Application-specific requirements or communi-
cation scenarios may prevent the use of confidential communication, e.g., in broadcast
situations. In such a case, orthogonal mechanisms are required to achieve privacy. Sec-
tion 5.3.5 elaborates further on public communication.

Furthermore, importer and exporter components have been introduced. The importer has
the purpose of treating all data that enters a local system equally. This applies to local
sensor data, data-metadata tuples received from other cITS nodes inside the Policy En-
forcement Perimeter, as well as public data that may or may not be accompanied by a
privacy policy. The importer ensures that a policy is assigned to any data item before
it is processed or stored in the local secure data/metadata repository. For example, de-
fault policies are assigned to local sensor values, depending on the sensor type. The
exporter provides a unified output interface that enables confidential communication with
other HcITS nodes inside the Policy Enforcement Perimeter, but also provides public com-
munication support for applications that have to rely on broadcast. It further provides the
query interface for uncontrolled applications that need access to data. This query-based
API can either be generic (e.g., SQL) or it can be application specific (e.g., tailored for
accessing traffic information).

5.3.1 Privacy Control Monitor

The privacy control monitor (PCM) is the core building block of the MPC implementation.
The PCM has to fulfill several functions. First and foremost, the PCM acts as a privacy
middleware between personal information of data subjects and applications that want to
access the data.

The PCM evaluates polices of requested data items and has to decide whether operations
are permitted, rejected, or only permitted under certain anonymization restrictions. Appli-
cations that want to access data need to specify a purpose, and the PCM matches this
purpose and the role of the requesting application with the policies of the requested data
items. This way, the principles of purpose specification and limited use are realized.

Further, when queries are executed, it is possible that policies of different data subjects
must be merged, possibly resulting in conflicts. This is detected by the PCM. Resolving
of conflicts and merging of policies is, however, left to the privacy policy manager (see.
Section 5.3.2). The PCM then enforces the resulting policies given by the privacy policy
manager.

In order to detect privacy or security breaches, a privacy trail should be kept to analyze
the sequence of events such as applications submitting a query or sending a message to
another HcITS node. What information needs to be collected is, however, up for a specific
design. Furthermore, requests and queries should be analyzed for patterns that might
suggest unauthorized data collection to detect privacy intrusions. For example, a series
of single queries could be used to aggregate data that, according to its policy, is not to be
combined with other data.
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In accordance with the principle of limited retention, privacy maintenance functionality is
also required. Data should be deleted once the allowed usage period specified by the cor-
responding policy is up. We realize that it might be necessary to make data inaccessible
(i.e., logically deleting it) rather than physically deleting it due to governmental or legal
requirements. How to manage this trade-off and how to “seal” data such that it becomes
inaccessible under regular terms needs to be addressed by a specific architecture.

5.3.2 Privacy Policy Manager

The Privacy Policy Manager is responsible for the relationship between data and policies.
It also translates user-specified privacy preferences into default privacy policies. Individual
policies that have been specified by the data subject are the input for the Privacy Policy
Manager that generates the necessary structures to store this metadata in a machine
accessible form. Further, the Privacy Policy Manager offers the functionality to merge
policies and resolve arising conflicts. For example, the policy specified by one data sub-
ject may define different requirements than that of another data subject. Also, different
stakeholders, e.g., data providers or national laws and regulations, can pose restrictions
on the data that conflict with the data subject’s settings. Those conflicts must be detected
and possibly be reported back to the data subject.

The Privacy Policy Manager cooperates closely with the PCM. Basically, the Privacy Policy
Manager handles storing, fetching, and merging of policies, as well as conflict resolving
for the PCM while the PCM performs policy analysis to infer access and data processing
decisions.

5.3.3 Trust Manager

The Trust Manager is the core building block of MPC Integrity Protection. Its responsibility
is to measure the integrity of the other PeRA components and to determine whether the
system is in a trusted, certified state. Therefore, the Trust Manager acts as a local trust
anchor for remote HcITS nodes. How the Trust Manager is implemented depends on the
platform and type of the cITS node. For example, a hardware security module can be
used for trust establishment. Trust mechanisms will be discussed further in Chapter 6 and
deliverable D10.

5.3.4 Controlled Applications

As indicated earlier, there will be applications or services that need to directly access and
process personal information. An example is a request to a traffic information service
where a vehicle wants to check the traffic situation on its planned route. While these cal-
culations could also be performed locally by the vehicle, shifting them to the backend may
be desirable out of different reasons, e.g., bandwidth considerations or data not available
at the vehicle. The vehicle will have to send its position and route information to a traffic
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information service. Giving this data to an unrestricted application would jeopardize our
goal of privacy protection enforcement, as we cannot guarantee that the data is used in a
policy compliant way (e.g., only for this single request and only for retrieving suitable traffic
information).

We therefore introduce the concept of controlled applications. A Restricted Application
can run inside the Policy Enforcement Perimeter, but is restricted in its capabilities. For
this purpose, controlled applications are executed inside a controlled environment, e.g.,
a sandbox environment, that limits communication with external components. For such
applications persistent storage is only possible in the secure data/metadata repository via
the PCM, which will check compliance with privacy policies.

What kind of restrictions apply to these applications depends on their service. For request-
reply interaction, replies could be restricted to the original requester. It also possible that
controlled applications are completely transient, i.e., they cannot store any internal state
between requests. All state is deleted by the runtime environment between invocations.
It is important to limit their functionality according to the principles of limited collection,
limited use, and limited disclosure.

To achieve the latter, controlled applications that need to communicate with external ser-
vices can only do so by means of a privacy proxy. The privacy proxy will check the com-
pliance of communication with the privacy policies of involved data. One possible way to
achieve this is the analysis of the outgoing data by a component that knows the semantics
of the data exchange format. However, even if the exchange format is strictly specified,
covert channels could still exist and allow an adversary to leak private information without
the user’s consent. An alternative is to analyze the restricted application itself either by
means of static code analysis similar to the approach presented in [24] or by means of a
special script language for controlled applications, comparable to that presented in [25],
that annotates private information and can be verified on the fly at runtime.

However, whether this analysis is needed, depends on whether the restricted application
needs external services. If a restricted application can work locally on the server only with
the data stored there, which is accessed using the query based API, then no further anal-
ysis of the application code is needed. The controlled application environment itself will
then prevent policy violations. This means that different classes of controlled applications
are possible: The more external communication is needed, the stronger the requirements
on the verification of the application code for policy compliance are.

Controlled applications will on the one hand be able to process sensitive data given to
them in service requests by the data subjects. On the other hand, strict policies can
prevent storage or external communication of this data beyond serving this single request.
The specific design of mechanisms for controlled applications is left for deliverable D10.

