
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D3.2

CIC encoding: Front-end

Version 1.0

Main Authors:
Brian Campbell

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract We describe the translation of the front-end of the CerCo compiler from the
OCaml prototype to the Calculus of Inductive Constructions (CIC) in the Matita proof assis-
tant. This transforms programs in the C-like Clight language to the RTLabs language, which
is reasonably target-independent and in the form of a control flow graph.

We also report on progress enriching these transformations with dependent types so as
to establish key invariants in each intermediate language, which removes potential sources of
failure within the compiler and will assist in future work proving correctness properties.

This work was Task 3.2 of the CerCo project, translating the prototype described in
Deliverable 2.2 [2] into CIC using the intermediate languages formalized in Deliverables 3.1 [4]
and 3.3. It will feed into the front-end correctness proofs in Task 3.4 and is a counterpart to
the back-end formalization in Task 4.2.

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Introduction 3
1.1 Revisions to the prototype compiler . 4

2 Clight phases 4
2.1 Cast simplification . 5
2.2 Labelling . 5
2.3 Runtime functions . 5
2.4 Conversion to Cminor . 6

3 Cminor phases 6
3.1 Initialisation code . 6
3.2 Conversion to RTLabs . 6

4 Adding and using invariants 7

5 Testing 8

6 Conclusion 8

1 Introduction

The CerCo compiler has been prototyped in OCaml [1, 2], but the certified compiler will be a
program written in the Calculus of Inductive Constructions (CIC), as realised by the Matita
proof assistant. This deliverable reports on the translation of the front-end of the compiler
into CIC and the subsequent efforts to start exploiting dependent types to maintain invariants
and rule out potential sources of failure in the compiler.

The input language for the formalized compiler is the Clight language. This is a C-like
language with side-effect free expressions that was adapted from the CompCert project [3]1 and
provided with an executable semantics. See [4] for more details on the syntax and semantics.

The front-end of the compiler is summarised in Figure 1. The two intermediate languages
involved are

Cminor — a C-like language where local variables are not explicitly allocated memory and
control structures are simpler

RTLabs — a language in the form of a control flow graph which retains the values and front-
end operations from Cminor

More details on the formalisation of the syntax and semantics of these languages can be found
in the accompanying Deliverable 3.4. Development of the formalized front-end was conducted
in concert with the development of these intermediate languages to facilitate testing.

1We will also use their CIL-based C parser to generate Clight abstract syntax trees, but will not formalize
this code.

CerCo, FP7-ICT-2009-C-243881 4

C (unformalized)
↓ CIL parser (unformalized OCaml)

Clight
↓ cast removal
↓ add runtime functions
↓ labelling
↓ stack variable allocation and control structure simplification

Cminor
↓ generate global variable initialisation code
↓ transform to RTL graph

RTLabs
↓ start of target specific back-end

...

Figure 1: Front-end languages and transformations

1.1 Revisions to the prototype compiler

We have been tracking revisions to the prototype compiler during the development of the
formalized version. Most of these changes were minor, but one exception is a major change
to the structure of the compiler.

The original plan for the front-end featured a Clight to Clight8 phase near the start which
replaced all of the integer values and operations by 8 bit counterparts, while pointers were
split into bytes at a later stage. Experience has shown that it would be difficult to produce
good code with this approach. Instead, we now have:

• full size integers, pointers and operations until code selection (the first part of the back-
end after RTLabs), and

• a cast removal stage which simplifies Clight expressions such as

(char)((int)x + (int)y)

into equivalent operations on simpler types, x+y in this case. The cast removal is impor-
tant because C requires arithmetic promotion of integer types to (at least) int before an
operation is performed. The Clight semantics do not perform the promotions, instead
they are added as casts by the CIL-based parser. However, our targets benefit immensely
from performing operations on the smallest possible integer type, so it is important that
we remove promotions where possible.

This document describes the formalized front-end after these changes.

2 Clight phases

In addition to the conversion to Cminor, there are several transformations which act directly
on the Clight language.

CerCo, FP7-ICT-2009-C-243881 5

2.1 Cast simplification

We noted above that the arithmetic promotion required by C (and implemented in the CIL-
based parser) adds numerous casts, causing arithmetic operations to be performed on 32 bit
integers. If left alone, the resulting code will be larger and slower. This phase removes many
of the casts so that the operations can be performed more efficiently.

The prototype version worked by recognising fixed patterns in the Clight abstract syntax
tree such as

(t)((t1)e1 op (t2)e2),

subject to restrictions on the types. These are replaced with a simpler version without the
casts. Such ‘deep’ pattern matching is slightly awkward in Matita and this approach does not
capture compositions of operations, such as

(char)(((int)a + (int)b) + (int)c)

where a, b and c are of type char, because the intermediate expression is not cast to and from
char.

