
INFORMATION AND COMMUNICATION

TECHNOLOGIES

(ICT)

PROGRAMME

Project FP7-ICT-2009-C-243881 CerCo

Report n. D3.3

Executable Formal Semantics of front-end

intermediate languages

Version 1.0

Main Authors:
Brian Campbell

Project Acronym: CerCo
Project full title: Certified Complexity
Proposal/Contract no.: FP7-ICT-2009-C-243881 CerCo

1

CerCo, FP7-ICT-2009-C-243881 2

Abstract We report on the formalization of the front-end intermediate languages for the
CerCo project’s compiler using executable semantics in the Matita proof assistant. This
includes common definitions for fresh identifier handling, n-bit arithmetic and operations and
testing of the semantics. We also consider embedding invariants into the semantics for showing
correctness properties.

This work was Task 3.3 of the CerCo project and the languages that were formalized were
first described in Deliverable 2.1 [1]. They are used by the formalized front-end in Task 3.2 to
provide the syntax for the transformations, and to test them by animating programs in the
executable semantics. It will also be a crucial part of the specifications for the correctness
results in Task 3.4.

CerCo, FP7-ICT-2009-C-243881 3

Contents

1 Introduction 3
1.1 Revisions to the prototype compiler . 4

2 Definitions common to several languages 4
2.1 Identifiers . 4
2.2 Machine integers and arithmetic . 5
2.3 Front-end operations . 5
2.4 Presentation of small-step executable semantics 5

3 Clight modifications 6

4 Cminor 6

5 RTLabs 7

6 Testing 7

7 Embedding invariants 8
7.1 Cminor block depth . 8
7.2 Identifier invariants . 9

8 Conclusion 10

1 Introduction

This work formalizes the front-end intermediate languages from the CerCo prototype com-
piler, described in previous deliverables [1, 2]. The front-end of the compiler is summarized
in Figure 1 including the intermediate languages and the compiler passes described in the
accompanying Deliverable 3.2. We have also refined parts of the formal development that are
used for several of the languages in the compiler.

The input language to the formalized front-end is the Clight language. The executable
semantics for this language were presented in a previous deliverable [3]. Here we will report
on some minor changes to its semantics made to better align it with the whole development.

The formalization of each language takes the form of definitions for abstract syntax and
functions providing a small-step executable semantics. This is done in the Calculus of Inductive
Constructions (CIC), as implemented in the Matita proof assistant. These definitions will be
essential for the correctness proofs of the compiler in Task 3.4.

Finally, we will report on work to add several invariants to the languages. This activity
overlaps with Task 3.4 on the correctness of the compiler front-end. However, the use of
dependent types mean that this work is tied closely to the definition of the languages and the
transformations of the front-end in Task 3.2. By considering it now we can experiment with
and judge its impact on the formal semantics, and how feasible retrofitting such invariants is.

CerCo, FP7-ICT-2009-C-243881 4

C (unformalized)
↓ CIL parser (unformalized OCaml)

Clight
↓ cast removal
↓ add runtime functions
↓ labelling
↓ stack variable allocation and control structure simplification

Cminor
↓ generate global variable initialization code
↓ transform to RTL graph

RTLabs
↓ start of target specific back-end

...

Figure 1: Front-end languages and transformations

1.1 Revisions to the prototype compiler

Ongoing work to maintain and improve the prototype compiler has resulted in several changes,
mostly minor. The most important change is that the transformations to replace 16 and 32 bit
types have been moved from the Clight language to the target-specific stage between RTLabs
and RTL to help generate better code, and the addition of a Clight cast removal transformation
to reduce the number of 16 and 32 bit operations.

The formalized semantics have tracked these changes, and in this report we describe them
as they currently stand.

2 Definitions common to several languages

The semantics for many of the languages in the compiler share some core parts: the memory
model, environments, runtime values, definitions of operations, a monad for encapsulating
failure and I/O (using resumptions), and a common abstraction for small-step executable
semantics. The executable memory model was ported from CompCert as part of the work on
Clight and was reused for the front-end languages1. The failure and I/O monad was introduced
in the previous deliverable on Clight [3, §4.2]. In all of the languages except Clight we have
a basic form of type, typ identifying integers and pointers along with their sizes. The other
parts are discussed below, with the only change to the runtime values being the representation
of integers.

2.1 Identifiers

Each language features one or more kinds of names to represent variables, such as registers,
goto labels or RTL graph labels. We also need to describe various maps whose domain is a
set of identifiers when defining the semantics and compilation.

1However, it is likely that we will revise the memory model to make it better suited for describing all of our
compiler, not just the front-end.