5.3.5 Public Communication

As mentioned before, sometimes data needs to be communicated publicly. For example,
applications relevant for vehicle and road safety require to send data in an unencrypted
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form to other vehicles or backend services. In such a case, orthogonal mechanisms are
required to conform with privacy policies. Techniques like data obfuscation or data fusion
might need to be applied to fulfill the limited disclosure principle. This means that only
the information that an application or user actually needs to perform a task should be
sent. The needed information might actually vary throughout the system. For example,
an exact position information sent in beacon messages might be needed in the vehicle
domain for routing purposes or eSafety applications, while the same data when later being
transmitted to a traffic operation center for traffic monitoring could also be used with much
lower spatial resolution and thus a higher level of privacy.

We therefore assume that data obfuscation components are integrated in a system archi-
tecture wherever possible and useful. These data obfuscation components will perform
one of the following operations on the data:

ID Removal: Removal of identifying data from the overall dataset, e.g., license plate in-
formation or cryptographic keys.

Spatial Cloaking: Reduction of spatial resolution of transmitted data, e.g., by adding ran-
dom noise to the data, matching it to coarse-grained grid positions, and so forth.

Temporal Cloaking: Reduction of temporal resolution of transmitted data, e.g., by re-
moving samples or by delaying transmissions.

Aggregation: Combination of different data samples into one data set e.g., by means of
averaging, maximization, minimization, and so forth.

Note that there seems to be an obvious conflict between the requirements of the MPC
Integrity Protection, that is, secured and encrypted transmission, and the need to mod-
ify data by the data cloaking component. However, these concepts are orthogonal. It
needs to be decided on a per-application basis whether one-to-one-style communication
is needed or unencrypted, broadcast-style communication mandates the need for data
obfuscation techniques. While the exporter component supports both ways of communi-
cation, access to public communication from inside the PEP should be limited to a small
fraction of controlled applications, e.g., specific safety applications. Both, public and con-
fidential communication should support and employ pseudonymization of communication
identifiers.
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6 cITS Runtime Architecture - Reference
Architecture

6.1 Overview

Chapter 5 introduced the concept of a Policy Enforcement Perimeter and major architec-
ture building blocks which are necessary to ensure compliance at runtime with the privacy
policies that have been introduced in Sections 3.2 and 4.2. In this Chapter, we outline in
detail the PRECIOSA reference architecture, which realizes a Privacy-enforcing Runtime
Architecture (PeRA) as envisioned in Chapter 5. The goal is an architecture that real-
izes the hippocratic principles, guarantees and enforces the adherence to user-specified
policies, and provides system privacy throughout the whole cITS.

As outlined in Section 5.2, the PeRA needs to implement two major concepts to achieve
these goals: Mandatory Privacy Control (MPC) and MPC Integrity Protection (MIP). MPC
enforces compliance with privacy policies. The trusted state of MPC components is en-
sured by MIP. Also, MIP is required to establish trust in the distributed system of HcITS
nodes. MIP also protects personal information during transit and storage.

Inside the Policy Enforcement Perimeter of the PRECIOSA PeRA, we assume a confiden-
tial communication channel between HcITS nodes, e.g., vehicles and backend servers.
This way, personal information can be effectively tunneled through nodes and components
that do not required access to it, e.g., forwarding nodes in the access domain. Section 6.2
elaborates on different communication paradigms supported by the PRECIOSA PeRA.

Figure 6.1 shows the components of the proposed PeRA implementation, including re-
quired subcomponents. It should be noted that some of those components may be op-
tional, depending on the intended level of assurance. As discussed earlier, PRECIOSA-
based systems require certification by a trusted party to confirm that proper privacy pro-
tection mechanisms are in place. It could be reasonable to introduce different levels of
certification, depending on the assurance requirements demanded by data subjects.

Further, different supported paradigms for communication between cITS nodes are shown
(see Section 6.2). The Privacy Control Monitor (PCM) is the core component of the ar-
chitecture and consists of several subcomponents (see Section 6.3). The Privacy Policy
Manager aides the PCM by managing policy storage, policy generation, and policy rea-
soning (see Section 6.4). Data and metadata is locally stored in a Secure Repository for
which the PCM acts an access control point (see Section 6.5). Certain subcomponents
are responsible for privacy maintenance (see Section 6.6). The Trust Manager is the local
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Figure 6.1: Privacy-enforcing runtime architecture – PRECIOSA reference architecture.

component responsible for controlling and ensuring that protected data is only accessi-
ble when the system is in a trusted state (see Section 6.7). Controlled applications can
run inside the Policy Enforcement Perimeter in a controlled application environment (see
Section 6.8). At the end of the Chapter, Section 6.9 discusses additional mechanisms to
achieve communication privacy.

6.2 Communication Paradigms

The PeRA supports different communication paradigms inside its Policy Enforcement Pe-
rimeter. The exporter and importer components (see Figure 6.2) abstract from these
paradigms and provide unified interfaces for incoming and outgoing communication to
other PeRA components. Inside the Policy Enforcement Perimeter, confidential communi-
cation channels are used for data transfer between nodes. This is the assumed setting for
the communication paradigms described below. Note, that some applications may not be
able to utilize confidential communication, i.e., encrypt data in transit. For example, some

02.11.2009 IST-224201 70



Deliverable 7 v2.0

Trust 
Manager 

Secure Data /
Metadata Repository 

Vehicle /  
Server 

Privacy 
Control 
Monitor 

Data 

Policy 
Importer 

Exporter 
Data 

Policy 

Data 

Policy 

Data 

Policy 

Policy 
Enforcement 

Perimeter 

Query-API 

Secure Key 
Storage 

Integrity 
Measurem. Binding 

Query + Policy Analyzer 

Query IDS 

Q
ue

ry
-A

P
I 

Enc. 
Support 

Query 
Proc. 

Privacy Maintenance 

Privacy Policy 
Manager 

Data Ret. 
Manager 

Privacy Trail 
Manager 

Request 

Reply 

Data Coll. 
Analyzer 

Privacy Enforcing 
Runtime Architecture 

Detailed View 
Reply 

Policy 
Data 

Audit 
Data 

Applic. 
Data 

Data 
Transformation 

Sensor 

Request 
Query-API 

Confidential 
Comm-API 

Public 
Comm-API 

Confidential 
Comm-API 

Public 
Comm-API 

Uncontr. App. 

C
on

tr.
 A

pp
. E

nv
. 

C
on

tro
lle

d 
A

pp
. 

Uncontr. 
App. 

Figure 6.2: PeRA components: Components related to supported communication
paradigms.

eSafety applications require dissemination of unencrypted data for direct consumption by
other vehicles or for continuous re-broadcasting by RSUs. For these cases, additional
privacy mechanisms are employed to ensure privacy in vehicle and access domain. Sec-
tion 6.9 outlines dedicated privacy mechanisms for public communication.