The formalized version uses a different method, recursively examining each expression
constructor to see if the expression can be coerced to some ‘desired’ type. For example, when
processing the above expression it reaches each int cast with a desired type of char, notes
that the subexpression is of type char and eliminates the cast. Moreover, when the recursive
processing is complete the char cast is also eliminated because its subexpression is already of
the correct type.

This has been implemented in Matita. We have also performed a few proofs that the
arithmetic behind these changes is correct to gain confidence in the technique. During Task
3.4 we will extend these proofs to cover more operations and show that the semantics of the
expressions are equivalent, not just the underlying arithmetic.

2.2 Labelling

This phase adds cost labels to the Clight program. It is a fairly simple recursive definition,
and was straightforward to port to Matita. The generation of cost labels was handled by
our generic identifiers code, described in the accompanying Deliverable 3.3 on intermediate
languages.

2.3 Runtime functions

Some operations on integers do not have a simple translation to the target machine code. In
particular, we need to replace operations for 16 and 32-bit division and most bitwise shifts
with calls to runtime functions. These functions need to be added to the program at an early
stage because of their impact on execution time: any loops must be available to our labelling
mechanism so that we can report on how long the resulting machine code will take to execute.

We follow the prototype in replacing the affected expressions, which requires us to break
up expressions into multiple statements because function calls are not permitted in Clight
expressions. We may investigate moving these substitutions to a later stage of the compiler if
they prove difficult to reason about. However, this would also require adjusting the semantics
so that the costs still appear in the evaluation of Clight programs.

CerCo, FP7-ICT-2009-C-243881 6

The prototype adds the functions themselves by generating C code as text and reparsing
the program. This is unsuitable for formalization, so we generate Clight abstract syntax trees
directly.

2.4 Conversion to Cminor

The conversion to Cminor performs two essential tasks. First, it determines which local vari-
ables need to be stored in memory and generates explicit memory accesses for them. Second,
it must translate the control structures (for, while, . . .) into Cminor’s more basic structures.

These are both performed by code similar to that in the prototype, although the use of
generic fold operations on statements and expressions has been replaced by simpler recursive
definitions.

There are two additional pieces of work that the formalized translation must do. The
Cminor definition features some mild constraints of the types of expressions, which we can
enforce in the translation using some type checking. The error monad is used to dispose of
ill-typed Clight programs.

The other difficulty is that we need to generate fresh temporary variables to store function
results in before they are written to memory. This is necessary because Clight allows arbitrary
lvalue expressions as the destination for the returned value, but Cminor only allows local
variables. All other variable names in the Cminor program came from the Clight program, but
we need to construct a method for generating fresh names for the temporaries.

Our identifiers are based on binary numbers, and generation of fresh names is handled
by keeping track of the highest allocated number. Normally this is initialised at zero, but if
initialised by the largest existing identifier in the Clight program then the generated names will
be fresh. To do this, we extract the maximum identifier by recursively finding the maximum
variable name used in every expression, statement and function of the program.

3 Cminor phases

Cminor programs are processed by two passes: one deals with the initialisation of global
variables, and the other produces RTLabs code.

3.1 Initialisation code

This replaces the initialisation data with explicit code in the main function. The only re-
markable point in the formalization is that we have two slightly different instantiations of the
Cminor syntax: one with initialisation data that this pass takes as input, and one with only
size information that is the output. In addition to reflecting the purpose of this pass in its
type, it also ensures that the pass cannot be accidentally omitted.

3.2 Conversion to RTLabs

This pass breaks down the structure of the Cminor program into a control flow graph, but
maintains the same set of operations. The algorithm is stateful in the sense that it builds
up the RTLabs function body incrementally, but all of the relevant state is already present
in the function record (including the fresh register and graph label name generators) and the
prototype passes this around. Thus the formalized code is very similar in nature.

CerCo, FP7-ICT-2009-C-243881 7

One possible variation would be to explicitly define a state monad to carry the function
under construction around, but it is not yet clear if this will make the correctness results easier
to prove.

4 Adding and using invariants

The compiler phases described above all use the error monad to deal with inconsistencies in
the program being transformed. In particular, lookups in environments may fail, control flow
graphs may have missing statements and various structural problems may be present. We
would like to show that these failures are absent where possible by establishing that programs
are well formed early in the compilation process.

This work overlaps with Deliverable 3.3 (where more details of the additions to the syntax
and semantics of the intermediate languages can be found) and Task 3.4 on the correctness of
the compiler. Thus this work is experimental in nature, and will evolve during Task 3.4.