CerCo, FP7-ICT-2009-C-243881 5

Previous work on the executable semantics of the target machine code included bit vectors
and bit vector tries to define various integers in the semantics, and give a low level view of
memory [4]. To keep the size of the development down we have reused these data structures
for identifiers and maps respectively.

One difficulty with using fixed size bit vectors for identifiers is that fresh name generation
can fail if generate too many. While we use an error monad to deal with failures, we wish to
minimize its use in the compiler. Thus we add a flag to detect overflows, and check it after
the phase of the compiler is complete to report exhaustion. The rest of the phase can then
be written as if name generation always succeeds. In practice this will never occur on normal
programs because more identifiers of each sort are available than bytes of code memory on
the target.

Given the wide variety of identifiers used in the compiler we also wish to separate the
different classes of identifier. Thus we encapsulate the bit vector representing the identifier in
a datatype that also carries a tag identifying which class of identifier we are using:

inductive identifier (tag:String) : Type[0] :=

an_identifier : Word → identifier tag.

The tries are also tagged in the same manner. These tags have also proved useful during
testing by making the resulting terms more readable.

2.2 Machine integers and arithmetic

The bit vectors in [4] also came equipped with some basic arithmetic for the target semantics.
The front-end required these operations to be generalized and extended. In particular, we
required operations such as zero and sign extension and translation between bit vectors and
full integers. It also became apparent that while the original definitions worked reasonably on
8-bit vectors, they did not scale up to 32-bit integers. The definitions were then reworked to
make them efficient enough to animate programs in the front-end semantics.

2.3 Front-end operations

The two front-end intermediate languages, Cminor and RTLabs, share the same set of opera-
tions on values. They differ from Clight’s operations by incorporating casts and by having a
separate operation for each type of data operated upon. For example, subtraction of pointers
is treated as a different operation from subtraction of integers.

A common semantics is given for these operations in the form of simple CIC functions on
the operation and runtime values.

2.4 Presentation of small-step executable semantics

Each language’s semantics is described by an instantiation of two records for defining transition
systems. We already use these to animate the semantics of the languages for testing, but they
will also be used to state the simulation properties we will prove in Tasks 3.4 and 4.4.

First we describe suitable transition systems,

record trans_system (outty:Type[0]) (inty:outty → Type[0]) : Type[2] :=

{ global : Type[1]

; state : global → Type[0]

; is_final : ∀g. state g → option int

CerCo, FP7-ICT-2009-C-243881 6

; step : ∀g. state g → IO outty inty (trace×(state g))

}.

where we have some type of global data that remains fixed throughout evaluation (typically
used for the global environment), a type for states, a function to detect a final successful state
and a step function which can also return an error or request for I/O. The type of states may
depend on the fixed data so that we will be able to add invariants asserting that (for example)
all the global variables referenced by the program state exist.

We also define a coinductive description of executions and a cofixpoint to produce them.
The second record extends the transition system with a type of programs and functions to
initialise the transition system:

record fullexec (outty:Type[0]) (inty:outty → Type[0]) : Type[2] :=

{ program : Type[0]

; es1 :> trans_system outty inty

; make_global : program → global ?? es1

; make_initial_state : ∀p:program. res (state ?? es1 (make_global p))

}.

Finally another function is given which uses them to produce a full execution starting from
the program alone.

3 Clight modifications

The Clight input language remained largely the same as in the previous deliverable [3]. The
principal changes were to use the identifiers and arithmetic described above in place of the
arbitrarily large integers used before. For the identifiers, this relieved us of the burden of
adding an efficient datatype for maps by reusing the bit vector tries instead.

The arithmetic replaced a dependent pair of an arbitrary integer and a proof that it was
in range of 32 bit integers by the exact bit vector for each size of integer. This direct approach
is closer to the implementation and more obviously correct — no extra precision can be left
in by accident.

4 Cminor

The Cminor language does not store local variables in memory, and has simpler control struc-
tures than Clight. It is similar in nature to the Cminor language in CompCert, although the
semantics have been based on the CerCo prototype rather than ported from CompCert. The
syntax is similar to the prototype, except that the types attached to expressions are restricted
so that some corner cases are ruled out in the Cminor to RTLabs stage (see the accompanying
Deliverable 3.2 for details):

inductive expr : typ → Type[0] :=

| Id : ∀t. ident → expr t

| Cst : ∀t. constant → expr t

| Op1 : ∀t,t’. unary_operation → expr t → expr t’

| Op2 : ∀t1,t2,t’. binary_operation → expr t1 → expr t2 → expr t’

| Mem : ∀t,r. memory_chunk → expr (ASTptr r) → expr t

| Cond : ∀sz,sg,t. expr (ASTint sz sg) → expr t → expr t → expr t

| Ecost : ∀t. costlabel → expr t → expr t.