6.2.1 Unidirectional Communication

In many ITS applications, vehicles submit data to backend servers in regular intervals. Ex-
amples are FCD or pay as you drive (PAYD) applications. These applications function only
unidirectional and do not return any results to vehicles. When data is sent to the backend
in this fashion, in our system, the importer component of the backend server is the com-
munication endpoint inside the Policy Enforcement Perimeter. Messages are encrypted
with the server’s public key. The importer can decrypt the messages in cooperation with
the Trust Manager and inserts data and attached metadata into the Secure Data/Metadata
Repository.
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Uncontrolled applications can then access the data through the query API. They pose a
query request and specify a purpose for the request. The PCM ensures that only pol-
icy compliant data leaves the Policy Enforcement Perimeter. The PCM also attaches a
merged privacy policy to the result set, which can, however, not be enforced by the PeRA
anymore.

The importer also handles data that reaches a node from outside the Policy Enforcement
Perimeter, e.g. FCD data form vehicles not equipped with the PRECIOSA architecture. If
such data has privacy policies or meaningful metadata attached, they can be translated to
PRECIOSA policies and enforced when processing the data inside the Policy Enforcement
Perimeter. This way, the PeRA also supports the enforcement of privacy policies that have
only been specified on a best effort level.

In a vehicle, to support FCD-style applications, local sensors are also exposed to the
system through the importer. The application that creates the periodic reports in the FCD
example is implemented as a restricted application in the vehicle. When sensor values
are requested by the applications, the importer assigns default privacy policies to the
sensor output according to user-defined privacy preferences. The controlled applications
can bundle data in a packet and the PCM in cooperation with the Privacy Policy Manager
assigns a merged privacy policy before it is send out via the exporter. How controlled
applications function will be further discussed Section 6.8 and deliverable D10.

6.2.2 Bidirectional Communication

Some ITS applications require bidirectional transactions. For example, a vehicle requests
up-to-date routing information for a certain road section. In such a case, the request as
well as the server response may be privacy-sensitive. A privacy-sensitive request would
be posed inside the Policy Enforcement Perimeter. Thus, the vehicle would attach a pri-
vacy policy to the request, the importer of the server recognizes the message as a request
and passes it on to the appropriate restricted application. The application performs certain
operations and creates a reply message. A merged policy, which takes into account the
request policy and the polices of all other affected data items, is generated by the Privacy
Policy Manager and attached to the reply by the PCM. A typical privacy policy could spec-
ify that a reply can only be sent to the original requester. Requests that are not privacy
sensitive do not require their own policies and can be handled by uncontrolled applications
on top of the PeRA.

6.3 Privacy Control Monitor

The concept of Mandatory Privacy Control as outlined in Section 5.2.1 is implemented in
the reference architecture by the Privacy Control Monitor (PCM). It will ensure that privacy
policies are respected on a mandatory level. To do this, all queries by applications have
to be checked by the PCM. Results will only be returned if those are policy-compliant.
Figure 6.3 shows the major components of the PCM.
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Figure 6.3: PeRA components: Privacy Control Monitor and its subcomponents.

Applications access data through a query-API, which is the interface of the PCM. A Query
and Policy Analyzer inspects queries as well as results and ensures that they comply
to the privacy policies of the requested data. An intrusion detection system monitors in-
coming queries (Query IDS) to detect potentially privacy infringing request patterns. All
requests and operations are further logged by a Privacy Trail Manager to enable verifia-
bility of policy compliance and, thereby, implement the principle of compliance. Specific
data transformations can be performed by the PCM to comply to certain anonymization
requirements and other restrictions specified in policies. For example, a privacy-aware av-
erage transformation could ensure the adherence to k-anonymity settings (cf. deliverable
D2).

In the remainder of this section, we will describe the subcomponents of the PCM in detail.
Note however, that we will stay on a conceptual level. Detailed specifications will be given
in D10.
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6.3.1 Query and Policy Analyzer

The purpose of the Query and Policy Analyzer is to analyze queries and results as well
as their policy metadata provided by the Privacy Policy Manager. The aim of the analysis
is to ensure that queries and results comply to the privacy policies defined for individual
data items that contribute to a result or are touched by a query.

The Query and Policy Analyzer receives queries from applications via a query API. A
generic query language could be SQL. Alternatively, a more application-specific query
language can be used that allows higher level queries, e.g., a method to retrieve the traffic
situation on certain road segments.

The following example highlights the functionality of the Query and Policy Analyzer. As-
sume that the data repository contains a table traffic_reports with columns vehi-

cle_id, position, speed, and road_segment. Consider the following two SQL queries:

SELECT AVG(speed) FROM traffic_reports WHERE road_segment = 1345936

SELECT VID, position FROM traffic_reports WHERE road_segment = 1345936

In the first query, the application wants to know the average speed driven on a certain road
segment identified by id 1345936. The second query wants to retrieve individual positions
of vehicles on that road segment.

Assume that the traffic_reports table contains the following data for road segment
1345936:

VID Position Speed Road-Seg.
9567 9.546 / 49.234 25 1345936
4238 9.544 / 49.232 43 1345936
1932 9.547 / 49.235 53 1345936
3451 9.543 / 49.233 37 1345936
7823 9.545 / 49.234 49 1345936

Now, assume that Vehicle 3451 has set a policy that dictates that its data is only to be
used in an aggregated way together with at least 4 other data values. The other vehicles
have not set any policies that would restrict the usage of their data in this example.

In this case, the privacy policies of the data relevant for the first query can be satisfied and
the PCM will allow the query. The result will be an average speed of 41.4 km/h. However,
if vehicle 3451 would have set the minimum aggregation to 10, the anonymity set would
not be large enough and the PCM would have to exclude this data item from the query,
yielding an average speed of 42.5 km/h.

Note how data has been filtered from the returned result in this case. Application devel-
opers need to be aware of this possibility and keep it in mind when developing algorithms
based on the returned data. Similarly, in case of the second query, the policy will prevent
data from vehicle 3451 from being returned. Instead, only the VIDs and positions for the
other four vehicles will be returned.
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We assume that all query results that are policy-compliant can be made public and thus
handed to uncontrolled applications. In the example, all vehicles besides 3451 that have
not set an according privacy policy must be aware that the ITS system might make their
data public. Of course, privacy laws still apply and could pose stronger restrictions on the
data usage, even if a user has not set custom preferences. Such policies defined by the
legislative can then be merged with user-defined policies by the Privacy Policy Manager to
reflect the privacy preferences of a user and also comply with privacy and data retention
laws. If an application needs to work on the individual position samples but the data should
still be protected by PeRA, controlled applications, as presented in Section 6.8, should be
used.