The use of the invariants follows a common pattern. Each language embeds invariants in
the function record that constrain the function body by other information in the record (such
as the list of local variables and types, or the set of labels declared). However, during the
transformations they typically need to be refined to constraints on individual statements and
expressions with respect to data structures used in the transformation. A similar change in
invariants is required between the transformation and the new function.

For example, consider the use of local variables in the Cminor to RTLabs stage. We start
with

record internal_function : Type[0] :=

{ f_return : option typ

; f_params : list (ident × typ)

; f_vars : list (ident × typ)

; f_stacksize : nat

; f_body : stmt

; f_inv : stmt_P (λs.stmt_vars (λi.Exists ? (λx.\fst x = i) (f_params @ f_vars)) s ∧
stmt_labels (λl.Exists ? (λl’.l’ = l) (labels_of f_body)) s) f_body

}.

where the first half of f_inv requires every variable in the function body to appear in the
parameter or variable list. In the translation to RTLabs, variable lookups are performed in a
map to RTLabs pseudo-registers:

definition env :=identifier_map SymbolTag register.

let rec add_expr (le:label_env) (env:env) (ty:typ) (e:expr ty)

(Env:expr_vars ty e (present ?? env))

(dst:register) (f:partial_fn le) on e

: Σf’:partial_fn le. fn_graph_included le f f’ :=

match e return λty,e.expr_vars ty e (present ?? env) →
Σf’:partial_fn le. fn_graph_included le f f’ with

[Id _ i ⇒ λEnv.
let r :=lookup_reg env i Env in

...

Note that lookup_reg returns a register without any possibility of error. The reason this works
is that the pattern match on e refines the type of the invariant Env to a proof that the variable
i is present. We then pass this proof to the lookup function to rule out failure.

CerCo, FP7-ICT-2009-C-243881 8

When this map env is constructed at the start of the phase, we prove that the proof f_inv
from the function implies the invariant on variables needed by add_expr and its equivalent on
statements:

lemma populates_env : ∀l,e,u,l’,e’,u’.
populate_env e u l = 〈l’,e’,u’〉 →
∀i. Exists ? (λx.\fst x = i) l →

present ?? e’ i.

A similar mechanism is used to show that goto labels are always declared in the function.
Also note the return type of add_expr is a dependent pair. We build the resulting RTLabs

function incrementally, using a type partial_fn that does not contain the final invariant for
functions. We always require the fn_graph_included property for partially built functions to
show that the graph only gets larger, a key part of the proof that the resulting control flow
graph is closed. Dependent pairs are used in a similar manner in the Clight to Cminor phase
too.

This work does not currently cover all of the possible sources of failure; in particular
some structural constraints on functions are not yet covered and some properties of RTLabs
programs that may be useful for later stages or the correctness proofs are not produced.
Moreover, we may experiment with variations to try to make the proof obligations and syntax
simpler to deal with. However, it does show that retrofitting these properties using dependent
types in Matita is feasible.

5 Testing

To provide some early testing and bug fixing of this code we constructed it in concert with
the executable semantics described in Deliverable 3.3, and Matita term pretty printers in the
prototype compiler. Using these, we were able to test the phases individually and together
by running programs within the proof assistant itself, and comparing the results with the
expected output.

6 Conclusion

We have formalized the front-end of the CerCo compiler in the Matita proof assistant, and
shown that invariants can be added to the intermediate languages to help show properties of
it. This work provides a solid basis for the compiler correctness proofs in Task 3.4.

References

[1] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Kayvan Memarian, and Ronan
Saillard. Compiler design and intermediate languages. Deliverable 2.1, Project FP7-ICT-
2009-C-243881 CerCo.

[2] Nicolas Ayache, Roberto M. Amadio, and Yann Régis-Gianas. Prototype implementation.
Deliverable 2.2, Project FP7-ICT-2009-C-243881 CerCo.

[3] Sandrine Blazy and Zaynah Dargaye andXavier Leroy. Formal verification of a C compiler
front-end. In FM 2006: Formal Methods, volume 4085 of Lecture Notes in Computer
Science, pages 460–475. Springer, 2006.

CerCo, FP7-ICT-2009-C-243881 9

[4] Brian Campbell and Randy Pollack. Executable formal semantics of C. Deliverable 3.1,
Project FP7-ICT-2009-C-243881 CerCo.

	Introduction
	Revisions to the prototype compiler

	Clight phases
	Cast simplification
	Labelling
	Runtime functions
	Conversion to Cminor

	Cminor phases
	Initialisation code
	Conversion to RTLabs

	Adding and using invariants
	Testing
	Conclusion