CerCo, FP7-ICT-2009-C-243881 7

For example, note that conditional expressions only switch on integer expressions. In prin-
ciple we could extend this to statically ensure that only well-typed Cminor expressions are
considered, and we will consider this as part of the work on correctness in Task 3.4.

We also provide a variant of the syntax where the only initialization data is the size of
each global variable, for use after the initialization code has been generated.

The definition of the semantics is routine: a functional definition of a single small-step
of the machine is given, reusing the memory model, environments, arithmetic and operations
mentioned above.

5 RTLabs

The RTLabs language provides a target independent Register Transfer Language, where pro-
grams are represented as control flow graphs. We use the identifiers described above for the
graph labels and the maps for the graph itself. The tagging mechanism ensures that labels
cannot be mixed up with other identifiers in the program (in particular, we cannot accidentally
reuse a goto label from Cminor where a graph label should appear).

Otherwise, the syntax and semantics of RTLabs mirrors that of the prototype compiler.
Some of the syntax is shown below, including the type of the control flow graphs. The same
common elements are used as for Cminor, including the front-end operations mentioned above.

inductive statement : Type[0] :=

| St_skip : label → statement

| St_cost : costlabel → label → statement

| St_const : register → constant → label → statement

| St_op1 : unary_operation → register → register → label → statement

...

| St_return : statement

.

definition graph : Type[0] → Type[0] :=identifier_map LabelTag.

record internal_function : Type[0] :=

{ f_labgen : universe LabelTag

; f_reggen : universe RegisterTag

; f_result : option (register × typ)

; f_params : list (register × typ)

; f_locals : list (register × typ)

; f_stacksize : nat

; f_graph : graph statement

}.

6 Testing

To provide some assurance that the semantics were properly implemented, and to support the
testing described in the accompanying Deliverable 3.2, we have adapted the pretty printers
in the prototype compiler to produce Matita terms for the syntax of each language described
above.

A few common definitions were added for animating the small-step semantics of any of the
front-end languages in Matita, given a bound on the number of steps to execute and any input

CerCo, FP7-ICT-2009-C-243881 8

required. These use the definitions described in Section 2.4 to perform the actual execution.
We then used a small selection of test cases to ensure basic functionality. However, this is still
a time consuming process, so more testing will carried out once the extraction of CIC terms
to OCaml programs is implemented in Matita.

7 Embedding invariants

Each phase of the prototype compiler can fail in a number of places if the input language
permits programs that are badly structured in some sense: a missing label in a goto statement
or CFG, an undefined variable name, a break statement outside of a loop or switch, and so
on. We wish to restrict our intermediate languages using dependent types to remove as many
‘junk’ programs as possible to rule out such failures. We also hope that such restrictions will
help in other correctness proofs.

This goal lies in the overlap between several tasks in the project: it involves manipulating
the syntax and semantics of the intermediate languages (the present work), the encoding of
the front-end compiler phases in Matita (Task 3.2) and the correctness of the front-end (Task
3.4). Thus this work is rather experimental; it is being carried out on branches in our source
code repository and the final form will be decided and merged in during Task 3.4.

So far we have tried adding two forms of invariant — one using dependent types to index
statements in Cminor by their block depth, and the other asserts that variables and labels are
present in the appropriate environments by adding a separate invariant to each function. Note
that these do not yet cover all of the properties that a program in these languages is expected
to enjoy; for example, there are currently no checks that references to globals are well-defined.

7.1 Cminor block depth

The Cminor language has relatively simple control structures. Statements are provided for
infinite loops, non-looping blocks and exiting an arbitrary number of blocks (for break, failing
loop guards and the switch statement2).

However, this means that there are badly-formed Cminor programs such as

int main() {

block {

loop {

exit 5

}

}

}

where we attempt to exit more blocks than exist. To rule these out (including demonstrating
that the previous phase of the compiler does not generate them) we can index the statements
of the language by the depth of the enclosing blocks.

The adaption of the syntax adds the depth to every statement, and uses bounded integers
in the exit and switch statements:

inductive stmt : ∀blockdepth:nat. Type[0] :=

| St_skip : ∀n. stmt n

2We are considering replacing the Cminor switch statement with one that uses goto-like labels in both the
prototype and the formalized compilers, but for now we stick with this CompCert-style arrangement.

CerCo, FP7-ICT-2009-C-243881 9

...

| St_loop : ∀n. stmt n → stmt n

| St_block : ∀n. stmt (S n) → stmt n

| St_exit : ∀n. Fin n → stmt n

(* expr to switch on, table of <switch value, #blocks to exit>, default *)

| St_switch : expr → ∀n. list (int × (Fin n)) → Fin n → stmt n

...

where stmt n is a statement enclosed in n blocks, and Fin n is a standard construction for a
natural number which is at most n.