One should also note that sometimes individual data returned by a query will be policy-
compliant, but could still mean a policy violation when being combined with results from
several earlier or later queries. To keep the query analyzer reasonably simple, it will be
designed stateless and not take this into consideration. Instead, the Intrusion Detection
System (IDS) described in Section 6.3.3 is intended to discover and potentially prevent
such sets of queries.

6.3.2 Privacy Trail Manager

The Privacy Trail Manager provides a central place for logging queries, requests, and
performed operations, e.g., insertion or deletion of data items. This trail of all privacy-
relevant operations is necessary for later audit operations, compliance checking, and the
investigation of privacy incidents.

It is a requirement to protect the integrity of the privacy trail, i.e., a later modification of
audit data should be prevented or at least detected. For example, deletion or modifications
of privacy trail records can be detected if the trustworthy Privacy Trail Manager attaches
a serial number or time stamp and digital signature to each record. Alternatively, one
could write these records to tamper-resistant write-once (read-many) memory. As a third
approach, it could – depending on the specific application – be possible to keep a trail of
all accesses to a users’ data locally with the users. Thereby, users are enabled to proof
non-repudiation of their data when necessary.

6.3.3 Query IDS

The Query Intrusion Detection System (Query IDS) is responsible for monitoring incoming
queries to identify those (possibly authorized) users that misuse the system or perform
attacks to undermine the privacy protection provided by the PCM and the PeRA system
as a whole.

For this purpose, the Query IDS passively monitors all queries passing through the PCM.
Based on a history of queries and results, the IDS will take an anomaly-detection-based
approach to find unusual query patterns. The Query IDS rates queries in terms of trust-
worthiness and triggers an alarm for queries below a certain rating threshold. The Query
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and Policy Analyzer can react accordingly by blocking further queries belonging to the
same set of queries, for example, all further queries originating from the same user or ap-
plication. Anomalous queries might be defined by excessive rates of queries, queries that
systematically probe through the database, or a high number of queries violating certain
policies.

To achieve this goal, the Query IDS cooperates with the Privacy Trail Manager (see Sec-
tion 6.3.2) and the Data Collection Analyzer (see Section 6.6.1). These components pro-
vide the information that the Query IDS requires to generate intrusion models, which are
used to rate queries. What information needs to be collected for this purpose is data and
application specific.

While the Query IDS is mainly concerned with on-line detection of privacy infringement
and security breaches, the Data Collection Analyzer also monitors off-line operations on
the collected data, i.e., maintenance operations and the enforcement of limited retention
policies.

6.3.4 Data Transformations

The data transformation component provides an extensible set of transforming operations
that can be applied to data by the PCM. Those transformations serve the purpose of fulfill-
ing certain anonymization requirements posed by privacy policies of data items. Possible
transformations are aggregation (summing up or averaging data items), k-anonymity, data
cloaking mechanisms, or transformations related to other specific privacy mechanisms.
Privacy policies have to be adapted accordingly before the result set is returned.

6.4 Privacy Policy Manager

As its name implies, the Privacy Policy Manager (see highlighted part in Figure 6.4) is
responsible for handling privacy policies and performing policy related tasks. The general
design of privacy policies has been discussed in Section 4.2 and will be further detailed in
following deliverables.

At an information source, before any application can be used, the data subject must ex-
press its privacy preferences. The Privacy Policy Manager first translates these user-
specified privacy preferences into privacy policies understood by the PeRA system. Then,
it acts as a privacy constraint validator [4] and verifies that user privacy policies, service
provider policies, and governmental privacy and data retention policies are all in accor-
dance. For example, the service provider might express a policy to store data for audit
reasons longer that the duration preferred by the data subject. Those conflicts must be
detected, resolved if possible, and also be reported back to the data subject.

After validation, the Privacy Policy Manager generates corresponding metadata with its
necessary structures and content that represents policies in a machine accessible form.
Policies are assigned unique IDs to facilitate coupling of data and metadata, as well as
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Figure 6.4: PeRA Components: Privacy Policy Manager.

efficient transmission and storage of policies. All polices data is stored in the Secure
Data/Metadata Repository, but only the Privacy Policy Manager acts upon metadata.

When a query is being processed by the PCM, it is the Privacy Policy Manager’s task to
retrieve the policies of the affected data items and provide them to the PCM. This metadata
can then be used by the policy and query analyzer to accept or reject queries. The Privacy
Policy Manager also performs unification of multiple privacy policies resulting in a merged
policy that corresponds to a result set. How policies are merged is policy and application
specific.

6.5 Secure Data/Metadata Repository

At each HcITS node, personal information is stored in a Secure Data/Metadata Repository
as shown in Figure 6.5. This repository is most likely an encrypted database which is only
accessible through the PCM. Due to the MPC Integrity Protection and the Trust Manager,
the database can only be decrypted if the relevant components, i.e., DBMS and PCM,
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Figure 6.5: PeRA Components: Secure Data/Metdata Repository.

are in a trusted state. The query processor can either be seen as a part of the secure
repository or as a subcomponent of the PCM. Which approach is chosen is implemen-
tation specific, and may be governed by efficiency considerations. Deliverable D10 will
elaborate on this in more detail.

How database encryption is realized depends on the employed database management
system and the underlying database engine, e.g., Berkeley DB [26]. Nevertheless, it can
be assumed that symmetric encryption will be utilized in some form due to performance
reasons. The required symmetric keys would be stored and managed by the Trust Man-
ager, as described in 6.7. An issue that needs to be addressed in future deliverables in
this context, is the replication of databases for backup or load balancing purposes.

The Secure Data/Metadata Repository holds three kinds of data: application data, policy
data, and audit data.
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6.5.1 Application data

Application data is all data that is not policy data or audit data, that is, application data
is the real data, while policy and audit data are metadata. Application data can be data
generated by the local node, e.g., sensor values that are stored or cached; data received
from other HcITS nodes, e.g., floating car data donated by vehicles; or other data imported
into the data repository.

Application data is the information that the PeRA primarily protects. Only the PCM can
access and operate on application data.

6.5.2 Policy data

All policies and policy-related metadata are also stored in the secure repository to prevent
tampering and modification of policies coupled to data. Policy data is only accessed and
operated on by the Privacy Policy Manager.

6.5.3 Audit data

Audit logs generated by the Privacy Trail Manager also need to be stored in a secure man-
ner. Preferably, this data should be stored in write-once, ready-many (WORM) memory
to prevent tampering. The data collected by the Privacy Trail Manager is only of value as
long as its integrity is guaranteed.

6.6 Privacy Maintenance

Privacy Maintenance (highlighted in Figure 6.6) encompasses all components that are
not involved in on-line processing of queries. Components in this category ensure that
the principles of limited retention and limited collection are followed. They perform certain
off-line tasks for this purpose.

6.6.1 Data Collection Analyzer

In order to detect privacy or security breaches on-line or off-line, it is the Data Collection
Analyzer ’s responsibility to collect and analyze the sequence of events such as appli-
cations submitting a query or sending a message to another HcITS component. Which
information needs to be collected is up for a specific design. While the Query IDS performs
on-line query monitoring, the Data Collection Analyzer performs analysis over spatiotem-
poral data to provide input for the Query IDS.

Therefore, the Data Collection Analyzer examines operations either performed on stored
data or on the communication link. Its goal is to
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Figure 6.6: PeRA Components: Privacy maintenance subcomponents.

• control whether any information is being collected (i.e., stored or transmitted), but
not used in order to support the principle of limited collection;

• analyze whether data is stored longer than necessary or specified by the data sub-
ject, thus supporting the principles of limited retention and limited use;

• collect data on applications that query information for detecting patterns that might
suggest an intrusion of the HcITS component; and

• collect data for auditing purposes that are required by legal or governmental regula-
tions; this can also mean to generate reports from data created by the Privacy Trail
Manager.

6.6.2 Data Retention Manager

The Data Retention Manager ensures that data is removed from the data repository when
it is not supposed to be used anymore according to the data subject’s privacy policies. In
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order to do this, it keeps a time-sorted queue of events that it will process to delete data at
a certain time. Note that retention can not only be limited in time, but also to a geographic
region. Furthermore, limited retention does not necessarily mean that data needs to be
deleted completely. It could also mean that data may only be used as a single data item
for a limited time period and afterwards only in aggregated or anonymized form.

We realize that it might be necessary to make data inaccessible (i.e., logically deleting it)
rather than physically deleting it if governmental or legal requirements exist. for example,
when the usage retention period of a data item expires, it could be sealed, i.e., encrypted,
with the public key of some state or governmental authority and archived. How to man-
age this sealing of data such that it becomes inaccessible under regular terms will be
elaborated on in detail in later deliverables.

Of course, data retention can only be guaranteed on cITS nodes that implement MPC and
MIP. Therefore, data that leaves the Policy Enforcement Perimeter must be processed to
be compliant with its policies and take this factor into account.

6.7 Trust Manager

MPC Integrity Protection, as introduced in Chapter 5, aims to protect data during transit
and storage. This requires a trust relationship between vehicle and server, because the
vehicle has to trust in the fact that privacy relevant information is only processed by trusted
components of the PeRA and that these components are actually trustworthy and not con-
trolled by an adversary. Thus, MIP also prevents lower layer attacks on MPC by ensuring
the integrity of MPC components. It is the responsibility of the Trust Manager to realize
MIP, see Figure 6.7. Trusted computing principles can be employed to achieve this.

The specific implementation of MIP and the Trust Manager strongly depends on the under-
lying platform, e.g., whether a Hardware Security Module (HSM) is available that can be
used as an anchor of trust. For the rest of this text, we assume that such an HSM is avail-
able. However, implementations with weaker requirements (and likely weaker assurance)
are possible.

Different requirements apply to such components when used in a server environment
versus a vehicle: a server-side HSM needs to support a large number of parallel operation
requests while it is much more important for a vehicle-based HSM that cryptographic
operations are handled efficiently and that operations are energy efficient. Deliverable
D10 will go into more detail in terms of MIP and Trust Manager implementation.

The Trust Manager enables remote nodes to establish trust in the local node. This com-
plements the trust placed into the third party that certifies the PeRA running on a HcITS
node as well as the certification process. The Trust Manager or underlying hardware com-
ponents require integrity measurement capabilities to determine whether certain system
components are in a trusted state. Data is only accessible when the system is in a trusted
state. Key material also needs to be managed in a way that it cannot be compromised or
leaked.
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Figure 6.7: PeRA Components: Trust manager and its subcomponents.

6.7.1 Integrity Measurement

The Trust Manager acts as a trust anchor for remote platforms. This feature can be
achieved in several ways, e.g., with a hardware module. The Trust Manager performs
integrity measurement of other components and can assert their integrity. Integrity mea-
surement hereby serves the purpose of determining whether a platform is in a trusted
state. An integrity measurement component measures the integrity of other components
before granting them access to certain functionality, e.g., access to the data repository.
Dynamic integrity measurement allows to continuously monitor the integrity of certain
components rather than only measuring their integrity on initial startup. Measurement
results are stored as integrity digests, i.e., hash values, in platform configuration regis-
ters, which can only be extended but not overridden. Note that integrity measurement
does neither prevent components nor the system from reaching an untrusted state, but
it guarantees that the platform state is accurately measured and stored. Therefore, the
Trust Manager has a sound basis for access decisions to the data repository and key
material.
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The integrity of several components of the PeRA needs to be measured and monitored.
To be able to successfully enforce privacy, it is essential to guarantee that the PCM is in
a trusted state. The same holds true for the state of the data/metadata repository, the
Privacy Policy Manager, and the execution environment for controlled applications. In
case one of these components is in an untrusted state, this component is denied access
to any personal information or sensitive data. This could mean that incoming messages
or the database cannot be decrypted, because the Trust Manager refuses cooperation.
When the platform is restored to a trusted state, access would be granted again. Never-
theless, hardware and software updates are inevitable in some environments, especially
in the case of backend servers. These issues and further details on how proper integrity
measurement can be achieved in a system implementation will be discussed later in de-
liverables D10.

6.7.2 Binding and Sealing

The Trust Manager supports two asymmetric encryption variants: binding and sealing.
This is similar to the Trusted Platform Module (TPM) Specification [27] published by the
Trusted Computing Group.1

Binding refers to encryption in the traditional sense. Data is encrypted with a public key
and can be decrypted with the corresponding private key without further restrictions. Seal-
ing extends this concept by including information about the system state. Data is en-
crypted with a public key and against a set of platform configuration registers (PCR) and
their values, so that decryption with the corresponding private key can only be performed
if the specified PCRs contain the correct integrity digests. This is enforced by the Trust
Manager or underlying hardware.

The use of sealing is straightforward. It ensures that data can only be decrypted (or un-
sealed) when the platform is in a trusted state, i.e., a state in which the integrity measure-
ment of system components results in integrity digests that are known to be trustworthy.
Sealing can be applied to arbitrary data and can, therefore, also be used to seal symmetric
keys to a trusted state. Furthermore, the sealing concept can also be utilized to restrict the
usage of asymmetric keys by specifying PCR indices and corresponding PCR values on
key creation. Decryption operations with keys sealed this way can only be performed if the
PCRs contain the correct state. Otherwise, key usage is denied by the Trust Manager.