In the semantics the number of blocks is also added to the continuations and state, and
the function to find the continuation from an exit statement can be made failure-free. We note
in passing that adding this parameter detected a small mistake in the semantics concerning
continuations and tail calls, although the mistake itself was benign.

7.2 Identifier invariants

To show that the variables and labels occurring in the body of a function are present in the
relevant structures we add an additional invariant to the function records.

For Cminor we use a higher-order predicate which recursively applies a predicate to all
substatements:

let rec stmt_P (P:stmt → Prop) (s:stmt) on s : Prop :=

match s with

[St_seq s1 s2 ⇒ P s ∧ stmt_P P s1 ∧ stmt_P P s2

| St_ifthenelse _ _ _ s1 s2 ⇒ P s ∧ stmt_P P s1 ∧ stmt_P P s2

| St_loop s’ ⇒ P s ∧ stmt_P P s’

| St_block s’ ⇒ P s ∧ stmt_P P s’

| St_label _ s’ ⇒ P s ∧ stmt_P P s’

| St_cost _ s’ ⇒ P s ∧ stmt_P P s’

| _ ⇒ P s

].

Dependent pattern matching on statements thus allows an accompanying stmt_P fact to be
unfold to the predicate on the current statement and the predicate applied to all substatements.

We require two properties to hold in Cminor functions:

1. All variables in the body are present in the list of parameters or the list of variables for
the function (this also uses a similar recursive predicate on expressions).

2. All labels in goto statements appear in a label statement.

The function definition thus becomes:

record internal_function : Type[0] :=

{ f_return : option typ

; f_params : list (ident × typ)

; f_vars : list (ident × typ)

; f_stacksize : nat

; f_body : stmt

; f_inv : stmt_P (λs.stmt_vars (λi.Exists ? (λx.\fst x = i) (f_params @ f_vars)) s ∧
stmt_labels (λl.Exists ? (λl’.l’ = l) (labels_of f_body)) s) f_body

}.

CerCo, FP7-ICT-2009-C-243881 10

where stmt_vars and stmt_labels constrain the variables and labels that appear directly in a
statement (but not substatements) to appear in the given list, and labels_of returns a list of
all the labels defined in a statement.

The Clight semantics can be amended to use these invariants, although the main benefit
is for the compiler stages (see the accompanying Deliverable 3.2 for details). The semantics
require the invariants to be added to the state and continuations. It was convenient to split the
continuations between the local continuation representing the rest of the code to be executed
within the function, and the stack of function calls because it becomes easier to state the
property on the local continuation alone. The invariant for variables is slightly different — we
require that every variable appear in the local environment. We use f_inv from the function
to establish this invariant when the environment is set up on function entry.

It is unclear whether changing the semantics is really worthwhile. It witnesses that the
invariants are those we wanted, but makes no difference to the actual execution of the program,
especially as the execution can still fail due to genuine runtime errors. Moreover, it is unclear
what effect the presence of proof terms and more dependent pattern matching in the semantics
will have on the complexity of future correctness proofs. We plan to examine this issue during
Task 3.4.

We use a similar method to specify the invariant that the RTLabs graph is closed — that
is, any successor labels in a statement in the graph are present in the graph. The definition
is simpler in RTLabs because the flat representation of the graph does not require recursive
definitions like stmt_P above.

8 Conclusion

We have developed executable semantics for each of the front-end languages of the CerCo
compiler. These will form the basis of the correctness statements for each stage of the compiler
in Task 3.4. We have also shown that useful invariants can be added as dependent types, and
intend to use these in subsequent work.

References

[1] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas, Kayvan Memarian, and Ronan
Saillard. Compiler design and intermediate languages. Deliverable 2.1, Project FP7-ICT-
2009-C-243881 CerCo.

[2] Nicolas Ayache, Roberto M. Amadio, and Yann Régis-Gianas. Prototype implementation.
Deliverable 2.2, Project FP7-ICT-2009-C-243881 CerCo.

[3] Brian Campbell and Randy Pollack. Executable formal semantics of C. Deliverable 3.1,
Project FP7-ICT-2009-C-243881 CerCo.

[4] Dominic P. Mulligan and Claudio Sacerdoti Coen. Executable formal semantics of machine
code. Deliverable 4.1, Project FP7-ICT-2009-C-243881 CerCo.

	Introduction
	Revisions to the prototype compiler

	Definitions common to several languages
	Identifiers
	Machine integers and arithmetic
	Front-end operations
	Presentation of small-step executable semantics

	Clight modifications
	Cminor
	RTLabs
	Testing
	Embedding invariants
	Cminor block depth
	Identifier invariants

	Conclusion