For the PRECIOSA PeRA, we use sealing to enable confidential communication between
HcITS nodes, e.g., vehicles and servers. An asymmetric key pair is initially created locally
at an HcITS node by the Trust Manager and sealed to a set of PCRs comprising the
desired trusted state of the platform. Subsequently, the public key of that key pair is
certified by a trusted third party which asserts the privacy compliance of the HcITS node
and verifies that the corresponding private key is only available in the trusted and certified

1The TCG is a not-for-profit organization formed by industry stakeholders to develop, define, and pro-
mote open standards for hardware-enabled trusted computing and security technologies with the self-
proclaimed aim of helping users to protect their information assets (data, passwords, keys, etc.) from
compromise due to attacks or physical theft. TCG website: www.trustedcomputinggroup.org
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state. The resulting public key certificate can then be published and distributed to other
HcITS nodes.

A remote HcITS node can encrypt messages with the public key contained in the cer-
tificate before sending them, most likely by encrypting the message with a random sym-
metric key which is then encrypted with the public key due to performance and message
size considerations. This way, intermediate nodes are not able to decrypt the message.
It is also possible to encrypt parts of the message for different recipients, e.g., a personal
proxy may handle requests and replies for a vehicle, but would not be able to decrypt pay-
ment information destined for a billing service. At the receiving node, the Trust Manager
decrypts the message if and only if the platform is in the state specified upon key creation
and thus certified as privacy compliant by a third party.

Before data is prepared for sending, it first needs to be coupled with the metadata that
describes corresponding privacy policies. This metadata has to be attached in such a way
that it cannot be modified or decoupled from the data. For this, both data and metadata
need to be signed by the originating vehicle.

6.7.3 Secure Key Storage

The Trust Manager is also responsible for managing cryptographic key material and its
secure storage. This includes secret keys corresponding to certified public keys, as well as
encryption keys for the data repository. The Trust Manager only allows use of decryption
keys under its control when the system integrity and trusted state of the system have been
verified. For example, if the data repository is in an untrusted state, the Trust Manager
would not release the symmetric key the data repository is encrypted with, and it would
remain sealed.

One way to securely store key material is placing it in a hardware security module. In
that case, keys should also be flagged as non-migratable to ensure that they cannot be
exported from the HSM that created them. However, if non-migratable keys are utilized,
secure backup strategies are necessary to ensure system operation in case of failure of
the HSM. These issues will be discussed in detail in later deliverables, namely D10 or
D13.

Note that protection against techniques for key extraction from RAM [28] are currently out
of scope. Several other research projects, like EMSCB2 and openTC3, already strive to
enhance security of host platforms and to establish a fully trusted computing base on top
of and complementary to the TCG specifications.
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Figure 6.8: PeRA Components: Controlled applications and controlling components.

6.8 Controlled Applications

As mentioned before, some applications require direct interaction between HcITS nodes,
e.g., a vehicle and a server. One scenario is that a server receives a request from a
vehicle, performs some tasks, and returns a result to the vehicle. These request and
result messages may be privacy sensitive. An example is a vehicle that wants to utilize
up-to-date traffic information gathered from floating car data by a TOC server for naviga-
tion. The vehicle sends information about its current position and its destination to a TOC
server requesting up-to-date traffic information for the roads on the way. It is obvious that
the transferred positioning information is potentially privacy infringing. Similarly, when a
server returns traffic information for a certain region, the destination of the vehicle could
potentially be inferred from it.

2European Multilaterally Secure Computing Base (EMSCB) project website: http://www.emscb.com/
3Open Trusted Computing (openTC) porject website: http://www.opentc.net/
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To allow this kind of interaction, an execution environment for controlled applications is
provided inside the PeRA. This environment restricts the capabilities of an application and
isolates it from other applications and the network. Importer and exporter act here as
communication proxies between controlled applications and vehicles. This even allows to
hide a vehicle’s identity from the called restricted application.

6.8.1 Controlled Application Environment

The controlled application environment is an execution environment inside the PeRA for
controlled applications. Capabilities of such applications are severely controlled to ensure
that they cannot misuse privacy relevant information. That is, applications can only com-
municate with PeRA components, namely the query analyzer as an access point to the
database and, tunneled through the PCM, the Importer and Exporter as communication
proxies. Furthermore, controlled applications will not be able to use file system storage,
they can only store information in the Secure Data/Metadata Repository of the PeRA.

Instances of controlled applications could not only be isolated from the outside world and
from other applications but also from other instances of the same application. For each
request, a new worker instance could be instantiated which performs its task and is termi-
nated afterwards, thus making them stateless.

For some controlled applications, communication with outside services may be inevitable.
The importer and exporter can be envisioned to act as privacy proxies that control the
circumstances of such communication. In general, the capabilities of an application in-
stance could be granted or restricted based on the privacy policy accompanying a given
service request. This way, it is guaranteed that the execution environment is restricted to
the degree demanded by the policy.

The introduction of controlled applications and the controlled application environment has
the effect of logically shifting the application in question to the trust domain of the request-
ing node. For example, this way a vehicle can trust and use applications that should
logically have been deployed in the vehicle, but require backend services (e.g., high-
bandwidth access to the database) to function properly. Similar to the confidential channel
which eliminates privacy threats from the access domain, the controlled application envi-
ronment eliminates (some) privacy threats in the backend storage domain.

The controlled application environment could be enforced and implemented, for example,
with the security framework of the Java language. The worker concept could be enhanced
for performance by utilizing technologies like Enterprise Java Beans (EJB), OSGi, or Ice.
Implementation details will be discussed in D10.

6.9 Mechanisms for Communication Privacy

Some applications require public communication to function properly, e.g., in broadcast
scenarios. Therefore, orthogonal privacy mechanisms are required to ensure the user-
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specified privacy level for such applications. Section 5.3.5 listed some general approaches
in this direction which are extended in the following. We focus mainly on the vehicle
domain, where such applications are envisioned for eSafety purposes.

As identified in D4, the characteristics of vehicular networks include high mobility of vehi-
cles, restricted movements of vehicles, frequent broadcast of safety messages, no anony-
mous communicants, high demand of performance, high quality position information, and
heterogeneous communication technologies. The wireless and open nature of vehicular
networks exposes a set of points of attacks to both insider and outsider attackers (cf. Sec-
tion 4.4.2). Put in a nutshell, the unique characteristics of vehicular communications mean
that

• a substantial part of the communications, especially safety messages, cannot be
encrypted and thus are sent in clear; and

• communications can be intercepted in the network, and personal information such
as location information can be learned without reading the content of the messages.

Therefore, specific mechanisms for protecting communication privacy are needed to ad-
dress such unique challenges in vehicle domain.

A multitude of mechanisms have been proposed in the past decades for preserving com-
munication privacy. Most of the mechanisms are based on a few building blocks of com-
munication privacy (e.g., pseudonyms and mix networks) and many of them are research
proposals with limited practical value. D4 gives a comprehensive survey on the mecha-
nisms for communication privacy and their interrelations.

The focus here is to choose mechanisms that can enforce privacy protection during com-
munication in ITS. Besides, the mechanisms should meet the following two requirements:

1. The mechanisms should be applicable to a wide range of potential V2X applications.

2. The mechanisms should be practically implementable in ITS systems.

There will be a large amount of applications based on V2X communications. The applica-
tions encompass very different scenarios with diverse properties [29]. Consequently, the
applications have very different communication patterns [30]. Thus, the mechanisms that
we use in the architecture should be applicable for most, if not all, of the V2X applications.
We also aim for a practical system in PRECIOSA, so the practicability of the mechanisms
is also important.

The pseudonym-based approach developed by the SeVeCom project [31] meets both
requirements and fits well into the architecture. Whenever identification is required in
communicants, pseudonyms can be used instead of identifiers which can be linked to an
individual. Pseudonymization can be used for public and confidential communication alike.
The pseudonym-based approach is accepted by many projects and standardization orga-
nization in ITS, e.g., Network-on-wheels project [32], IEEE 1609.2 [33], and C2C-CC [34],
to protect privacy in communications. Besides the design, SeVeCom has implemented a
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prototype implementation of the mechanism on real V2X communication devices. A de-
scription of the design and implementation of the mechanism appears in [35] and [36],
and we summarize the design of the mechanism in the following.

The pseudonym mechanism aims to provide privacy protection and to safeguard private
information of the V2X system users. In the context of communication, the interest is
in anonymity for the actions (messages and transactions) of the vehicles. The focus of
the mechanism is on private vehicles (e.g., excluding emergency vehicles and buses),
because the operation of all other V2X nodes, including RSUs, is not considered to raise
any significant privacy concerns, and all those other nodes should be readily identifiable.
A primary concern for cooperative ITS is to provide location privacy, that is, prevent others
(any observer ) from learning past or future locations of a VC system user (vehicle driver
or passenger). To safeguard location privacy is to satisfy a more general requirement, i.e.,
anonymity for the vehicle message transmissions.

Ideally, it should be impossible for any observer to learn whether a specific vehicle trans-
mitted a message or will transmit a message in the future (more generally, take an action).
Further, it should be impossible to link any two or more messages (in general, actions) of
the same vehicle. Even if an observer tried to guess, that should leave only a low probabil-
ity of linking a vehicle’s actions or identifying it among the set of all vehicles, the anonymity
set.

Rather than aiming for this strong anonymity, the mechanism requires a relatively weaker
level of protection: messages should not allow the identification of their sender, and two
or more messages generated by the same vehicle should be difficult to link to each other.
More precisely, messages produced by a vehicle over a protocol-selectable period of time
τ can always be linked by an observer that received them. But messages m1,m2 gener-
ated at times t1, t2 such that t2 > t1 + τ cannot.

A fundamental support of the pseudonym mechanism is the Trusted Third Party (TTP)
established in the backend system. The TTP is realized by instantiating Certification Au-
thorities (CAs). Each CA is responsible for a region (e.g., national territory, district, or
county) and manages identities and credentials of all nodes registered with it. To en-
able interactions between nodes from different regions, CAs provide certificates for other
CAs (cross-certification) or provide foreigner certificates to vehicles that are register with
another CA when they cross the geographical boundaries of their region

Each node is registered with only one CA, and has a unique long-term identity and a pair of
private and public cryptographic keys, and it is equipped with a long-term certificate. A list
of node attributes and a lifetime are included in the certificate, which the CA issues upon
node registration. The CA is also responsible for the eviction of nodes and the withdrawal
of compromised cryptographic keys via revocation of the corresponding certificates. In all
cases, the interaction of nodes with the CA is infrequent and intermittent, with the road-
side infrastructure acting as a gateway to and from the vehicular part of the network with
the use of other infrastructure (e.g., cellular networks) also possible.

Each node X has a unique long-term identity IDX , which will be the outcome of an agree-
ment between car manufacturers and authorities, similar to the use of vehicle identification
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numbers (VINs). Identifiers of the same format will be assigned both to vehicles and road-
side units. Each identity is associated with a cryptographic key pair (SKX ,PKX) and a
set of attributes of node X. The attributes reflect technical characteristics of the node
equipment (e.g., type, dimensions, sensors, and computing platform), as well as the role
of the node in the system. Nodes can be, for example, private or public vehicles (buses),
or vehicles with special characteristics (police patrol cars), or RSUs, with or without any
special characteristics (offering connectivity to the Internet). The assignment of an identity,
the selection of attributes appropriate for each node, and the generation of the certificate
are performed “off-line,” at the time the node is registered with the CA. The lifetime of the
certificate is naturally long, following the node life-cycle (or a significant fraction of it).

To obtain pseudonyms, a vehicle V ’s Hardware Security Module (HSM) generates a set of
key pairs {(SK1

V , PK
1
V ), . . . , (SK

i
V , PK

i
V )} and sends the public keys to a corresponding

pseudonym provider (PP) via a secured communication channel. V utilizes its long-term
identity IDV to authenticate itself to the PP. The PP signs each of the public keys, PKi

V ,
and generates a set of pseudonyms for V . Each pseudonym contains an identifier of
the PP, the lifetime of the pseudonym, the public key, possibly an attribute set, and the
signature of the PP; thus, no information about the identity of the vehicle is contained.

Pseudonyms are stored and managed in the on-board pseudonym pool, with their corre-
sponding secret keys kept in the HSM. This ensures that each vehicle has exactly one key
pair (own pseudonym and private key) that is active during each time period. Moreover,
once the switch from the (SKj , PKj) to the (j + 1)-st key pair (SKj+1, PKj+1) is done,
no messages can be further signed with SKj ; even if the certificate for PKj is not yet
expired. In other words, pseudonymity cannot be abused: For example, a rogue vehi-
cle cannot sign multiple beacons each with a different SKj over a short period, and thus
cannot appear as multiple vehicles.

A vehicle needs to contact the PP infrequently but regularly to obtain a new set of pseudonyms.
For example, if a vehicle utilizes pseudonyms in set i, it obtains the (i + 1)-st set of
pseudonyms while it can still operate with the i-th set. It switches to the (i+1)-st set once
no pseudonym in the i-th set can be used anymore. We term this process a pseudonym
refill.

Due to the requirement for accountability, the PP archives the issued pseudonyms to-
gether with the vehicle’s long-term identity. In case of an investigation, an authorized
party can ask the PP to perform a pseudonym resolution: Reveal the link of a specific
pseudonym to the long-term identity of the vehicle.

By using the same pseudonym only for a short period of time and switching to a new
one, vehicle activities can only be linked over the period of using the same pseudonym.
Changing pseudonyms makes it difficult for an adversary to link messages from the same
vehicle and track its movements.

An adversary analyzing which certificates are attached to signed messages can track
the location of vehicles over time. If pseudonyms are changed at appropriate time and
location, messages signed under different pseudonyms are hard to be linked by an adver-
sary.
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As the adversary could use information from other layers of the communication stack to
track vehicles (e.g., MAC- or IP-addresses), a change of pseudonyms should be accom-
panied by a change of the vehicle identifiers in underlying protocols as well. Still, using the
location contained in messages to match pseudonyms, an adversary can indirectly identify
vehicles by predicting the next position of a vehicle even if it has a new pseudonym. For
some applications, cloaking of location information [37] is not a solution as it would e.g.
jeopardize the use of safety applications. [38] proposes that vehicles change pseudonyms
in regions not monitored by an adversary. These regions are called mix zones [39] as the
vehicles by changing pseudonyms will mix with each other. Vehicles can also change
their pseudonym at regular intervals maximizing the probability of changing a pseudonym
in a mix zone. Another approach is proposed in [40] that creates unmonitored regions by
encrypting communications (i.e., cryptographic mix zones) in small regions with the help
of the road infrastructure.

When vehicles change pseudonyms in unmonitored regions of the network, mix zones are
large and it is difficult for an adversary to obtain good estimations. However, when mix
zones are created by the use of cryptography, they tend to be smaller and thus must be
located appropriately to maximize their effectiveness (e.g., at traffic intersections). Hence,
linking messages signed under different pseudonyms becomes increasingly hard over
time and space for an adversary. As vehicles will change pseudonyms several times
before reaching destination, the adversary will accumulate more uncertainty and like in
mix networks [41], mobile nodes can achieve a high level of location privacy.

The SeVeCom project defines a baseline security architecture for VC systems [42, 35, 36].
Based on a set of design principles, SeVeCom defines an architecture that comprises dif-
ferent modules, each addressing certain security and privacy aspects. Modules contain
components implementing one part of system functionality. The baseline specification
provides one instantiation of the baseline architecture, building on well-established mech-
anisms and cryptographic primitives, thus being easy to implement and to deploy in up-
coming VC systems.

The SeVeCom baseline architecture addresses different aspects, such as secure com-
munication protocols, privacy protection, and in-vehicle security. As the design and de-
velopment of VC protocols, system architectures, and security mechanisms is an ongoing
process, only few parts of the overall system are yet finished or standardized. As a result,
a VC security system cannot be based on a fixed platform but instead has to be flexible,
with the possibility to adapt to future VC applications or new VC technologies.

To achieve the required flexibility, the SeVeCom baseline architecture consists of mod-
ules, which are responsible for a certain system aspect, such as identity management.
The modules, in turn, are composed of multiple components each handling a specific
task. For instance, the secure communication module is responsible for implementing
protocols for secure communication and consists of several components, each of them
implementing a single protocol. Components are instantiated only when their use is re-
quired by certain applications, and they use well-defined interfaces to communicate with
other components. Thus, they can be exchanged by more recent versions, without other
modules being affected.
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Figure 6.9: SeVeCom Baseline Architecture: Deployment View

As shown in Fig. 6.9, the security manager is the central part of the SeVeCom system
architecture. It instantiates and configures the components of all other security modules
and establishes the connection to the Cryptographic Support Module. To cope with differ-
ent situations, the Security Manager maintains different policy sets. Policies can enable
or disable some of the components or adjust their configuration, for example, to enhance
or relax the parameters for a pseudonym change under certain circumstances.

To date, the SeVeCom baseline architecture can be considered as a relatively mature
and practically deployable solution for security and privacy in vehicular communications.
Nevertheless, ongoing research has mostly considered VC protocols relying on periodic
beaconing, flooding, GeoCast, and position-based routing. Up to now, these mechanisms
have received the attention of work on VC security and privacy. Nonetheless, recently,
additional means of information dissemination have been considered in the context of VC.
For example, the literature highlights the need for more efficient flooding and GeoCast
strategies, and suggests the use of Gossiping or Context-adaptive Message Dissemina-
tion, as well as Data Aggregation in VC systems [30].

These new approaches will necessitate an adaptation of security and privacy strategies.
Mechanisms such as context-adaptive message dissemination already provide an inher-
ent degree of resistance against attacks [43]. In contrast to many routing protocols, where
the protocol itself can become the target of an attacker, there is (nearly) no signaling
between nodes that an attacker could exploit.
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7 Summary, Conclusion, and Outlook

This document describes the idea and design of the so called “Privacy-verifiable Architec-
ture”, i.e., an architecture that can guarantee certain privacy properties and these prop-
erties can be verified by some external partner, e.g., a user or trusted third party. It will
guarantee that future ITS systems will be designed in a privacy friendly way and that users
of such systems can rely on them to respect the privacy policies that the users set for their
sensitive data.

The architecture is grounded on three building blocks:

1. The Architecture Principles and Requirements provide the basic ideas that the ar-
chitecture framework is based upon.

2. The Cooperative ITS Design Process that provides guidelines and tools that cITS
designers should use to follow a Privacy-by-Design strategy when building their cITS
applications.

3. The Cooperative ITS Runtime Architecture that provides strong privacy guarantees
through the Privacy-enforcing Runtime Architecture (PeRA). PeRA creates a policy
enforcement perimeter where policies for personal information must be complied
with in a mandatory way in order to access such information. PeRA implements
two principle mechanisms: Mandatory Privacy Control (MPC) and MPC Integrity
Protection (MIP) that will together ensure compliance with privacy policies.

Both the Cooperative ITS Design Process and the Cooperative ITS Runtime Architecture
are each presented in two steps:

1. The Cooperative ITS Architecture Framework (AF) is a generic and reusable frame-
work that substantiates the architecture principles.

2. The Cooperative ITS Reference Architecture provides a specific instantiation of the
AF that will later be used to implement a prototype privacy-verifiable ITS based on
the use cases from deliverable D1 [5].

In sum, this architecture will lift privacy in ITS (but also in generic IT systems) to a new
level, as users of such systems remain in control of their private data and can rest assured
that their policies will not be violated in the system.

While this document describes the overall architecture and outlines the major mecha-
nisms, other deliverables give or will give a more detailed description of specific aspects.
Namely, these are
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D2 “V2X measurement approach”: describes measurement approaches that are used
during the information flow analysis.

D6 “Models and privacy ontology for V2X”: provides the base for the policy language
and guidelines.

D10 “Mechanisms for V2X Privacy”: is the direct continuation of this deliverable and
will provide the details of various mechanisms that go beyond the scope of the ar-
chitecture document.

D11 “Guidelines for privacy aware cooperative application”: Will provide the guide-
lines that are used during the design process.

D13 “V2X privacy mechanisms and verification support tools”: Will describe tool sup-
port during design- and run-time.

Finally, D14 “V2X privacy verifiable cooperative application” will provide a report on how a
privacy-verifiable architecture has been designed and implemented based on the method-
ology and mechanisms described in this document.
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